FileSplitter
CONTENTS

1. ABSTRACT

2. INTRODUCTION

3. DESIGN PRINCIPLES & EXPLANATION

3.1. MODULES

3.2. MODULE DESCRIPTIOIN

4. PROJECT DICTIONARY

4.1. DATAFLOW DIAGRAMS

4.2. E-R DIAGRAMS

4.3. DATA DICTIONARY

5. FORMS & REPORTS

5.1. I/O SAMPLES

6. BIBILIOGRAPHY

1. ABSTRACT

File Splitter is software which is used to split the user specifying file according to the user specifying size. It is very difficult to transfer one big file from one end to another through any media like internet or small storage like Floppy, Pen drive etc. This software helps to overcome this problem. The splitted portions of file may carry some temporary information to denote the number of splitted part and total number of parts etc. This idea is used to split big files to small pieces for transferring purpose, uploading etc. In the destination side, these parts of file can be jointed to form the original source file.

Splitting process is mainly aiming in the area of file transferring from one end to another.
There are three techniques to split the file.
1. Split in the size of 1.4MB (Floppy size)
2.Split in the size of 650MB (CD size)
3.User specifying size, Here file will be splitted equally in the specified size.

To ensure the security, the user can include password to split and combine the files. This splitted portion will be in non readable format and will be encrypted. If the user has given password to split, the same password is required to do the combining option. This program is developed using Java and can implement in .NET also.

FileSplitter" splits any big file into many small files, and merges them again into one big file. The program is very small (about 20 KB) and written in pure Java 1.2 which mean that you can use it with any operating system with JRE 1.2. There is no installation and no setup, just copy it and start it. "FileSplitter" is the perfect solution if you need to transfer big file on Floppydisks or split a big file into small parts.
2. INTRODUCTION
File Splitter is a very useful utility application for downloading . User want to download and store the downloaded files into Floppy disk , Its possible only if the downloaded file size is Less than or equal to 1.38 MB , If file size is more than the floppy disk size then File Splitter is required.

File Splitter and Merger performs the following tasks

· Read the Original File and Find its File Size
· Creates new files for writing depending on target file size splits needed
· Allocate memory for newly created files depending on file size
· Read original file information and write their content to newly

· created files
· Stores splited file content into floppy disk
Finally join the splited file into original file
(Read splited files and write splited file information into a single file)

Earlier when we use to work on large projects we use to make a huge text file smaller so we could load it into notepad easier, and still retain the the main format of the file.

We couldn’t use a file splitter because it splits the file based on File size, and they tend to split the file in the middle of lines, and not at the end of the line.

So we wrote a tiny application that will take a text file and split the file line by line until the number of lines in the new file is the size the user wants.

The File Splitter is a free Windows program that will split any file into pieces of any size and later combine the pieces to form the original file. This could prove useful in a number of situations:

· Suppose you need to transfer a file from one stand-alone computer to another. A floppy disk is often the only possible means for transferring the file, but if the file is larger than 1.44 megabytes, it won't fit on a single floppy. Simply split the file onto floppy disks, and then copy the pieces from the floppy disks to the other computer and easily reconstruct the original file.

· Many email systems place a limit on the size of an email message. What if you want to email someone a file that is larger than the maximum size? Split the file into pieces smaller than the limit and email the individual pieces.

· There are many other possibilities for using The File Splitter. I'm sure you can think of a situation where The File Splitter would be helpful.

· File Splitter is a freeware program which does not require installation and can be used to split files to multiple chunks as well as to merge multiple chunks into a single file

File Splitter and Merger Consist of the Following Modules
· Admin
· user
· Custom Splitter
· Merger

3. DESIGN PRINCIPLES & EXPLANATION

3.1. MODULES
File Splitter is a tool to split large files into smaller files so that they can be put on floppies or sent by email. File Splitter can be used individual home computer users or large organizations.

Ever wanted to send a large file by email but were not able because your email service provider does not allow attachments with large size? This is when Fast File Splitter comes handy. You can split your files easily to match the maximum size the email server accepts and send them in chunks and merge them back at the receiving end.

FFS is very easy to use and understand. With a few clicks you can split your large file into smaller files. Simply choose the file you want to split and how you want to split it and click on split and your small files are ready for use.
· File to split is the file that you want to split into pieces. Click the Browse... button to search for a file to split, drag and drop a file from Windows Explorer, or select one of the most recently split files from the drop down list.
· Folder for pieces is the folder in which you want the pieces to be stored. This may be a folder on a hard disk or a removable drive, such as a floppy or zip disk. After selecting a file to split, the Folder for pieces field is automatically filled in with the name of the folder in which the file to split is located. If you wish to change the folder, you can type a new folder name, click the Browse... button to search for a folder, or select one of the most recently used folders from the drop down list.
File Splitter and Merger Consist of the Following Modules
a) Admin
b) User
c) Custom Splitter
d) Merger
Admin:

Admin has control over the whole application and he makes the new registrations for the users. admin can also use the file splitter
Tool.
User:
 Users login into the system. After login into the system they are using this software.

Custom Splitter:
Custom splitter splits the files depending upon the customer requirements. If the users want three pieces of files depending upon the file size. The Original File Split into 3 Pieces of files. Other procedures same as the above Auto Splitter after splitting the file the merger merges the above files into original file.
Splitted into Three Pieces of files :

 for example three file names (Red1.txt, Red2.txt and Red3.txt). And divides original file size by three. Resultant file size to allocate dynamically three pieces of files.

File Name :Red1.txt File Size1 :1 MB
File Name :Red2.txt File Size2 :1 MB
File Name :Red3.txt File Size3 :1 MB

After Splitting the file the merger merges the above files into original file format.

Merger:
Merger merges the splitted file into original single file. Merger reads splitted files information and writes into single original file.

C#.Net for Windows Application

Overview of the .NET Framework

The .NET Framework is a managed type-safe environment for application development and execution. The .NET Framework manages all aspects of your program’s execution. It allocates memory for the storage of data and instructions, grants or denies the appropriate permissions to your application, initiates and manages application execution, and manages the reallocation of memory from resources that are no longer needed. The .NET Framework consists of two main components: the common language runtime and the .NET Framework class library.

The common language runtime can be thought of as the environment that manages code execution. It provides core services, such as code compilation, memory allocation, thread management, and garbage collection. Through the common type system (CTS), it enforces strict type-safety and ensures that code is executed in a safe environment by also enforcing code access security.

The .NET Framework class library provides a collection of useful and reusable types that are designed to integrate with the common language runtime. The types provided by the .NET Framework are object-oriented and fully extensible, and they allow you to seamlessly integrate your applications with the .NET Framework.

Languages and the .NET Framework

The .NET Framework is designed for cross-language compatibility, which means, simply, that .NET components can interact with each other no matter what supported language they were written in originally. So, an application written in Microsoft Visual Basic .NET might reference a dynamic-link library (DLL) file written in Microsoft Visual C#, which in turn might access a resource written in managed Microsoft Visual C++ or any other .NET language. This language interoperability extends to full object-oriented inheritance. A Visual Basic .NET class might be derived from a C# class, for example, or vice versa.

This level of cross-language compatibility is possible because of the common language runtime. When a .NET application is compiled, it is converted from the language in which it was written (Visual Basic .NET, C#, or any other .NET-compliant language) to Microsoft Intermediate Language (MSIL or IL). MSIL is a low-level language that the common language runtime can read and understand. Because all .NET executables and DLLs exist as MSIL, they can freely interoperate. The Common Language Specification (CLS) defines the minimum standards to which .NET language compilers must conform. Thus, the CLS ensures that any source code successfully compiled by a .NET compiler can interoperate with the .NET Framework.

The CTS ensures type compatibility between .NET components. Because .NET applications are converted to IL prior to deployment and execution, all primitive data types are represented as .NET types. Thus, a Visual Basic Integer and a C# int are both represented in IL code as a System.Int32. Because both languages use a common type system, it is possible to transfer data between components and avoid time-consuming conversions or hard-to-find errors.

Visual Studio .NET ships with languages such as Visual Basic .NET, Visual C#, and Visual C++ with managed extensions, as well as the JScript scripting language. You can also write managed code for the .NET Framework in other languages. Third-party tools and compilers exist for Fortran, Cobol, Perl, and a host of other languages. All of these languages share the same cross-language compatibility and inheritability. Thus, you can write code for the .NET Framework in the language of your choice, and it will be able to interact with code written for the .NET Framework in any other language.

.NET Framework Architecture

[image: image1.png]
The Structure of a .NET Application

To understand how the common language runtime manages code execution, you must examine the structure of a .NET application. The primary unit of a .NET application is the assembly. An assembly is a self-describing collection of code, resources, and metadata. The assembly manifest contains information about what is contained within the assembly. The assembly manifest provides:

· Identity information, such as the assembly’s name and version number

· A list of all types exposed by the assembly

· A list of other assemblies required by the assembly

· A list of code access security instructions, including permissions required by the assembly and permissions to be denied the assembly

Each assembly has one and only one assembly manifest, and it contains all the description information for the assembly. However, the assembly manifest can be contained in its own file or within one of the assembly’s modules.

An assembly contains one or more modules. A module contains the code that makes up your application or library, and it contains metadata that describes that code. When you compile a project into an assembly, your code is converted from high-level code to IL. Because all managed code is first converted to IL code, applications written in different languages can easily interact. For example, one developer might write an application in Visual C# that accesses a DLL in Visual Basic .NET. Both resources will be converted to IL modules before being executed, thus avoiding any language-incompatibility issues.

Each module also contains a number of types. Types are templates that describe a set of data encapsulation and functionality. There are two kinds of types: reference types (classes) and value types (structures). These types are discussed in greater detail in Lesson 2 of this chapter. Each type is described to the common language runtime in the assembly manifest. A type can contain fields, properties, and methods, each of which should be related to a common functionality. For example, you might have a class that represents a bank account. It contains fields, properties, and methods related to the functions needed to implement a bank account. A field represents storage of a particular type of data. One field might store the name of an account holder, for example. Properties are similar to fields, but properties usually provide some kind of validation when data is set or retrieved. You might have a property that represents an account balance. When an attempt is made to change the value, the property can check to see if the attempted change is greater than a predetermined limit. If the value is greater than the limit, the property does not allow the change. Methods represent behavior, such as actions taken on data stored within the class or changes to the user interface. Continuing with the bank account example, you might have a Transfer method that transfers a balance from a checking account to a savings account, or an Alert method that warns users when their balances fall below a predetermined level.

CLR Execution Model

[image: image2.png]
Compilation and Execution of a .NET Application

When you compile a .NET application, it is not compiled to binary machine code; rather, it is converted to IL. This is the form that your deployed application takes—one or more assemblies consisting of executable files and DLL files in IL form. At least one of these assemblies will contain an executable file that has been designated as the entry point for the application.

When execution of your program begins, the first assembly is loaded into memory. At this point, the common language runtime examines the assembly manifest and determines the requirements to run the program. It examines security permissions requested by the assembly and compares them with the system’s security policy. If the system’s security policy does not allow the requested permissions, the application will not run. If the application passes the system’s security policy, the common language runtime executes the code. It creates a process for the application to run in and begins application execution. When execution starts, the first bit of code that needs to be executed is loaded into memory and compiled into native binary code from IL by the common language runtime’s Just-In-Time (JIT) compiler. Once compiled, the code is executed and stored in memory as native code. Thus, each portion of code is compiled only once when an application executes. Whenever program execution branches to code that has not yet run, the JIT compiler compiles it ahead of execution and stores it in memory as binary code. This way, application performance is maximized because only the parts of a program that are executed are compiled.

2: The .NET Base Class Library

· The .NET base class library is a collection of object-oriented types and interfaces that provide object models and services for many of the complex programming tasks you will face. Most of the types presented by the .NET base class library are fully extensible, allowing you to build types that incorporate your own functionality into your managed code.

