INTRODUCTION

A file is a collection of binary data. A file could represent a program, a document or in some cases part of the file system itself. In modern computing it is quite common for there to be several different storage devices attached to the same computer. A common data structure such as a file system allows the computer to access many different storage devices in the same way, for example, when you look at the contents of a hard drive or a CD you view it through the same interface even though they are completely different mediums with data mapped on them in completely different ways. Files can have very different data structures within them but can all be accessed by the same methods built into the file system. The arrangement of data within the file is then decided by the program creating it. The file systems also store a number of attributes for the files within it.

All files have a name by which they can be accessed by the user. In most modern file systems the name consists of three parts, its unique name, a period and an extension. For example the file 'bob.jpg' is uniquely identified by the first word ‘bob’; the extension jpg indicates that it is a jpeg image file. The file extension allows the operating system to decide what to do with the file if someone tries to open it. The operating system maintains a list of file extension associations. Should a user try to access 'bob.jpg' then it would most likely be opened in whatever the systems default image viewer is.

Some file systems also store data about which user created a file and at what time they created it. Although this is not essential to the running of the file system it is useful to the users of the system.

In order for a file system to function properly they need a number of defined operations for creating, opening and editing a file. Almost all file systems provide the same basic set of methods for manipulating files.

ACCESS METHOD

Access methods pertain to the sequence in which records will be written or read. The two choices are Sequential and Random.

The Sequential access method is simply to start reading or writing at the beginning of the file, and then continue through the file one record, after another, in sequence. If a transaction file is being processed against a master file sequentially, both files must have their records in the same sequence.

The Random access method provides for the reading or writing of unsequenced records, that is, in random order. The advantage of this method is the ability to go directly to the desired record without handling any other records ahead of it. To locate the desired record, its address must be supplied to the operating system before an attempt is made to read the record. The address may be determined either by calculating it with a mathematical algorithm, or formula, or by looking up the address in a table or index generated at the time the file was created. In either case, the address consists of the cylinder number, track number, and optionally a record number. A cylinder is defined as the surface area covered by all read-write heads in one position of the access mechanism.
[image: image1.png]Sequential access

1 2 3 4 5 6 7 8

Random access

DIRECTORY STRUCTURE

The data are organized mainly in 2 parts. First, the disks are split into one or more partitions(minidisk or volumes) typically each disk on a system contain at least one partition , which is a low level structure in which files and directories preserved, Second, each partition contain information about files with in it. This information is kept in entries in a device directory or volume table of contents (VTOC). This is simply called a directory and it records information such as name, location, size and type of all files on that partition.
	Directory

	Files

	Directory

	Files

	Directory

	 Files

A directory can be viewed as a simple table that translates file names into directory entry. We can insert entries, delete entries and search for a named entry and list all the entries in the directory.

Logical Structure of a Directory:

· Single level Directory:

It is the simplest directory structure. All the files are placed in the same directory.
	cat
	bo
	A
	test
	mail

A single level directory has significant limitations. If the system has more than one user, when the number of files increased. Since all the files are in the same directory, each file should have unique name.
· Two-Level Directory:

A single level directory often needs to conclusion of file name between different users. The standard solution is to create separate directory for each user. In this structure each user has its own user file directory (UFD). Each UFD has a similar structure but list only the files of single user. Apart from this the system keeps a master file directory (MFD). Whenever a user job starts or a user logs in the system MFD is searched. The MFD is indexed by the user name or account number and each entry points to the UFD of that user.
	User 1
	User 2
	User 3

	a
	data

	cat
	bo
	test

	a
	test
	mail

UFD

When a user refers to a particular file only his own UFD is searched. Thus different users may have files with same name. The user directories themselves must be created and deleted as necessary. A special system program is run with appropriate user name and account information. The program creates a new UFD and access an entry for it to the MFD.

Two-level directory structure has some disadvantages. This structure effectively isolates one user from other. It becomes a disadvantage when the users want to cooperate on some task and to access one another file.
· Tree-Structure Directory:

It is a generalization of two-level directory. Here, we organize the directory in a tree structure. The tree has a root directory and every file in the system has unique path name. A path name is the path from the root through all subdirectories to a specified file.
A directory or subdirectory contains a set of files or subdirectories. A directory is simply another file but it is treated in a special way. All directories have same internal format. One bit in
each directory entry defines the entry as a file (0) or as a subdirectory (1). Each user in the system has a current directory. Whenever a reference is made to a file a current directory is searched. If a file is needed that is known in the current directory and the user must specify a path name or change the current directory to the directory hold in that file.