The .NET Framework base class library contains the base classes that provide many of the services and objects you need when writing your applications. The class library is organized into namespaces. A namespace is a logical grouping of types that perform related functions. For example, the System.Windows.Forms namespace contains all the types that make up Windows forms and the controls used in those forms.

Namespaces are logical groupings of related classes. The namespaces in the .NET base class library are organized hierarchically. The root of the .NET Framework is the System namespace. Other namespaces can be accessed with the period operator. A typical namespace construction appears as follows:

System

System.Data

System.Data.SQLClient

The first example refers to the System namespace. The second refers to the System.Data namespace. The third example refers to the System.Data.SQLClient namespace. Table 1.1 introduces some of the more commonly used .NET base class namespaces.

	Table 1-1. Representative .NET Namespaces

	Namespace
	Description

	System
	This namespace is the root for many of the low-level types required by the .NET Framework. It is the root for primitive data types as well, and it is the root for all the other namespaces in the .NET base class library.

	System.Collections
	This namespace contains classes that represent a variety of different container types, such as ArrayList, SortedList, Queue, and Stack. You also can find abstract classes, such as CollectionBase, which are useful for implementing your own collection functionality.

	System.ComponentModel
	This namespace contains classes involved in component creation and containment, such as attributes, type converters, and license providers.

	System.Data
	This namespace contains classes required for database access and manipulations, as well as additional namespaces used for data access.

	System.Data.Common
	This namespace contains a set of classes that are shared by the .NET managed data providers.

	System.Data.OleDb
	This namespace contains classes that make up the managed data provider for OLE DB data access.

	System.Data.SQLClient
	This namespace contains classes that are optimized for interacting with Microsoft SQL Server.

	System.Drawing
	This namespace exposes GDI+ functionality and provides classes that facilitate graphics rendering.

	System.IO
	In this namespace, you will find types for handling file system I/O.

	System.Math
	This namespace is home to common mathematics functions such as extracting roots and trigonometry.

	System.Reflection
	This namespace provides support for obtaining information and dynamic creation of types at runtime.

	System.Security
	This namespace is home to types dealing with permissions, cryptography, and code access security.

	System.Threading
	This namespace contains classes that facilitate the implementation of multithreaded applications.

	System.Windows.Forms
	This namespace contains types involved in creating standard Windows applications. Classes that represent forms and controls reside here as well.

The namespace names are self-descriptive by design. Straightforward names make the .NET Framework easy to use and allow you to rapidly familiarize yourself with its contents.

Reference Types and Value Types

Types in the .NET Framework come in two varieties: value types and reference types. The primary difference between value types and reference types has to do with the way variable data is accessed. To understand this difference, a little background on memory dynamics is required.

Application data memory is divided into two primary components, the stack and the heap. The stack is an area of memory reserved by the application to run the program. The stack is analogous to a stack of dinner plates. Plates are placed on the stack one on top of another. When a plate is removed from the stack, it is always the last one to have been placed on top that is removed first. So it is with program variables. When a function is called, all the variables used by the function are pushed onto the stack. If that function calls additional functions, it pushes additional variables onto the stack. When the most recently called function terminates, all of its variables go out of scope (meaning that they are no longer available to the application) and are popped off the stack. Memory consumed by those variables is then freed up, and program execution continues.

The heap, on the other hand, is a separate area of memory reserved for the creation of reusable objects. The common language runtime manages allocation of heap memory for objects and controls the reclamation of memory from unused objects through garbage collection.

All the data associated with a value type is allocated on the stack. When a variable of a value type goes out of scope, it is destroyed and its memory is reclaimed. A variable of a reference type, on the other hand, exists in two memory locations. The actual object data is allocated on the heap. A variable containing a pointer to that object is allocated on the stack. When that variable is called by a function, it returns the memory address for the object to which it refers. When that variable goes out of scope, the object reference is destroyed but the object itself is not. If any other references to that object exist, the object remains intact. If the object is left without any references, it is subject to garbage collection. (See Lesson 6 of this chapter.)

Examples of value types include primitives, such as Integer (int), Boolean (bool), Char (char), and so on, as well as user-defined types such as Structure (struct) and Enumeration (enum). Classes represent the majority of reference types. Other reference types include the interface, delegate, and array types. Classes and structures are discussed in Lesson 3 of this chapter, and other reference and value types are discussed in Chapter 3.

Using .NET Framework Types in Your Application

When you begin writing an application, you automatically begin with a reference to the .NET Framework base class library. You reference it so that your application is aware of the base class library and is able to create instances of the types represented by it.

Value Types

int myInteger;

This line tells the runtime to allocate the appropriate amount of memory to hold an integer variable. Although this line creates the variable, it does not assign a value to it. You can assign a value using the assignment operator, as follows:

myInteger = 42;

You can also choose to assign a value to a variable upon creation, as shown in this example:

int myInteger = 42;

Reference Types

Creating an instance of a type is a two-step process. The first step is to declare the variable as that type, which allocates the appropriate amount of memory for that variable but does not actually create the object. The following syntax declares an object:

System.Windows.Forms.Form myForm;

This line tells the runtime to set aside enough memory to hold a Form variable and assigns it the name myForm, but it does not actually create the Form object in memory. The second step, called instantiation, actually creates the object. An example of instantiation follows:

myForm = new System.Windows.Forms.Form();

This line makes a call to the constructor method of the type System.Windows.Forms.Form by way of the New (new) keyword. The constructor is a special method that is invoked only at the beginning of an object’s lifetime. It contains any code that must be executed for the object to work (assigning values to properties, for example). If any parameters were required by the constructor, they would be contained within the parentheses at the end of the line. The following example shows declaration and instantiation of a hypothetical Widget class that requires a string as a parameter in the constructor.

Widget myWidget;

myWidget = new Widget("This string is required by the constructor");

If desired, you can also combine both declaration and instantiation into a single statement. By declaring and instantiating an object in the same line, you reserve the memory for the object and immediately create the object that resides in that memory. Although there was a significant performance penalty for this shortcut in previous versions of Visual Basic, Visual Basic .NET and Visual C# are optimized to allow this behavior without any performance loss. The following example shows the one-step declaration and instantiation of a new Form:

System.Windows.Forms.Form myForm = new

System.Windows.Forms.Form();

Both value types and reference types must be initialized before use. For class and structure fields in Visual Basic .NET, types are initialized with default values on declaration. Numeric value types (such as integer) and floating-point types are assigned zero; Boolean variables are assigned False; and reference types are assigned to a null reference.

In C#, variables of a reference type have a default value of null. It is recommended that you do not rely on the default value. These variables should not be used until they have been initialized.

Using Value Type and Reference Type Variables

A variable that represents a value type contains all the data represented by that type. A variable that represents a reference type contains a reference to a particular object. This distinction is important. Consider the following example:

int x, y;

x = 15;

y = x;

x = 30;

// What is the value of y?

In this example, two integer variables named x and y are created. X is assigned a value of 15, and then y is assigned the value of x. Next the value of x is changed to 30, and the question is posed: what is the value of y? The answer to this question might seem obvious, and it is y = 15 because x and y are two separate variables and have no effect on each other when changed. When the line y = x is encountered, the value of x is copied to the value of y, and there is no further connection between the two variables.

This situation changes, however, in the case of reference types. Let’s reconsider the previous example using a reference type (Form) instead of a value type.

System.Windows.Forms.Form x,y;

x = new System.Windows.Forms.Form();

x.Text = "This is Form 1";

y = x;

x.Text = "This is Form 2";

// What value does y.Text return?

What value does y.Text return? This time, the answer is less obvious. Because System.Windows.Forms.Form is a reference type, the variable x does not actually contain a Form; rather, it points to an instance of a Form. When the line y = x is encountered, the runtime copies the reference from variable x to y. Thus, the variables x and y now point to the same instance of Form. Because these two variables refer to the same instance of the object, they will return the same values for properties of that object. Thus, y.Text returns “This is Form 2”.

The Imports and Using Statements

Up to this point of the chapter, if you wanted to access a type in the .NET Framework base class library, you had to use the full name of the type, including every namespace to which it belonged. For example:

System.Windows.Forms.Form

This is called the fully-qualified name, meaning it refers both to the class and to the namespace in which it can be found. You can make your development environment “aware” of various namespaces by using the Imports (Visual Basic .NET) or using (Visual C#) statement. This technique allows you to refer to a type using only its generic name and to omit the qualifying namespaces. Thus, you could refer to System.Windows.Forms.Form as simply Form. In Visual Basic .NET, the Imports statement must be placed at the top of the code window, preceding any other statement (except Option). In Visual C#, the using statement must occur before any other namespace element, such as a class or struct. This example demonstrates use of this statement:

using System.Windows.Forms;

When two types of the same name exist in more than one imported namespace, you must use the fully qualified name to avoid a naming conflict. Thus, if you are using MyNameSpaceOne and MyNameSpaceTwo, and each contains a Widget class, you would have to refer to MyNameSpaceOne.Widget or MyNameSpaceTwo.Widget to ensure the correct result.

In C#, you can resolve namespace conflicts such as these by creating an alias. An alias allows you to choose one name to refer to another class. You create an alias using the using keyword, as shown below:

using myAlias = MyNameSpaceTwo.Widget;

After implementing an alias, you can use it in code to represent the aliased class. For example:

// You can now refer to MyNameSpaceTwo as myAlias. The

// following two lines produce the same result:

MyNameSpaceTwo.Widget anotherWidget = new MyNameSpaceTwo.Widget() ;

myAlias anotherWidget = new myAlias() ;

You cannot create aliases for types in this manner in Visual Basic .NET.

Referencing External Libraries

You might want to use class libraries not contained by the .NET Framework, such as libraries developed by third-party vendors or libraries you developed. To access these external libraries, you must create a reference.

To create a reference to an external library

1. In the Solution Explorer, right-click the References node of your project.

2. From the pop-up menu, choose Add Reference. The Add Reference dialog box appears.

3. Choose the appropriate tab for the library you want to reference. .NET libraries are available on the .NET tab. Legacy COM libraries appear on the COM tab, and local Visual Studio projects appear on the Projects tab.

4. Locate the library you want to reference, and double-click it to add it to the Selected components box. Click OK to confirm the choice of that reference.

Lesson 3: Using Classes and Structures

You have seen how the .NET Framework base class library provides a plethora of standard types to help you in the development of your applications. You can also create user-defined types that implement custom behaviors. Classes and structures represent the two principal user-defined types.

Classes are templates for objects. They describe the kind and amount of data that an object will contain, but they do not represent any particular instance of an object. A real-world example of a class might be “Car”—the abstract idea of what a car is. You know that a car has an engine, four wheels, a body color, an individual fuel efficiency, and a dozen other properties. Although the Car class would describe all these properties, as well as have descriptions of actions that the car might perform (roll forward, turn on windshield wipers, and so on), the class would not represent any particular car. Your car, on the other hand, is an object. It has a specific color, a specific fuel efficiency, a specific engine, and four specific wheels. A different car might have different values for each of these properties, but both would be recognizable as being an instance of the Car class.

Members

Classes describe the properties and behaviors of the objects they represent through members. Members are methods, fields, properties, and events that belong to a particular class. Fields and properties represent the data about an object—the color of the car, its fuel efficiency, and whether it has an automatic or manual transmission, for example. A method represents something the object can do, such as move forward or turn on headlights. An event represents something interesting that happens to the object, such as overheating or crashing.

Creating Classes

public class Widget

{

// Class member implementation goes here

}

In this example, you use the Class (class) keyword to create a user-defined class. Widget is the name of the class, and the Public (public) keyword specifies the access level.

Creating Structures

Creating structures is very similar to creating classes. You use the struct (C#) keyword. For example:

public struct Vector

{

// Structure implementation goes here

}

Adding Members

 In C#, a class comprises everything within braces ({}). Structures are similar. Within the bounds of a class or a structure, you add the members. The following example demonstrates adding a member field to your Widget class:

public class Widget

{

public int Spin;

}

Your Widget class now contains a member variable named Spin. This variable has a Public (public) access level and can contain an Integer (int) value.

Nested Types

Types can contain other types. Types within types are called nested types. Using classes as an example, a nested class usually represents an object that the parent class might need to create and manipulate, but which an external object would never need to create independently. An abstract example might be a Wheel class. A Wheel class might need to create and maintain a collection of Spoke objects internally, but outside users would probably never need to create a Spoke object independent of a wheel. A more realistic example might be an AccountManager class that controls all the interaction with Account objects. You might not want to allow Account objects to be created independently of the AccountManager class, so you would make Account a nested class inside AccountManager. This does not mean that outside objects can never instantiate objects based on nested classes—this depends on the access level of both the parent class and the nested class.

public class Widget

{

// Widget class code goes here

private class Widgurt

{

// Widgurt class code goes here.

}

}

Instantiating User-Defined Types

You declare and instantiate a user-defined type the same way that you declare and instantiate a .NET Framework type. For both value types (structures) and reference types (classes), you need to declare the variable as a variable of that type and then create an instance of it with the New (new) keyword. Examples are as follows:

public class Demo

{

public struct ValueDemo

{

public int X;

}

public class RefDemo

{

public int Y;

}

public void InstantiateTypes()

{

// This line declares a ValueDemo variable

ValueDemo DemoStructure;

// This line creates an instance of ValueDemo on the stack

DemoStructure = new ValueDemo();

// The variable is ready to receive data

DemoStructure.X = 15;

// This line declares a RefDemo variable, but doesn't create

// an instance of the class

RefDemo DemoClass;

DemoClass = new RefDemo();

// And you can now assign value to its members

DemoClass.Y = 15;

}

}

Classes vs. Structures

On the surface, classes and structures appear to be very similar. Both can contain members such as fields and methods, both require a constructor to create a new instance of themselves, and like all types in the .NET Framework, both inherit from Object. The key difference between classes and structures is that classes are reference types and structures are value types. On a low level, this means that the instance data for classes is allocated on the heap, whereas the instance data for structures is allocated on the stack. Access to the stack is designed to be light and fast, but storage of large amounts of data on the stack can impede overall application performance.

In practical terms, that structures are best used for smaller, lightweight objects that contain relatively little instance data or for objects that do not persist for long. Classes are best used for larger objects that contain more instance data and are expected to exist in memory for extended periods.

Lesson 4: Using Methods

Methods do the work of classes and structures. They calculate values, update data, receive input, and perform all the manipulations that make up the behavior of a type. In this lesson, you will learn how to create methods, use parameters, and create constructors and destructors for your class.

Adding Methods

You can add methods as members to your classes. Methods represent actions your class can take. Methods generally come in two varieties: those that return a value (functions in Visual Basic) and those that do not return a value (subs in Visual Basic). The following code shows an example of both kinds of methods:

Visual C# makes no distinction between methods that return a value and methods that do not. In either case, you must specify the return value type. If the method does not return a value, its return type is void. Here are examples of C# methods:

public void myVoidMethod()

{

MessageBox.Show("This method doesn't return a value");

}

public int Add(int first, int second)

{

int Result;

Result = first + second;

return Result;

}

Calling Methods

A method does not execute until it is called. You can call a method by referencing its name along with any required parameters. For example:

// This line calls the Rotate method, with two parameters

Rotate(45, "Degrees");

The Main method is a special case. It is called upon initiation of program execution. Destructors, another special case, are called by the runtime just prior to destruction of an object. Constructors, a third special case, are executed by an object during its initialization. These methods are discussed further later in this lesson.

Method Variables

Variables declared within methods are said to have method scope, which means that once the methods complete execution, they are destroyed and their memory reclaimed. They are said to have gone out of scope.

Variables within smaller divisions of methods have even more limited scope. For example, variables declared within a For-Next (for) loop are accessible only within the loop. The following example demonstrates this because the variable Y has gone out of scope:

public void myMethod()

{

int X;

for (X = 1; X < 101; X++)

{

int Y;

Y = X;

}

// This line causes an error

Console.WriteLine(Y.ToString());

}

A method can take one or more parameters. A parameter is an argument that is passed to the method by the method that calls it. Parameters are enclosed in parentheses after the method name in the method declaration, and types must be specified for parameters. Here is an example of a method with parameters:

public void DisplayName(string name, byte age)

{

Console.WriteLine("Hello " + name + ". You are " +

age.ToString() + "years old.");

}

This method requires two parameters: a String parameter, which is given the local name name, and a Byte parameter, which is given the local name age. These variables have scope only for the duration of the method, and they cannot be used after the method returns. For a further discussion of scope, see Lesson 5 of this chapter.

Parameters can be passed in two ways, by value or by reference. In the .NET Framework, parameters are passed by value by default. By value means that whenever a parameter is supplied, a copy of the data contained in the variable is made and passed to the method. Any changes made in the value passed to the method are not reflected in the original variable. Although it is the default setting,

When parameters are passed by reference, on the other hand, a reference to the memory location where the variable resides is supplied instead of an actual value. Thus, every time the method performs a manipulation on that variable, the changes are reflected in the actual object. To pass a parameter by reference in Visual Basic .NET, you use the keyword ByRef. In Visual C#, the keyword ref is used. The following example demonstrates passing parameters by value or by reference:

public void Demo1()

{

int x,y;

x = 15;

y = 20;

// This line calls the Demo2 method (see below)

Demo2(x, ref y);

// What values will x and y have now?

System.Windows.Forms.MessageBox.Show("X = " + x.ToString() +

" Y = " + y.ToString());

}

public void Demo2(int p1, ref int p2)

{

p1 = p1 + p2;

p2 = p2 + p1;

}

In this example, two variables named x and y are created and assigned values. The variables x and y are then passed to the second method. X is passed by value, y is passed by reference, and both are represented in the second method as the variables p1 and p2. Because p1 is passed by value, it represents a copy of the data stored in x, and the manipulations performed on it are for naught. Once the method ends, the variable goes out of scope and its memory is reclaimed. The parameter p2, on the other hand, does not contain a value at all; rather, it contains a reference to the actual data stored in the variable y. Thus, when the line p2 = p2 + p1 is reached, the value stored at the memory location represented by p2 is changed. Therefore, when the final line of the Demo1 method is reached, the value of x will be unchanged at 15, but the value of y will have changed and will be equal to 55.

Note that if your parameter is a reference type, it makes no difference if the parameter is passed by value or by reference—the behavior will be the same. In both cases, any manipulations done on the parameter will be reflected in the object passed as a parameter.

In Visual C#, you can also use output parameters. This feature is not available in Visual Basic .NET. An output parameter is a parameter that is passed from a called method to the method that called it—that is, in the reverse direction. Output parameters are useful if you want a method to return more than a single value. An output parameter is specified by using the out keyword. Output parameters are always passed by reference and do not need to be initialized before use. The following example demonstrates output parameters:

public void aWord (out string Word)

{

Word = "Mambo";

}

public void ShowWord()

{

string Word;

aWord(out Word);

Console.Writeline("The word of the day is " + Word);

}

Here the ShowWord method calls the aWord method with the output parameter Word. The aWord method assigns a value to the output parameter Word, thereby assigning a value to the Word variable.

Constructors and Destructors

The constructor is the first method that is run when an instance of a type is created. In Visual Basic, the constructor is always Sub New. In Visual C#, it is a method with the same name as the class. You use a constructor to initialize class and structure data before use. Constructors can never return a value and can be overridden to provide custom initialization functionality.

public class aClass

{

public aClass()

{

// Class initialization code goes here

}

}

Similarly, a destructor is the last method run by a class. A destructor (known as a finalizer in Visual Basic) contains code to “clean up” when a class is destroyed. This cleanup might include decrementing counters or releasing resources. A finalizer in Visual Basic .NET is always Sub Finalize(), and a destructor in Visual C# is a method with the same name as the class preceded by a tilde (~). Examples of destructors follow:

End Class

public class aClass

{

~aClass()

{

// Clean up code goes here

}

}

Because garbage collection does not occur in any specific order, it is impossible to determine when a class’s destructor will be called.

Lesson 5: Scope and Access Levels

Access levels define how types are instantiated and how members are accessed. You use access levels to encapsulate data and methods in your types, and to expose functionality to outside objects. In this lesson, you will learn how access modifiers control code access and how to use them in your types.

You can control how elements of your application are accessed by using access modifiers. Access modifiers are keywords such as Public (public), Private (private), and Friend (internal) that precede a variable or type declaration. The keyword that is used controls the level of access the member is allowed. When an access modifier precedes a member declaration, it affects the scope of that member, meaning it controls what code can access it. When a modifier precedes a type declaration, it determines both the scope of its members and how that type is instanced.

Member Access Modifiers

Type members can have modifiers to control their scope. Table 1.2 summarizes the different access levels.

	Table 1-2. Access Levels

	Access Modifier
	Effect on Members

	Public (Visual Basic .NET), public (Visual C#)
	Can be accessed from anywhere.

	Private (Visual Basic .NET), private (Visual C#)
	Can be accessed only by members within the type that defines it.

	Friend (Visual Basic .NET), internal (Visual C#)
	Can be accessed from all types within the assembly, but not from outside the assembly.

	Protected (Visual Basic .NET), protected (Visual C#)
	Can be accessed only by members within the type that defines it or types that inherit from that type.

	Protected Friend (Visual Basic .NET), protected internal (Visual C#)
	Can be accessed from all types within the assembly or from types inheriting from the owning type. This is the union of Protected (protected) and Friend (internal) access.

Any member with the Public (public) modifier is visible to all code outside the class. Thus, other objects can access and modify public fields and can call public methods. Conversely, Private (private) methods are visible only inside the type to which they belong and cannot be accessed from the outside. A third access modifier, Friend (internal), indicates that members can be accessed by other types in the same assembly but cannot be accessed from types outside the assembly. The Protected (protected) modifier allows access from within the type to which the member belongs and to any types that inherit that type. The Protected Friend (protected internal) level provides the union of Protected (protected) and Friend (internal) access. For member variables, the access modifier can replace the Dim statement. If the Dim statement is used (in Visual Basic .NET) or no access modifier is used (in Visual C#), the variable is considered private in Visual C# and Visual Basic .NET classes, Public in Visual Basic .NET structures, and private in Visual C# structures. Methods do not require an access modifier. If no access modifier is specified, the method is Private (private) by default in a class or structure in C#, and Public (public) in a class or structure in Visual Basic .NET.

The following example demonstrates how to use the access modifiers and illustrates how they control access:

public class aClass

{

// This field can be accessed unconditionally by external

// code

public int anInteger;

// This method can be called by members of this class and

// assembly, but not by external code

internal void myMethod()

{

}

// This field can only be accessed by members of this class

private string aString;

// This method may be called by members of this class and

// any inheriting classes

protected int Return1()

{

return 1;

}

// This field may be accessed by members of the assembly or

// inheriting classes

protected internal long aLong;

}

Type Access Modifiers

Structures and classes can also have access modifiers. Access modifiers control how a type can be instantiated and are similar to access modifiers for members. A Public (public) class can be instantiated by any object in the application. A Friend (internal) class can be created by other members of the assembly but cannot be created by objects external to the assembly. The Private (private) and Protected (protected) modifiers can be used only on nested types. A private class can be created only by objects of its own type or by types in which it is nested. Nested types also can be Protected (protected) or Protected Friend (protected internal), which allows classes inheriting the parent class to have access to them. Protected Friend (protected internal) classes are also visible to other members of the namespace. If no access modifier is specified for a class or a structure, it is considered Public (public).