A path name can be of 2 types:-absolute path and relative path. Absolute path may begin at the root directory and follows the path down to the specified file. A relative path may define a path from the current directory. Suppose you are in the directory M2. Then the relative path name m21/song.mp3 refers to the same file as thus the absolute path name root/music/M2/m21/song.mp3.

	Pgms
	Music
	Video

	M1
	M2

	V1.mpe4
	V2.mpe4

	C

	m21
	m22

	Song.mp3
	a.mp3

PROTECTION

 Why is protection necessary? Because people want to share files, but not share all aspects of all files. Want protection on individual file and operation basis.

· Professor wants students to read but not write assignments.

· Professor wants to keep exam in same directory as assignments, but students should not be able to read exam.

· Can execute but not write commands like cp, cat, etc.

 For convenience, want to create coarser grain concepts.

· All people in research group should be able to read and write source files. Others should not be able to access them.

· Everybody should be able to read files in a given directory.

Conceptually, have operations (open, read, write, execute), resources (files) and principals (users or processes). We can describe desired protection using access matrix. Have list of principals across top and resources on the side. Each entry of matrix lists operations that the principal can perform on the resource.

Two standard mechanisms for access control: access lists and capabilities.

· Access lists: for each resource (like a file), give a list of principals allowed to access that resource and the access they are allowed to perform. So, each row of access matrix is an access list.

· Capabilities: for each resource and access operation, give out capabilities that give the holder the right to perform the operation on that resource. Capabilities must be unforgettable. Each column of access matrix is a capability list.

Instead of organizing access lists on a principal by principal basis, can organize on a group basis.

FILE SYSTEM STRUCTURE

The file system itself it is generally composed of different levels. Each level in the design uses the features of lower levels to create new features for use by higher levels.

The lowest level is the I/O control and it consists of device drivers and interrupt handlers are transfer information between the main memory and disk system. A device driver is a translator whose input consist of high level commands such as retrieve 1,2,3 and its output consist of lower level hardware specific instruction s that are used by the hardware controller. The hardware controller interfaces in the I-O devices to the rest of the system. The device driver usually writes specific bit patterns to special locations in the I-O controllers memory to send the controller on which device location to act and what action to take.
Application Program

Logical File System

File Organization Module

Basic File System

I/O control

Devices

The basic file system needs only to issue generic commands to the appropriate device drivers to read and write physical blocks on the disk. Each physical block is identified by its numeric disk address.

The file organization module knows about files and their logical blocks, as well as physical blocks by knowing the type of file allocation used and the location of the file. The file organization module can translate logical block address to physical block address for the basic file system to transfer. Each file logical blocks are numbered from 0 through n whereas the physical blocks
containing the data do not match the logical numbers so a translation is needed to locate each block. The file allocation module also include the free space manager which tracks unallocated blocks and provide these blocks to file organization module when requested. A logical file system manages meta data information. Meta data includes the entire file system structure exclude in the actual data.
The logical file system manages the directory structure to provide file organization module with the information later major needs, a given symbolic file names. It maintains the file structure by using File Control Block (FCB). FCB contains information about the file including owner ship permission of the file contain. The logical file system is also responsible for protection and security.
 [image: image2.jpg]‘ Directories

Iroot) ‘

File System

|

|

‘ File Systems

|
I [[|

‘lhin || idev

letc ‘ Nib

Toar | o] [e || oo

ALLOCATION METHOD

Contiguous Allocation

When a file is created, it is allocated a contiguous number of blocks; for example, let us say that we are using a file system with 2 Kbyte blocks. We want to create a file ch1.txt which contains 26 Kbytes; assume that blocks up to number 50 are already used. We allocate 25 blocks, 51 to 75, to ch1.txt.

Advantages:
· Contiguous allocation is simple to implement. The directory entry for a file, e.g. ch1.txt, needs to record for no more than start block (51) and size (25).

· Contiguous allocation has good read/write performance. Once the heads have been moved to the beginning of the file, they need to move again only in small steps- or not at all for smaller files.

Disadvantages:

· However, contiguous allocation suffers from one major drawback: disk fragmentation.

For example, assume we have just 200 blocks partition, allocated as follows:

 Blocks

Boot, super etc.
 1 to 50

ch1.txt

 51 to 75
(50 Kbytes)

ch2.txt

 76 to 100
(50 Kbytes)

ch3.txt

101 to 150
(100 Kbytes)

ch4.txt

151 to 160
(20 Kbytes)

ch5.txt

161 to 190
(60 Kbytes)

191 to 200 is still free

· If we want to create ch6.txt and it is, for example, 30 Kbytes, we cannot. However, let us say that we have deleted ch4.txt; we now have 40 Kbytes free (blocks 151 to 160 and 191 to 200) but they are not contiguous, and so we are still in trouble. Let us delete ch1.txt; now we are fine, we can put ch6.txt in blocks 51 to 65.
· However, now we have free blocks 66-75, 151-160, 191-200, a total of 60 Kbytes, but they are usable only for smaller files: 20 Kbytes or 30 Kbytes.