Access Modifiers for Nested Types

In general, a nested type is a type that is used exclusively by the type that contains it. Thus, it is usually a good practice to assign the Private (private) access modifier to a nested type. Under rare circumstances, you might want to create a nested type that can be created by other types and assign it a different access modifier. Although you can assign any access modifier to a nested type, the behavior will never be greater than the access modifier of the type that contains it. Consider the following example:

internal class ParentClass

{

public class NestedClass

{

}

}

In this example, the nested class is declared Public (public) but is contained within a class that is marked Friend (internal). Although the nested class is public, it will not be visible to any classes outside the assembly by virtue of the parent class being marked Friend (internal). Thus, the nested class has a practical access level of Friend (internal).

Shared (static) Members

Regular members are unique to each object instance as shown in the following pseudocode:

DemoClass Object1 = new DemoClass();

DemoClass Object2 = new DemoClass();

Object1.MyField = 15;

Object2.MyField = 20;

The MyField field holds a different value, depending on which instance of the class is referenced. It is also possible to have members that are common to all instances of a class. These members are called Shared (static) members. Only one instance of a Shared or static member can exist, no matter how many instances of a particular type have been created.

You can create a (static) field by using the static (Visual C#) keyword. For example:

public class Demo

{

public static int MyField;

}

Even though multiple instances of the Demo class might be instantiated, there will be only one copy of the MyField field.

Methods can be shared as well as fields. Whereas regular methods belong to instances of types, shared methods belong to the type itself. Because shared methods belong to the type itself, they cannot access instance data from any objects. They can only utilize shared variables, variables declared within the method, or parameters passed into the method.

// This example uses the Demo class from the previous example

Demo Object1 = new Demo();

// This is incorrect syntax. You cannot access shared

// members through the object name with

Object1.MyField = 15;

// This syntax is correct-accessing the field through the class

// instead of the object.

Demo.MyField = 15;

Because Shared members belong to the type instead of any one instance of a type, it is not necessary to instantiate a type before accessing Shared members. Thus, you can call shared methods or retrieve shared fields before an instance of a type exists.

Lesson 6: Garbage Collection

The automatic memory management scheme employed by the .NET Framework is called garbage collection. Memory from objects that are no longer used is traced and reclaimed without any action required by the application. In this lesson, you learn how garbage collection works.

The .NET Framework employs automatic memory management, which means that when an object is no longer being used, the .NET Framework automatically reclaims the memory that was being used by that object. This process is called garbage collection. Consider the following example:

void GarbageCollectionExample1()

{

Widget myWidget = new Widget();

}

When this procedure ends, the variable myWidget goes out of scope and the object it refers to is no longer referenced by any application variable. The garbage collector continuously traces the reference tree in the background and identifies objects that no longer have references. When it finds one, such as the Widget in the previous example, it deletes it and reclaims the memory. Because the garbage collector is always running, you do not have to explicitly destroy objects when you are finished with them.

The garbage collector is a low-priority thread under normal circumstances. It operates when processor time is not consumed by more important tasks. When memory becomes limited, however, the garbage collector thread moves up in priority. Memory is reclaimed at a more rapid pace until it is no longer limited, at which point the priority of garbage collection is again lowered.

This non-deterministic approach to memory reclamation seeks to maximize application performance and supplies a less bug-prone application environment. There is a cost, however. Because of the mechanism by which garbage collection operates, you cannot be certain when an object will be reclaimed. Thus, you have no control over when a class’s destructor (Visual C#) or finalizer (Visual Basic .NET) is executed. These methods should not contain code that you rely on being run at a given time. Instead, classes that appropriate expensive resources usually implement a Dispose() method to explicitly free those resources when the class is no longer needed.

Circular References

Garbage collection also manages circular references, previously a common form of memory leak. Consider the following example:

class Widget

{

public Widget ChildWidget;

public Widget Parent;

}

class aClass

{

Widget GrandParent;

void Demo()

{

Widget Parent;

Widget Child;

GrandParent = new Widget();

GrandParent.ChildWidget = new Widget();

Parent = GrandParent.ChildWidget;

Parent.ChildWidget = new Widget();

Child = Parent.ChildWidget;

Child.Parent = Parent;

GrandParent = null;

}

}

The Widget class consists of two fields: a ChildWidget field that holds a reference to a Widget object and a Parent field that holds a reference to another Widget object. In this example, a Widget object is created and assigned to the variable GrandParent. This object then spawns another Widget object and assigns it to its ChildWidget field. The Parent variable is also assigned to point to this object. Parent, in turn, creates a third Widget, which is assigned to both the ChildWidget field of Parent and to the Child variable. The Parent field of the Child variable is assigned to Parent, thus creating a reference from Child to Parent. When the GrandParent variable is set to nothing, the Widget objects represented by Parent and Child are left referring only to each other—a circular reference.

Although circular references can create difficult-to-locate memory leaks in other development platforms, the .NET Framework garbage collector is able to trace and remove such memory leaks. Thus, if a pair of objects are only referenced by each other, they will be marked for garbage collection.

Lab 1: Classes and Garbage Collection

In this lab, you will practice creating classes and members, and you will create a demonstration of how garbage collection automatically manages memory. You will create a class that interacts with a pre-made user interface. This class will have a shared variable that keeps track of the number of instances that currently exist in memory. Additionally, you will add code to the constructor and destructor of this class to increment and decrement this variable. You will then create multiple instances of this class and watch as their memory is reclaimed by garbage collection.

Exercise 1.1: Making the Demo Class

In this exercise, you will create the Demo class that interacts with the DemoTest project.

To make the Demo class

public static long Instances;

1. Create a constructor for this class or add to the default constructor created by Visual Studio (Visual C#). In the constructor, you will add code to increment the Instances variable. The following code shows an example:

public Demo()

{

Instances++;

}

2. Create a destructor (finalizer) for this class. In the destructor, add code to decrement the Instances variable. For example:

~Demo()

{

Instances--;

}

[image: image3]The front end provided in the DemoTest project contains a form that displays two controls: a button and a label. Additionally, there is an invisible timer component that updates the label control every second. You will run the application and observe how instances of your class are created and garbage collected.

To create the garbage collection demo

1. In the Designer, examine Form1. You can open the designer by double-clicking Form1 in Solution Explorer. Note that it has a Button control, a Label control, and a Timer component in the component tray.

2. Double-click the Button to open the code window to the click event handler.

3. private void button1_Click (Visual C#). Add the following code:

int Counter;

Demo aDemo;

for (Counter = 0; Counter < 1000; Counter++)

{

aDemo = new Demo();

}

This code declares two variables, a Counter and a variable of the Demo class. It then enters an iteration loop. One thousand loops are iterated, and in each loop, the aDemo variable is assigned to a new instance of the Demo class. Recall that creating a new instance of Demo will cause the class’s constructor to execute, incrementing the shared variable Instances. As the loop ends and restarts, the aDemo variable is assigned to another new instance of Demo, and all the references to the previous instance of the Demo class are released, thus marking the class for garbage collection. This loop will execute 1000 times for every click of the button.

4. Press F5 to build and run your application. You should see a button and a label indicating how many instances of Demo exist in memory. Click this button once.

The label now reads “There are 1000 instances of Demo in memory”. Wait for a while. After a measurable interval, perhaps even as long as a couple minutes, the label will indicate zero instances again, indicating that the 1000 instances of Demo have been garbage collected and their destructors executed, decrementing the Instances variable.

The label did not revert instantly because garbage collection is a relatively low-priority thread under normal circumstances. However, when memory gets scarce, the priority of the thread is increased.

5. Click the button several times in succession. See how many instances you can put into memory. If your machine has a large amount of memory, you might be able to create tens of thousands of instances before garbage collection is performed. Once memory gets scarce, though, garbage collection rapidly and efficiently reclaims the memory used by these unreferenced objects.

Lesson 1: User Interface Design Principles

The user interface provides a mechanism for users to interact with your application. Therefore, an efficient design that is easy to use is of paramount importance. This lesson presents guidelines for designing user-friendly, elegant, and simple user interfaces.

When designing the user interface, your primary consideration should be the people who will use the application. They are your target audience. Knowing your target audience makes it easier for you to design a user interface that helps users learn and use the application. A poorly designed user interface, on the other hand, can lead to frustration and inefficiency if it causes the target audience to avoid or even discard your application.

Forms are the primary element of a Microsoft Windows application. As such, they provide the foundation for each level of user interaction. Controls and menus can be added to forms to supply specific functionality. In addition to being functional, your user interface should be attractive and inviting to the user. The .NET Framework supports a variety of graphic effects that aid in the visual presentation of your application, including shaped forms and controls, transparent or translucent elements, and complex shading effects.

Forms, Controls, and Menus

Forms generally contain a set of related information or options that provide users with information they need to proceed. Every form is also a class, and you can create multiple instances of a form or inherit from a form.

Controls make information and options accessible to users. Controls such as labels and picture boxes can display information. Controls such as text boxes, list boxes, or combo boxes can both display information and accept user input. Controls such as buttons can allow the user to select a course of action.

Menus and toolbars provide a structured way to expose available commands to the users of your application. Menus are often incorporated to provide access to higher-level commands that might be common to all the forms of an application, such as commands to save data or exit the application. Menus can present options in a logical, consistent manner that enhances the user experience and enables rapid mastery of the application. Menu elements can be enabled or disabled to customize options available to the user at different points in the application.

Composition

Composition drives the “look and feel” of your user interface. How your user interface is composed influences how rapidly your application can be learned and adopted. Primary composition considerations include:

· Simplicity

· Position of controls

· Consistency

· Aesthetics

Simplicity

Simplicity is an important aspect of a user interface. A visually “busy” or overly complex user interface makes it harder and more time-consuming to learn the application. A user interface should allow a user to quickly complete all interactions required by the program, but it should expose only the functionality needed at each stage of the application.

When designing your user interface, you should keep program flow and execution in mind, so that users of your application will find it easy to use. Controls that display related data should be grouped together on the form. Controls such as list boxes, combo boxes, and check boxes can be used to display data and allow users to choose between preset options. The use of a tab order (an order by which users can cycle through controls on a form by pressing the Tab key) allows users to rapidly navigate fields.

Trying to reproduce a real-world object is a common mistake when designing user interfaces. For instance, if you want to create a form that takes the place of a paper form, it is natural to attempt to reproduce the paper form in the application. This approach might be appropriate for some applications, but for others, it might limit the application and provide no real user benefit because reproducing a paper form can limit the functionality of your application. When designing an application, think about your unique situation and try to use the computer’s capabilities to enhance the user experience for your target audience.

Default values are another way to simplify your user interface. For example, if 90 percent of the users of an application will select Washington in a State field, make Washington the default choice for that field. (You should always make it easy to override the default value when necessary.)

Information from your target audience is paramount when designing a user interface. The best information to use when designing a user interface is input from the target audience. Tailor your interface to make frequent tasks easy to perform. After your application is complete, additional user input will facilitate continued improvement.

Position of Controls

The location of controls on your user interface should reflect their relative importance and frequency of use. For example, if you have a form that is used to input both required information and optional information, the controls for the required information are more important and should receive greater prominence. In Western cultures, user interfaces are typically designed to be read left-to-right and top-to-bottom. The most important or frequently used controls are most easily accessed at the top of the form. Controls that will be used after a user completes an action on a form, such as a Submit button, should follow the logical flow of information and be placed at the bottom of the form.

It is also necessary to consider the relatedness of information. Related information should be displayed in controls that are grouped together. For example, if you have a form that displays information about a customer, a purchase, or an employee, you can group each set of controls on a tab control that allows a user to easily move back and forth between displays.