· An additional problem with contiguous allocation is that when a file is created, it may not be known how large it will end up. E.g. when you open a file program1.bas in an editor, you have no idea how large it will become.

· Contiguous allocation is used in CD-ROM file systems; here the sizes of files are known in advance and there is no deleting, rewriting.

Linked List Allocation

Each block contains a number which points to the next block. Thus, two files, file A, file B. Some special number, e.g. -1, signifies `this is the last block', see Figure below.
Advantages:
· For Linked List Allocation, the directory entry needs to record just the start block; the next block can be found by reading the next-block number.
Disadvantages:
· The file becomes sequential access; often in reading/writing a file, you need random access. In sequential access, reading something near the end of a file requires reading everything up to it (at least reading every next-block number, and reading one number can take almost as much time as the whole block).
File A: File-block 0 +--> File block 1 +-----> File block 2

 |

 |

 next-block |
 next-block | next-block

 o (7)------+
 o (2)----+
(-1) (end)

Physical block 4 7

 2

--

File B: File-block 0 +--> File block 1

 |

 next-block |

 o (3)------+

(-1) (end)

Physical block 6

 3

· A number of bytes (e.g. two or four) is wasted on the next-block number. Not that the waste of two or four bytes is a great problem, however, it is often convenient to be able to read/write blocks of data that are exact multiples of 512 bytes.
File Allocation Table (FAT)

The File Allocation Table method is just another way of storing the Linked List. There is a table with an entry for each physical block that points to the next-block. Thus, for the examples file A, file B above, a FAT is shown in Figure below. Chains are terminated with a special number, e.g. -1. File Allocation tables are stored in a special part of the partition and read into memory when the partition is accessed.

Advantage:

· If the FAT is read into memory, it becomes possible to do fast random-access. i.e. with no necessity for intermediate disk accesses.

Disadvantage:

· The FAT takes up space in memory. If we have a 20 GB partition, and 1 K blocks, we need a FAT with 20 Million entries; this could not be handled by a 16-bit FAT (0-65,535) (e.g. Windows FAT16 file system). With a 32 bit FAT (e.g. Windows FAT32 file system), each entry would be 4 bytes, i.e. 80 MB in total.

File A: blocks 4, 7, 2. File B: blocks 6, 3.

Physical block

Next-block

 0

 1

 2

-1 (end of file A)

 3

-1 (end of file B)

 4

 7 (start of file A)

 5

 6

 3 (start of file B)

Indexed Allocation

Linked allocation solves the external-fragmentation and size-declaration problems of contiguous allocation. However, in the absence of a FAT, linked allocation can not support efficient direct access, since the pointers to the blocks are scattered with the blocks themselves all over the disk and need to be retrieved in order. Indexed allocation solves this problem by bringing all the pointers together into one location: the index block.
Each file has its own index block, which is an array of disk-block addresses. The i’th entry in the index block points to the i’th block of the file. The directory contains the address of the index block. To read the i’th block, we use the pointer in the i’th index-block entry to find and read the desired block.

When the file is created, all pointers in the index-block are set to nil. When the i’th block is first written, a block is obtained from the free-space manager, and its address is put in the i’th index-block entry. Indexed allocation supports the direct access.

FREE SPACE MANAGEMENT

Disk contains information about blocks in the partition that remain unused. May be stored as a bit-map with one bit for every blocks in the partition.

Bit Vector

Frequently, the free- space list is implemented as a bit map or bit vector. Each block is represented by 1 bit. If the block is free, the bit is 1; if the block is allocated, the bit is 0.

The main advantage of this approach is its relatively simplicity and efficiency in finding the first free block, or n consecutive free blocks on the disk. In fact, the Apple Macintosh operating system uses the bit-vector method to allocate disk space. To find the first free block, the Macintosh operating system checks sequentially each word in the bit map to see whether that value is not 0, since a 0-valued word has all0 bits and represents a set of allocated blocks. The first non-0 word is scanned for the first 1 bit, which is the location of the first free block. The calculation of the block number is,
(number of bit per word)*(number of 0-value words)+offset of first 1 bit
Linked List

Another approach to free-space management is to link together all the free disk blocks, keeping a pointer to the first free block in a special location on the disk and caching it in memory. This first block contains a pointer to the next free disk block, and so on. This scheme is not efficient: to traverse the list, we must read each block, which requires substantial I/O time. Fortunately, traversing the free list is not a frequent action. Usually, the operating system simply needs a free block so that it can allocate that block to a file, so the first block in the free list is used.
Grouping

A modification of the free-list approach is to store the addresses of n free blocks in the first free block. The first n-1 of these blocks are actually free. The last block contains the addresses of another n free blocks, and so on. The importance of this implementation is that the addresses of a large number of free blocks can be found quickly, unlike in the standard linked-list approach.