Aesthetics is also an important consideration in the placement of controls. You should try to avoid forms that display more information than can be understood at a glance. Whenever possible, controls should be adequately spaced to create visual appeal and ease of accessibility.

Consistency

Your user interface should exhibit a consistent design across each form in your application. An inconsistent design can make your application seem disorganized or chaotic, hindering adoption by your target audience. Don’t ask users to adapt to new visual elements as they navigate from form to form.

Consistency is created through the use of colors, fonts, size, and types of control. Before any actual application development takes place, you should decide on a visual scheme that will remain consistent throughout the application. Avoid the temptation to show off. Extraneous use of controls or flashy visual elements only distracts users and makes your application less efficient.

Aesthetics

Whenever possible, a user interface should be inviting and pleasant. Although clarity and simplicity should not be sacrificed for the sake of attractiveness, you should endeavor to create an application that will not dissuade users.

Color

Judicious use of color helps make your user interface attractive to the target audience and inviting to use. It is easy to overuse color, however. Loud, vibrant colors might appeal to some users, but others might have a negative reaction. When designing a background color scheme for your application, the safest course is to use muted colors with broad appeal.

Always research any special meanings associated with color that might affect user response to your application. If you are designing an application for a company, you might consider using the company’s corporate color scheme in your application. When designing for international audiences, be aware that certain colors might have cultural significance. Maintain consistency, and do not overdo the color.

Always think about how color might affect usability. For example, blue text on a black background can be difficult to read and, thus, impairs usability. Also, be aware of usability issues related to colorblindness. Some people, for example, are unable to distinguish between red and green. Therefore, red text on a green background is invisible to a user with this condition. Do not rely on color alone to convey information. Contrast can also attract attention to important elements of your application.

Fonts

Usability should determine the fonts you choose for your application. For usability, avoid fonts that are difficult to read or highly embellished. Stick to simple, easy-to-read fonts such as Palatino or Times New Roman. Also, as with other design elements, fonts should be applied consistently throughout the application. Use cursive or decorative fonts only for visual effects, such as on a title page if appropriate, and never to convey important information.

Images and Icons

Pictures and icons add visual interest to your application, but careful design is essential to their use. Images that appear “busy” or distract the user will hinder use of your application. Icons can convey information, but again, careful consideration of end-user response is required before deciding on their use. For example, you might consider using a red octagon similar to a U.S. stop sign to indicate that users might not want to proceed beyond that point in the application. A red octagon is not a universally recognized symbol of “stop,” however, so its significance might be lost on an international audience. Know your target audience, and tailor the use of icons and visual elements to the audience.

Whenever possible, icons should be kept to simple shapes that are easily rendered in a 16-by-16-pixel square. Complex pictures can suffer a severe loss of resolution (and thus become unusable) when degraded.

Shapes and Transparency

The .NET Framework provides tools for creating forms and controls with varying levels of opacity, using shapes other than the traditional rectangle. These tools can create powerful visual effects, but they should not be overused. For example, although it might be interesting and unique to have a text box shaped like a doughnut, such a text box might be inefficient or detract from the usability of your application. Always keep the end user in mind when applying these effects. Similarly, translucent forms can be used to allow a user to manipulate a form in the foreground while monitoring action on a background form. However, these aspects of the aesthetics of your application should always serve the ultimate purpose—usability.

Lesson 2: Using Forms

As noted in Lesson 1, forms are the fundamental unit of your user interface. They provide a backdrop that hosts the controls, and they allow you to present your application in a consistent and attractive manner. Forms can display data and receive user input. Although it is possible to create an application, such as a Windows service or a console application, that has no forms at all, applications designed for frequent user interaction usually contain at least one form. Applications that are more complex often require several forms to allow the program to flow in a consistent and logical manner.

Adding Forms to Your Project

Forms enable interaction between your application and a user. When you create a new Windows Forms project, an initial form, named Form1, is added by default. Form1 is not an actual instance of a form, however, but rather a class that represents the code behind an instance of a form. You can edit Form1 by adding controls, menus, and other visual elements in the designer. The designer is a graphic representation of the designable component (usually a form) that you are creating, and it provides the ability to add controls to your form by dragging them from the tool box to the design surface represented on the screen. While designing a form or other component, you are said to be at design-time. As your application grows in size, you will want to add additional form classes to your project.

To add a new form to a project

1. On the Project menu, click Add Windows Form. The Add New Item dialog box opens.

2. Click Windows Form, and click Open. A new form is added to the development environment.

You can also add a new form using code. In this case, you declare a variable that represents a type of form and creates an instance of that form. This form can be used and displayed during execution of your application. Note that you will be unable to use any design tools to create this form, and it will be unavailable at design time. The code method is often employed when you want to display a form that already exists.

To add a form to your application at run time

Declare and instantiate a variable representing your form in the same manner as you would any other class. For example:

// This example assumes that you have already designed a form

// called DialogForm

DialogForm myForm;

myForm = new DialogForm();

Visual Inheritance

Visual inheritance is a means of creating forms that are closely related. The technique allows you to create a form that incorporates all the members, controls, menus, and code associated with an existing form, and to use the new form as a base for additional functionality. Thus, you can create a single form that incorporates elements common to the entire interface and then individually tailor each form for its specific purpose. You can use either the Inheritance Picker or code to create the inheritance relationship.

To create an inherited form with the Inheritance Picker

1. From the Projects menu, select Add Inherited Form. The Add New Item dialog box opens.

2. In the left pane of the dialog box, choose Local Project Items. In the right pane, select Inherited Form. Name this form in the Name box, and click Open to open the Inheritance Picker.

3. The forms in your project are displayed in the Inheritance Picker. If the form from which you want to inherit is one of these forms, choose it and click OK. A new inherited form is added to your project.

If you want to inherit from a form outside of your project, click Browse. Navigate to the project containing the form you want. Click the DLL file containing the form, and click Open.

You now return to the Inheritance Picker dialog box, where the selected project is now listed. Choose the appropriate form, and click OK. A new inherited form is added to your project.

NOTE
To use the Inheritance Picker, the form from which you want to inherit must be in the project or compiled in an EXE or DLL file.

To create an inherited form in code

1. From the Projects menu, select Add Windows Form. A new form class is added to your project.

2. Open the code editor for your new form by right-clicking the form in Solution Explorer and choosing View Code. Modify the class declaration () to specify the inherited form, as indicated by the following example:

// This example assumes that you are inheriting from a form class

// named MainForm, and that that form resides in your project

public class myForm : MainForm

{

// Additional class implementation omitted

}

NOTE
To use inheritance in code, as shown in the preceding example, your project must be able to refer to that form. Thus, it must include either a reference to the assembly that contains the form from which you want to inherit (in this example, MainForm), or that form must be a member of your project.

Setting the Start-Up Form

If your Windows Forms application contains multiple forms, you must designate one as the start-up form. The start-up form is the first form to be loaded on execution of your application. In Visual Basic .NET, you can designate a form as the start-up form by setting the start-up object for your application, which is done in the Properties window.

Setting the start-up form in Visual C# is slightly more complicated. To act as a start-up object, your form must have a method named Main that serves as the starting point for the application. The Main method specifies the application start-up form. For example, a Main method that specifies a form named myForm looks like this:

static void Main()

{

Application.Run(new myForm());

}

From the project Properties window, you can choose any form that has an appropriate Main method as the start-up form, as shown in Figure 2.2.

[image: image4.png]
Figure 2-2. The Visual C# project Properties window.
To set the start-up form in Visual C#

1. In Solution Explorer, click the name of your project. The project name is highlighted.

2. From the Project menu, choose Properties.

3. Under Startup Object, choose the appropriate form from the drop-down menu. The selected form must contain a suitable Main method that specifies the correct start-up object.

Setting the Start-Up Location

You can use the form’s StartPosition property to determine where on the computer screen the form will open when first displayed. The StartPosition property can be set to any of the values contained within the FormStartPosition enumeration. The FormStartPosition enumeration values are listed in Table 2.1.

	Table 2-1. FormStartPosition Property Settings

	FormStartPosition Setting
	Effect

	Manual
	The form opens at the location determined by the form’s Location property.

	CenterScreen
	The form opens centered in the screen.

	WindowsDefaultLocation
	The form opens at the Windows default location.

	WindowsDefaultBounds
	The form opens at the Windows default location and at the Windows default bounding size.

	CenterParent
	The form opens centered on its parent form.

To set the start-up position for a form

In the project’s Properties window, change the StartPosition property to the desired setting.

Changing the Appearance of Your Form

The way your user interface looks is an important part of your application. A user interface that is poorly designed is correspondingly difficult to learn and, therefore, increases training time and expense. The use of properties allows you to manipulate the appearance of your forms.

A form has many inherent properties that affect its appearance. You can view and change these properties in the Properties window of the designer, as shown in Figure 2.3.

[image: image5.png]
Figure 2-3. Change inherent properties in the Properties window.
Some properties, such as Font, are actually structures with several values that affect the behavior of a form. You can see each of these values and change them as desired by clicking the plus sign (+) next to the Font property in the Properties window. Some properties, such as BackColor and ForeColor, supply an editor to assist in choosing a value.

A form’s properties also can be changed at run time in code. For example, if you want the background color to change to red, you would add the following line to your code:

// This assumes that you want to change the color of a previously

// created form called MyForm

MyForm.BackColor = System.Drawing.Color.Red;

Properties follow the same general syntax as other class members. You use the assignment operator (=) to assign a value to a property, and you use the property name to reference its value.

BackColor, ForeColor, and Text Properties

Users will be immediately aware of BackColor, ForeColor, and Text properties. The Text property indicates the caption of the form. The BackColor and ForeColor properties represent the colors of a form. ForeColor is the color of text in the foreground. Most controls have their ForeColor set to the ForeColor of the form when they are added to the form. BackColor represents the background color of the form. Many controls, such as Button and Label, have their BackColor set to match the form when they are added in the designer. Other controls, such as TextBox, have independent settings that must be changed manually.

Use caution when choosing colors. Red text on a blue background might look attractive while you’re designing, but it can be hard to read once your application is deployed. High-contrast color schemes offer the best choice for readability.

Font, Cursor, and BackGroundImage

The Font, Cursor, and BackGroundImage properties are tools to help you vary the look of your interface in additional ways. The Font property allows you to specify the font you want to use for your form. Once set, the font is applied to the form controls to give the form a consistent look and feel. The Cursor property allows you to specify the icon that appears when a mouse pointer is over your form. BackGroundImage allows you to set the background as an image instead of a color. If you set a background image, changing the BackColor property will not affect the form itself, but it will change the BackColor of any form controls.

Opacity

You can create striking visual effects for your form by altering its transparency with the Opacity property controls. Opacity values range between 0 and 1. A value of 1 indicates that a form is completely opaque, and a value of 0 creates a completely transparent form. Any value between the two settings results in a partially transparent form. An Opacity of 1 (fully opaque) is the default value. The Opacity property is useful when it is necessary to keep one form in the foreground but monitor action in a background form. Generally, a control inherits the opacity of the form that hosts it.

To create a transparent or translucent form

Set the Opacity property to a value less than 1.

// Creates a half-transparent form

MyForm.Opacity = .5;

In the Properties Window (as opposed to code), Opacity is represented as a percentage value. Thus, when setting Opacity, you should select a value between 0 percent and 100 percent.

Using Form Methods

A method performs an action, and classes incorporate member methods that perform functions relevant to that class. Every form encapsulates a base set of functionality inherited from the System.Windows.Forms.Form class. Included in this functionality are several methods for managing how your forms are displayed and accessed in the user environment. Some of these methods are

· Form.Show
· Form.ShowDialog
· Form.Activate
· Form.Hide
· Form.Close
In order to use any of these methods, you must have a reference to a form available, which means that the form must be already instantiated and must exist in memory. In addition to instances of forms you create in code, your application also creates an instance of your start-up form when program execution begins.