Counting

Generally, several contiguous blocks may be allocated or freed simultaneously, particularly when space is allocated with the contiguous-allocation algorithm or through clustering. Thus, rather than keeping a list of n free disk addresses, we can keep the address of the first free block and the number n of free contiguous blocks that follow the block. Each entry in the free-space list then consists of a disk address and a count. Although each entry requires more space than would a simple disk address, the overall list will be shorter, as long as the count is generally greater than one.
DIRECTORY MANAGEMENT

The directory-management routines must consider efficiency, performance, and reliability. A hash table is the most frequently used method; it is fast and efficient. Unfortunately, damage to the table or a system crash could result in the directory information not corresponding to the disk’s contents. A consistency checker- a systems program such as fsck in UNIX, or chkdsk in MS-DOS-canbe used to repair the damage. Operating system backup tools allow disk data to be copied to tape, to recover from data or even disk loss due to hardware failure, operating system bugs, or user error.

DIRECTORY IMPLEMENTATION

Linear List

The simplest method of implementing a directory is to use a linear list of file names with pointers to the data blocks. A linear list of directory entries requires a linear search to find a particular entry. This method is simple to program but time-consuming to execute. To create a new file, we must first search the directory to be sure that no existing file has the same name. Then, we add a new entry at the end of the directory. To delete a file, we search the directory for the named file, then release the space allocated to it.

The real disadvantage of a linear list of directory entries is the linear search to find a file. Directory information is used frequently, and users would notice a slow implementation of access to it. In fact, many operating systems implement a software cache to store the most recently used directory information. A cache hit avoids constantly rereading the information from disk. A sorted list allows a binary search and decreases the average search time.

Hash Table

Another data structure that has been used for a file directory is a hash table. In this method, a linear list stores the directory entries, but a hash data structure is also used. The hash table takes a value computed from the file name and returns a pointer to the file name in the linear list. Therefore, it can greatly decrease the directory search time. Insertion and deletion are also fairly straightforward, although some provision must be made for collisions-situations where two file names hash to the same location. The major difficulties with a table are its generally fixed size and the dependence of the hash function on that size.
EFFICIENCY AND PERFORMANCE

Efficiency

The efficient use of disk space is heavily depend on the disk allocation and directory algorithms in use. For instance, UNIX inodes are preallocated on a partition. Even an empty disk has a percentage of its space lost to inodes. However, by preallocating the inodes and spreading them across the partition, we improve the file system’s performance. This improved performance is a result of the UNIX allocation and free-space algorithms, which try to keep a file’s data blocks near that file’s inode block to reduce seek time.
Performance

File System performance is often a major component of overall system performance, and is heavily dependent on the nature of the application generating the load. To achieve optimal performance, the underlying file system configuration must be balanced to match the application characteristics.

If you are a developer, then you may already have a good idea of how your application is reading or writing though the file system, but if you are an administrator of an application then you may need to spend some time analyzing the application to understand what type of I/O profile is being presented to the file system.

Once we have a good understanding of the application, we can try and optimize the file system configuration to make the most efficient use of the underlying storage device. Our objective is to:

· Reduce the number of I/O's to the underlying device(s) where possible

· Group smaller I/O's together into larger I/O's where possible

· Optimize the seek pattern to reduce the amount of time spent waiting for disk seeks

· Cache as much as data as realistic to reduce physical I/O's

REFERENCE

Operating System Concepts:

 By A Silberschaw

 P B Galvin

 G Gagne
QUESTIONS
1. What are the access methods?

2. What are the allocation methods?

3. Explain file system structure?

4. What are the objectives to make the most efficient use of the underlying storage device?
5. How to implement the directory? Explain.
ASSIGNMENT

On

OPERATING SYSTEM
TOPIC: - File Systems-File System Interface and implementation
Submitted to: Raji

Submitted on: 04-10-2010kkkkknnnnnnnn
Submitted by:

 JWALANA K V Roll No:11

 MAMATHA K RollNo:12

MINITHA E Roll No:13

1st MCA

MFD

Files

Directory

Partition C

Disk 3

Partition B

Disk 2

Disk 1

Partition A