When writing code inside a form class, you can refer to the current instance of that form by using the this (Visual C#) keyword. For example, suppose you want to write a method that changes your form’s Text value. Because you are writing code that will affect a particular instance of the form, the only way to refer to it is with the special keyword, as shown in the following code:

// This line changes the text of the current instance

this.Text = "This is the active form";

Show and ShowDialog

For a form to be useful, it must be visible. To make a form visible, you can call the Form.Show method. This method causes an instance of a form class to load into memory, display on the screen, and receive the focus of the application. The Visible property is set to true when Form.Show is called. If a form is already loaded into memory and is simply not visible (if the Visible property has been set to false, for instance), calling Form.Show has essentially the same effect as setting the Visible property to true.

Form.ShowDialog accomplishes everything that Form.Show does, and it displays the form as a modal dialog box, which means that the form must be closed before any other form can receive the focus. Displaying your form modally allows you to force the user to complete any tasks on that form before continuing with the rest of the program. This method of displaying a form should be used when it is crucial that the user completes a specific action. For example, you might use Form.ShowDialog to inform the user that a floppy drive is inaccessible, or to prompt for a password. The following code demonstrates the use of these methods:

// This example assumes that you have created a Form class called

// DialogForm

DialogForm myForm = new DialogForm();

// Shows the form regularly

myForm.Show();

// Shows the form modally

myForm.ShowDialog();

Activate

If a form is already visible but does not currently have the focus, you can use the Form.Activate method. When called in the active application, the Form.Activate method moves the form to the front of the application and assigns it the focus. If this method is called in an application that is not currently active in the user interface, it causes the window caption to flash in the taskbar. The form must be visible for this method to have any effect. If called on a form that is not yet visible, this method will do nothing at all.

myForm.Activate();

Hide

The Form.Hide method removes a form from view. Although the form still exists in memory, it is no longer be visible until the Form.Show method is called or the form’s Visible property is set to true in code. Calling this method sets the form’s Visible property to false and essentially has the same effect.

myForm.Hide();

Close

When you are finished with a form, you can call the Form.Close method to close the form and remove it from memory. This method closes all resources contained within the form and marks them for garbage collection. Once you have called Form.Close, you cannot call Form.Show to make the form visible again because the resources for the form are no longer available. If you call Form.Close on the start-up form of your application, the application closes.

myForm.Close();

Using Form Events

An event represents something interesting happening in the program. When an event takes place, the application raises that event and other components of the application have the opportunity to handle that event. Each of the aforementioned methods raises one or more events when called. As a developer, you are afforded the opportunity to write code that allows your application to respond to that event and execute code (also known as handling the event).

Each control and form can raise a variety of different events that correspond to events in application execution. For example, when the Form.Hide method is called, the form raises the Deactivate event and the VisibleChanged event. If you want the application to take any kind of action when an event occurs, you can create an event handler, which is a method that executes in response to a raised event. You might, for example, place code in a Deactviate event handler to ensure that all required fields on a form have been filled in.

To create an event handler with Visual C#

1. In Design view, use the mouse to select the form or control for which you want to create an event handler.

2. In the Properties window, click the Events button. A list of available events is displayed in the Properties window.

3. Find the event for which you want to write a handler, and double-click it.

The Code Editor view opens to a newly created event handler for that event. You can now add code to this method, which will execute when the event is raised. Figure 2.5 shows the events in the Properties window. Note the Events button, which looks like a lightning bolt or spark.

[image: image6.png]
Figure 2-5. Adding an event handler in Visual C#.
Event Arguments

As with every method, each event handler has a signature. For example, consider the following method:

private void Form1_Load(object sender, System.EventArgs e)

{

// Code for the method goes here

}

In this method, two arguments are passed to the method by the object (Form1 in this case) that raises the event. The arguments are sender, which is an object that contains a reference to the object that raised the event, and e, which is an instance of the EventArgs class. If you know the type of object that raised the event, you can obtain a reference to it by explicitly casting sender to the correct type. For example:

Form1 myForm;

myForm = (Form1)sender;

The EventArgs argument represents any other arguments that need to be passed from the object to the event handler. In many cases, the EventArgs parameter contains no programmatically useful information. In some cases, however, arguments that are useful or even required by the method will be passed in this parameter. For example, as you will see shortly, the Form.Closing event passes an instance of CancelEventArgs to its event handler, which can be used to cancel the form’s closing. All events raised by forms and controls pass a sender reference and some variety of EventArgs to their event handler.

Form Lifetime Events

Various events are raised throughout a form’s lifetime. In this section, we will examine some of the events that are raised as a form is created, manipulated, and destroyed. The events we will examine are

· Load
· Activated/Deactivate
· VisibleChanged
· Closing
· Closed
Although this list is not exhaustive of the events a form can raise, it is representative of the normal events that typically occur during a form’s lifetime.

Load

The Load event is fired when an instance of a form is first loaded into the program. This event is raised the first time that the Form.Show or Form.ShowDialog method is called for each instance of a form. Consider the following example:

Form myForm = new Form();

myForm.Show(); // The Load event fires here

myForm.Hide(); // Form is now invisible

myForm.Show(); // The Load event doesn't fire again

myForm.Close(); // Closes and disposes the form

myForm.Show(); // Throws an exception because myForm

// is no longer available

This example demonstrates when the Load event is raised. Note that it is raised only once in the lifetime of a particular form object. If you have multiple instances of a single form, the Load event is raised once per instance. You can use a handler for the Load event to initialize variables for a form and prepare it for use.

Activated/Deactivate

The Activated event can fire several times in a form’s lifetime. It is raised whenever the form receives the focus. Thus, it is raised when Form.Show or Form.ShowDialog is called, as well as when Form.Activate is called or when a form is brought to the front of the application. You might use the Activated event handler to set the focus to a particular control on a form or to change the color to indicate that the form is active.

The Deactivate event is raised whenever the current form loses the focus. A form can lose the focus through user interaction with the interface or when the Form.Hide or Form.Close methods are called (although Form.Close raises this event only if the form being closed is the active form). You might use this event to validate user input.

Both the Activated and Deactivate events fire only when the focus is changed within the program. If you click another application and then return to your .NET program, neither event fires.

VisibleChanged

As the name implies, the VisibleChanged event is raised whenever the visible property of the form is changed. Thus, this event is raised whenever the form is made visible or invisible. The form methods that cause this event to be raised include Form.Show, Form.ShowDialog, Form.Hide, and Form.Close.

Closing

The Closing event is raised when the current form is in the process of closing but has not yet fully closed. This event is raised by calling the Form.Close method or by the user clicking the Close button on the form. You can use this event to verify that all tasks required by a particular form have been completed. For example, it can verify that all the fields of a form have been filled out.

The Closing event handler signature includes an instance of CancelEventArgs. You can abort the form closing and cause the form to remain open by setting the Cancel property of this instance to True, as shown in the following example:

private void Form1_Closing(object sender,

System.ComponentModel.CancelEventArgs e)

{

e.Cancel = true;

}

Closed

The Closed event is raised after a form has been closed. Like the Closing event, this event is raised by calling Form.Close or by the user manually closing a form. The Closed event is raised after the Closing event is raised and any handlers for the Closing event are executed. Use the Closed event to provide any necessary clean-up code.

Lesson 3: Using Controls and Components

Controls are the second element of the visual interface. These graphical tools, also known as Windows Forms controls, are used to create or enhance the functionality of an application. Tools are added to the form from the Visual Studio Toolbox. Some, such as Button and TextBox, are designed to receive user input and carry out basic tasks associated with user interaction. Others are specialized components designed to manage complex interactions with other parts of the application. Components are similar to controls in that they are existing units of code that encapsulate specific functionality. The main difference between components and controls is that controls have a visual representation, whereas components do not. This lesson provides information on using controls and components when building a user interface.

Working with Controls

The Visual Studio Toolbox contains a variety of preset controls that you can use to develop your applications. Controls are hosted in forms and implement most of the actual functionality in the user interface. Take the Button control, for example. It can be placed on a form and will be displayed, usually with a title that provides some kind of information as to its function. When the user clicks the button with the mouse, an event handler responds to the click and causes code to execute. Other controls, such as the Label control and PictureBox control, are primarily used to display data to the user. Controls such as TextBox and ListBox serve a dual purpose: both display information and allow the user to input information.

You can add controls to the forms in your application by using the designer. The designer displays the form you are composing in a graphical state, similar to how the form will look at run time. The Toolbox allows you to select a control with the mouse and add it to the form surface in the designer. All the code associated with the control is also added to your application. You can reposition controls by clicking and dragging them with the mouse. You can resize most controls by grabbing their edge with the mouse and adjusting them as desired. Because an in-depth discussion of the different controls and their functionality is beyond the scope of this book, you should familiarize yourself with the controls in the Toolbox and how they work.

To add a control to your application

1. From the Toolbox, select the control you want to add.

2. Click the form in the location where you want the control to appear. While holding down the left mouse button, draw the control to the size you want it to be on the form.

Alternatively, you can drag the control from the Toolbox onto the form, or double-click the desired control in the Toolbox. The control will be added to the form with default values for size and position, if appropriate.

3. Use the mouse to set the size and position of the control as desired. You can also use the arrow keys to position the control.

The Properties window displays the properties of the selected control and allows you to edit them. Setting a property during the design stage creates its default value, which can still be changed in the course of code execution. Moving the control on the form in the designer sets the position properties of the control. Although you can accomplish these same tasks in code, the designer allows you to rapidly set control start-up properties rather than spend valuable development time hand-coding values.

To edit properties of a control

1. Right-click a control, and select Properties. You can also left-click the control and press F4, or choose Properties from the View menu.

2. Edit the value in the appropriate property box.

To edit properties for multiple controls

1. Click and drag the mouse over the controls to select the controls you want to edit.

Alternatively, hold down the Ctrl key and click the controls you want to edit. The Properties window displays the properties that are common to all controls selected.

2. Edit the value in the appropriate property box.

Components are also in the Toolbox. Components are similar to controls in that they are pre-assembled units of functionality that you can incorporate into your application. The primary difference between controls and components is that components are not visible in the user interface. An example of a component is the Timer, which raises an event at a specified interval. Because they have no visual interface, components are not added to the form when you add them to your application in the designer. Instead, they are added to the component tray, a graphical region near the bottom of the designer that allows you to manipulate the properties of your application’s non-visual components. Components are added to an application in the same way controls are added; likewise, the Properties window is used to edit component properties.

Setting the Control Tab Order

The users of your application can use the Tab key to quickly move the focus from one control to another. The tab order sets the order in which controls on the form receive the focus. Tab order is specified by the TabIndex property. To change the order in which a control receives the focus, simply set the TabIndex property to a different value. Lower values receive the focus first and proceed numerically through higher values. In the event of a tie between TabIndex values, the focus first goes to the control closest to the front of the form. You can bring a control to the front or send it to the back of the form by right-clicking it and choosing Bring To Front or Send To Back, respectively.

Visual Studio contains a tool for setting the tab order. Under the View menu, choose Tab Order. A box containing a number appears inside each control on the designer. To set the tab order, all you have to do is click the controls in the order that you want them to receive the focus.

NOTE
Some controls, such as PictureBox, cannot receive the focus and thus do not have a TabIndex property.

To set the tab order using the TabIndex property

1. In the designer, select each control capable of receiving the focus.

2. In the Properties window, set the TabIndex property to an appropriate value. The focus passes from control to control in the order of lowest to highest value.

1. From the View menu, choose Tab Order. Boxes containing the current tab order appear in each control.

2. Click each control in the desired tab order.

3. From the View menu, choose Tab Order again to resume editing.

Controls That Can Contain Other Controls

Some controls, known as container controls, allow you to place other controls inside of them. Container controls include Panel, GroupBox, and TabControl. You can use these controls to logically organize groups of controls or a form. For example, you might group a set of related radio buttons in a GroupBox control. Using these controls allows logical groupings of controls that you can manipulate programmatically. These controls also help to create a sense of style or information flow in your user interface, and they provide visual cues to the user.

NOTE
A container control acts as a host for other controls but is independent of those controls. Contrast this with user controls, which can bind multiple controls together into a single interdependent unit. User controls will be discussed in detail in Chapter 7.

When a control contains another control, changes to properties of the container control can affect the contained controls. For example, if the Enabled property of a GroupBox control is set to false, all the controls contained within this control are disabled. Likewise, changes to controls related to the user interface, such as BackColor, ForeColor, Visible, and Font, are also applied to contained controls. This allows you to easily create a consistent look for your user interface. The Anchor and Dock properties of contained controls also function relative to the containing control. These properties are discussed further in the section “Docking and Anchoring Controls” later in this lesson.

NOTE
Changes in the visual properties of a container control will change the corresponding property in contained controls, but you can still manually change any of these properties on a contained control. If the container control is disabled, however, there is no way to enable a contained control short of re-enabling the containing control.

Using the GroupBox and Panel Controls

The GroupBox and Panel controls are similar. Both provide a logical and physical grouping of controls. These controls can be thought of as physical subdivisions of a form. Changes in the properties of a Panel or GroupBox affect all the controls contained within. Controls contained within a Panel or GroupBox can be moved and repositioned as a single unit during the design stage. At run time, you can disable the entire group by setting the Enabled property of the containing control to false.

The GroupBox control provides a caption for labeling the group of controls within it. You can set this caption using the Text property. The Panel control is a scrollable container, but it does not provide a caption. By setting the AutoScroll property to true, you enable scroll bars within the panel.

Using the TabControl Control

The TabControl control is a way to group controls on a set of tabs, rather like files in a filing cabinet or dividers in a notebook. The TabControl is a host for a number of TabPages that host other controls. An example of the TabControl might be property pages for an application, with each tab representing properties related to a specific component of the application.

The most important property of TabControl is TabPages. The TabPages property is a collection of TabPage controls, each with its own set of properties. A collection is a logical organization of objects similar to an array. Collections are discussed in detail in Chapter 3. You can access each TabPage by clicking the tab that represents it, as shown in Figure 2.6.

[image: image7.png][image: image8]
Figure 2-6. TabPages in a TabControl.
Individual TabPages are similar to Panel controls. They provide a scrollable form subdivision that can host a set of other controls. By setting the Autoscroll property to true, you enable the scroll bars for each TabPage.

TabPages are added to the TabControl by setting the TabPages property. When the TabPages property is selected in the designer, the TabPage collection editor appears. From this window, you can add TabPages to your control and set the properties for each. Once added, you can click the appropriate tab in the designer and add controls to the design surface represented by the TabPage. At run time, the user is able to move between different tab pages by clicking the appropriate tabs.

Docking and Anchoring Controls

The Anchor and Dock properties of a control dictate how it behaves inside its form or parent control. The Anchor property allows you to define a constant distance between a control and one or more edges of a form. Thus, if a user resizes a form at run time, the control will always maintain a specific distance from the edges indicated. The Dock property allows you to attach a control to an edge of the form or to completely fill the form. A docked control will resize itself when the form is resized.

Using the Anchor Property

You can set the Anchor property for any control in the same way you set any other property. In the Properties window, choose Anchor. When the drop-down button is clicked, you are presented with a visual interface to help choose anchoring properties, as shown in Figure 2.7.

[image: image9.png]
Figure 2-7. Choosing the Anchor property.
You can use the window shown in Figure 2.7 to choose the edges to which you want to anchor your control. The default value for this property is Top, Left, which causes the control to maintain a constant distance between the form’s top and left edges. Because forms are resized from the lower-right corner, the net result of this setting is a control that always maintains its position.

In this exercise, you add a button to a form and set the Anchor property to a variety of values to observe the effect the Anchor property has on control location and sizing.

To demonstrate the Anchor property

1. In Visual Studio, create a new Windows Forms project.

2. In the designer, add a button to the form.

3. Click the button once, and in the Properties window, select the Anchor property.

The Anchor property window appears. Note that the top and left bars are darkened, indicating that the control is currently anchored to the top and left edges of the form.

4. In the designer, resize the window by grabbing the lower-right corner with the mouse and dragging. Note that the button maintains its position relative to the top and left edges.

5. In the Anchor property window, click both bars. The button is no longer anchored.

6. In the designer, resize the form again. Now the button floats on the screen in response to resizing.

If a control has an Anchor property setting of None, it will maintain a proportional distance between the edges instead of an absolute distance.

7. Next set the Anchor property to Top, and resize the form.

Although the button maintains a constant distance from the top edge, it floats relative to the left and right edges.

8. In the anchor designer window, click the bottom bar, setting the Anchor property to Top, Bottom.

9. Resize the window once more. The button still floats relative to the left and right edges, but now it maintains a constant distance between the top and bottom edges. To do this, it must resize itself.

The Anchor property allows you to manage how controls respond to resizing the form. You can allow controls to remain fixed in the form by anchoring them to the top and left edges, cause them to stretch when resized by anchoring them to opposite edges, or allow them to float freely by releasing the anchor. Use of the Anchor property allows you to implement a variety of resize and relocation behaviors.

Using the Dock Property

Docking refers to attaching your control to the edge of a parent control. The parent control is usually a form, but it can include other container controls such as the Panel or Tab control. An example of a docked control might be a menu bar at the top of a form.

You can set the Dock property of a control at design time in the Properties window. After selecting the Dock property, a graphic interface appears that allows you to choose the docking characteristics of your control. The interface is shown in Figure 2.8.

[image: image10.png]
Figure 2-8. Setting the Dock property.
To set the Dock property, simply click on the section of the interface that corresponds to where you want your control to dock. For example, if you want your control to dock at the top of the form, click the bar at the top of the interface. To release docking, choose None. Clicking the center square of the Dock property interface causes the control to fill the form in which it lives. If you set docking for a control, the Anchor property is set to Top, Left.

To set docking characteristics for your control

1. In the Properties window, choose the Dock property. The Dock property visual interface appears.

2. Click the section of the interface you want to use as your dock setting.

Using the Controls Collection

Every container control, including forms, exposes a collection of all the controls it contains. This collection is called the controls collection. The controls collection exposes a Count property, which returns the number of items contained within it, and an Item property, which returns a specific item. The controls collection also has member methods that can be used to add and remove controls to and from the collection.

 In Visual C#, the property indexer is used. For example:

// Assumes the presence of a form called myForm

Control aControl;

aControl = myForm.Controls[3];

You can dynamically add and remove controls to and from the controls collection using the Add and Remove methods. The following example creates a label control and adds it to the controls collection of a form named myForm:

Label aLabel = new Label();

aLabel.Text = "This label is being added dynamically";

myForm.Controls.Add(aLabel);

Likewise, the Remove method removes a control from a controls collection. The RemoveAt method is useful for removing a control located at a specific index in the collection. Examples follow:

myForm.Controls.Remove(Button1);

myForm.Controls.RemoveAt(3);

Similar syntax is used to add and remove controls to and from the controls collection of a container control, such as a Panel or a GroupBox control. The following example demonstrates how to dynamically add a control to a TabPage in a TabControl:

// This example assumes the existence of a control called

// myTabControl

Button aButton = new Button();

// This line adds a new button to the tab page located at index 1

// of the TabPages collection in the TabControl

myTabControl.TabPages[1].Controls.Add(aButton);

Adding Controls to the Toolbox

You are not limited to the controls provided by the .NET Framework base class library. Third-party developers might supply additional controls for you to use in your development, or you might create your own controls, as you will see in Chapter 7. These controls can be added to the Toolbox for use in the development environment.

To add a control to the Toolbox

1. Choose the Toolbox tab to which you want to add a control. The tab opens.

2. Right-click the Toolbox within that tab area, and choose Customize Toolbox.

The Customize Toolbox window appears. The Customize Toolbox window displays all components registered on your system. These components are divided between two tabs—a tab that lists all the available .NET components and a tab that lists earlier COM components.

NOTE
If the Toolbox is not visible, choose Toolbox from the View menu to make it appear.

3. If the control you want to add is already registered on the system, select it from the appropriate list and click OK.

4. The control is added to the Toolbox.

5. If the control you want to add is on a floppy disk or in another location, click Browse and browse to the directory location of the file.

6. Select the file, and click OK.

The control is added to the Toolbox. Note that to add a control to the Toolbox, it must be recognizable as an ActiveX Control, COM component, or .NET assembly.

Creating Event Handlers for Controls

Events represent incidents that happen in the course of program execution. Each control can raise a variety of events that correspond to user interaction. A familiar example is clicking a button. When a button is clicked, the application raises the Button.Click event and determines if any methods handle that event. If one or more methods are found to handle that event, those methods are executed. These methods are called event handlers.

You can create event handlers to allow your application to respond to user input. Every control has a default event, which represents the event that a control is most likely to raise. For example, the Button default event is Click, and the Checkbox default event is CheckChanged. You can easily create an event handler for the default event of a control by double-clicking the control in the designer.

To create an event handler for your control’s default event

1. In the designer, double-click the control. The code window opens to a blank event handler for the control’s default event.

2. Place the appropriate code in the event handler.

Controls have many other events that can be used for a variety of purposes. You might use the MouseOver event, for example, to change the control text when the mouse passes over it. The Validate and Validating events provide support for validating user input, Other events can be used to enhance the user interface and provide information to the user. The names of these events indicate when they are raised. You can write event handlers for events in the same manner in which you write event handlers for form events.

To create an event handler with Visual C#

1. In Design view, use the mouse to select the control for which you want to create an event handler.

2. In the Properties window, click the Events button. A list of available events is displayed in the Properties window.

3. Find the event for which you want to write a handler, and double-click it.

The Code Editor view opens to a newly created event handler for that event. You can now add code to this method, which will execute when the event is raised.

4. Alternatively, a list of available methods will appear in a drop-down menu to the right of the event name. If you have already written an event handler, you can choose one of these methods to handle your event by selecting it from this menu.

Interacting with the Mouse

Windows Forms controls are capable of raising events that signal interaction with the mouse. Forms raise events in response to mouse clicks, for example, or when the mouse pointer simply passes over a control.

The Click and DoubleClick events are raised by controls in response to mouse clicks and double-clicks, respectively. These events are generally used to execute code based on a user choice, such as code executed when a user clicks a button. They pass an instance of the EventArgs class to their event handlers, along with a reference to the sender.

Controls are also capable of raising events in response to interaction with the mouse pointer. Depending on their actual type, controls might be capable of raising the mouse-related events detailed in Table 2.2.

	Table 2-2. Mouse-Related Events

	Event
	Description
	Type of EventArgs

	MouseEnter
	This event is raised when the mouse pointer enters a control.
	System.EventArgs

	MouseMove
	This event is raised when the mouse pointer moves over a control.
	System.MouseEventArgs

	MouseHover
	This event is raised when the mouse pointer hovers over a control.
	System.EventArgs

	MouseDown
	This event is raised when the mouse pointer is over a control and a button is pressed.
	System.MouseEventArgs

	MouseWheel
	This event is raised when the mouse wheel moves while the control has focus.
	System.MouseEventArgs

	MouseUp
	This event is raised when the mouse pointer is over a control and a button is released.
	System.MouseEventArgs

	MouseLeave
	This event is raised when the mouse pointer moves off a control.
	System.EventArgs

The MouseEnter, MouseHover, and MouseLeave events represent notification that the mouse pointer is in the region of a control. They pass relatively little information to their event handlers. By contrast, the MouseMove, MouseDown, MouseWheel, and MouseUp events can be used to implement more substantial interactions between the user and the interface. Each of these events passes an instance of MouseEventArgs to the event handler. The MouseEventArgs object contains information about the state and location of the mouse, as summarized in Table 2.3.

	Table 2-3. MouseEventArgs Properties

	Property
	Description

	Button
	This property returns which, if any, mouse buttons are pressed.

	Clicks
	This property returns the number of times the mouse button was clicked.

	Delta
	This property returns the number of notches the mouse wheel rotated. This number can be either positive or negative, with positive representing forward rotation and negative representing reverse rotation. Each notch adds or subtracts 120 from the value returned.

	X
	This property returns the x coordinate of a mouse click.

	Y
	This property returns the y coordinate of a mouse click.

Using Extender Provider Components

Extender providers are components that impart additional properties to controls. Take the ToolTipProvider, for example. When you place an instance of a ToolTipProvider on a form, every control on that form receives a new property. This property can be viewed and set in the Properties window, where it appears as ToolTip on n, where n is the name of the ToolTipProvider. At run time, the value of this property is displayed in a yellow box when the mouse hovers over a control.

Extender providers are usually used to provide information to the users at run time. As we’ve seen, the ToolTipProvider can be used to provide Tool Tips at run time. Other extender providers include the HelpProvider and the ErrorProvider.

To use an extender provider in your project

1. Add a component of the appropriate extender type (such as ErrorProvider) to your form. The component appears in the component tray.

2. In the Properties window, set appropriate values for the properties provided by the extender provider.

The properties provided by extender providers actually reside in the extender providers themselves, not within the controls they extend. Thus, they are not true properties of the component and cannot be accessed in code at run time. The extender provider implements methods that can be used to access the properties it provides. By convention, these methods are always called Getn and Setn, where n is the name of the property provided. Thus, the ToolTipProvider implements methods named GetToolTip and SetToolTip, which can be used in code to access or dynamically change the value of the Tool Tip stored for a particular control. Both methods take a reference to the appropriate control as an argument, and the Set methods require a value to which the property is to be set.

To access the value of an extender property at run time

Use the Get method implemented for that property. You must supply a reference to the appropriate control.

// This example demonstrates how to retrieve the ToolTip for a

// Button called button1

string myToolTip;

myToolTip = toolTip1.GetToolTip(button1);

To set the value of an extended property at run time

Use the Set method implemented for that property. You must supply a reference to the appropriate control and a new value for that property.

// This example demonstrates how to set the ToolTip for a Button

// called button1

toolTip1.SetToolTip(button1, "Click this button for help");

Lesson 4: Using Menus

Menus allow your users to easily access critical application functions and tools. Proper menu design and planning ensure proper functionality and accessibility of your application.

Menus allow users to access top-level commands and functions in a familiar, easy-to-understand interface. A well-designed menu that exposes your application’s functionality in a logical, consistent manner makes your application easier to learn and use. A poorly designed menu, on the other hand, will be avoided and used only when necessary.

When designing menus, you should consider the logical flow of the application. Menu items should be grouped according to related functionality. Using access keys to enable keyboard shortcuts to menu items also makes your application easier to use.

Creating Menus During Design

Main menus are created during the design stage with the MainMenu component. The MainMenu component contains and manages a collection of MenuItem controls, which form the visual element of a menu at run time. With the MainMenu component, you can rapidly and intuitively create menus for your forms.

Using the MainMenu Component

The MainMenu component allows you to do the following:

· Create new menus and menu bars

· Add new menu items to existing menus

· Modify the properties of menus and menu items via the Properties window

· Create event handlers to handle the Click event and other events for menu items

To create a new menu, all you have to do is add a MainMenu component to your form. The component appears in the component tray, and a box with the text Type Here appears in the menu bar of the form. To create a new menu item, type in the box where indicated. The menu appears on your form as it would at run time. As you type, additional boxes are created beneath and to the right of the first menu item. Submenus are created the same way. If you want to create a submenu, simply type an entry to the right of the menu item that you want to expand. Figure 2.9 shows how to use the MainMenu component to create menus.

[image: image11.png]
Figure 2-9. Creating menus with the MainMenu component.
When an item is added to a menu, the designer creates an instance of a MenuItem object. Each MenuItem object has its own properties and members that can be set in the Properties window. The Text property represents the text that will be displayed at run time and is set to the text that you type. The Name property indicates how you will refer to this object in code and receives a changeable default value.

To create main menus at design time

1. In the Toolbox, add a MainMenu component to the form by double-clicking the MainMenu tool or by dragging it onto the form. A MainMenu component appears in the component tray.

2. In the designer, type the text for the first menu item in the box presented on the form’s menu bar. As additional boxes appear, add additional menu items until the structure of your menu is complete. Note that the order in which you add menu items will be reflected in the menu layout.

3. In the Properties window, set any menu-item properties that you want to change, by first selecting the menu item in the designer, and then changing the desired properties.

4. In the Properties window of the form, make sure that the Menu property is set to the menu you want to display. If you have multiple menus on a form, only the designated menu will be displayed.

Separating Menu Items

You can separate menu items with a separator. A separator is a horizontal line between items on a menu. You can use separator bars to divide menu items into logical groups on menus that contain multiple items, as shown in Figure 2.10.

[image: image12.png]
Figure 2-10. Separator bars on menus.
You can add a separator to your menus by entering a hyphen as the text of a menu item. The hyphen will be displayed as a separator.

To create a separator bar on your menu

1. Select the menu item that represents where you want to place a separator.

2. Type a hyphen (-). At run time, this hyphen will be displayed as a separator bar.

Menu Access and Shortcut Keys

You can enable keyboard access to your menus with access and shortcut keys.

Access Keys

Access keys allow users to open a menu by pressing the Alt key and typing a designated letter. When the menu is open, you can select a menu command by pressing the Alt key and the correct access key. For example, in most programs, the Alt+F key opens the File menu. Access keys are displayed on the form as an underlined letter on the menu items.

You can use the same access key for different menu items as long as the menu items are contained in different menu groups. For example, you can use Alt+C to access the Close command on the File menu group as well as the Copy command on the Edit menu group. You should avoid using the same access key for multiple items on a menu group—for example, avoid using Alt+C for both the Cut and the Copy commands of an Edit menu group. If you do use the same access key combination for two items on a menu group, the access key lets you toggle your selection between the items, but you will be unable to select the item without first pressing the Enter key.

To assign an access key to a menu item

1. In the designer, click the menu item to which you want to assign an access key.

2. Type an ampersand (&) in front of the desired letter for the access key.

Shortcut Keys

Shortcut keys enable instant access to menu commands, thus providing a keyboard shortcut for frequently used menu commands. Shortcut key assignments can be single keys, such as Delete, F1, or Insert, or they can be key combinations, such as Ctrl+A, Ctrl+F1, or Ctrl+Shift+X. When a shortcut key is designated for a menu item, it is shown to the right of the menu item. The shortcut key combination will not be displayed if the ShowShortcut property of the menu item is set to false.

To assign a shortcut key

1. Select the menu item for which you want to enable a shortcut key.

2. In the Properties window, select the Shortcut property.

3. Choose the appropriate shortcut key combination from the drop-down menu.

Using Menu Item Events

You can create event handlers for menu items in the same way that you create event handlers for other controls. The most frequently used event is the Click event. The Click event handler should contain the code to be executed when the menu item is clicked. This code will also execute when a shortcut key combination is pressed.

The Select event is raised when a menu item is highlighted, either with the mouse or with access keys. You might create an event handler that provides detailed help regarding use of a menu command when selected.

The Popup event is raised just before a menu item’s list is displayed. You can use this event to enable and disable menu items at run time.

Creating Context Menus

Context menus are menus that appear when an item is right-clicked. Context menus are created with the ContextMenu component. The ContextMenu component is edited in exactly the same way as the MainMenu component is edited. The ContextMenu appears at the top of the form, and you can add menu items by typing them on the control.

Context menus are very similar to main menus in many respects. Both contain and manage a collection of menu-item controls. You can enable shortcut keys, but not access keys for menu items in a context menu. To associate a context menu with a particular form or control, set the ContextMenu property of that form or control to the appropriate menu.

To create a context menu

1. In the Toolbox, add a ContextMenu component to the form, either by double-clicking the ContextMenu tool or by dragging it onto the form. A ContextMenu component appears in the component tray.

2. In the designer, type the text for the first menu item in the box presented on the form’s menu bar. As additional boxes appear, add additional menu items until your menu structure is complete.

3. In the Properties window, set any properties and events (for Visual C#) that you want to change for your menu items.

4. Select the form or control with which you want to associate the context menu. In the Properties window for the control, set the ContextMenu property to your context menu. The context menu is displayed at run time when the control is right-clicked. You can associate a single context menu with several controls, but only one context menu can be associated per control.

Modifying Menus at Run Time

You can manipulate your menus to dynamically respond to run-time conditions. For example, if your application is unable to complete a certain command, you can disable the menu item that calls that command. You can display a check mark or a radio button next to a menu item to provide information to the user. You can make menu items invisible at times when it would be inappropriate to choose them. You can add menu items at run time, and menus can be cloned or merged with one another at run time.

Enabling and Disabling Menu Commands

Every menu item has an Enabled property. When this property is set to false, the menu is disabled and cannot respond to user actions. Access and shortcut key actions are also disabled for this menu item, which appears dimmed on the user interface. The following example demonstrates how to disable a menu item at run time:

menuItem1.Enabled = false;

Displaying Check Marks on Menu Items

You can use the Checked property to display a check mark next to a menu item. You might display a check mark to indicate that a particular option has been selected. The following example demonstrates how to select and clear a menu item:

// Checks the menu item

menuItem1.Checked = true;

// Unchecks the menu item

menuItem1.Checked = false;

Displaying Radio Buttons on Menu Items

You can display a radio button instead of a check mark. To display radio buttons, set the RadioCheck property for the menu item to true. The menu item will then display a radio button instead of a check mark. When the Checked property is false, neither a check mark nor a radio button will be displayed. Note that radio buttons frequently are used to display exclusive options, such as the choice of background colors. If you want to display radio buttons next to mutually exclusive options, you must write code that clears other options when one option is selected.

Making Menu Items Invisible

You can make your menu items invisible by setting the Visible property to false. You can use this property to modify your menus at run time in response to changing conditions. The following code demonstrates how to make a menu item invisible:

menuItem1.Visible = false;

Note that making a menu item invisible at run time removes it from the menu bar. Any submenus contained by that menu item will also be inaccessible.

Cloning Menus

You can make a copy of existing menu items at run time. For example, you might want to clone an Edit menu item (and its associated submenus) from a main menu to serve as a context menu for a control. You can create a new menu item by using the CloneMenu method. The CloneMenu method creates a copy of the specified menu item and all of its members. This includes contained menu items, properties, and event handlers. Thus, all events that are handled by the original menu item will be handled in the same way by the cloned menu item. The newly created context menu can then be assigned to a control. The following example demonstrates how to clone a menu item as a new context menu at run time:

// The following example assumes the existence of a menu item called

// fileMenuItem and a control called myButton

// Declares and instantiates a new context menu

ContextMenu myContextMenu = new ContextMenu();

// Clones fileMenuItem and fills myContextMenu with the cloned item

myContextMenu.MenuItems.Add(fileMenuItem.CloneMenu());

// Assigns the new context menu to myButton

myButton.ContextMenu = myContextMenu;

Merging Menus at Run Time

There might be times when you want to display multiple menus as a single menu. The MergeMenu method allows you to combine menus and display them as a single menu at run time. You can merge multiple main or context menus with each other, merge menus with menu items, or merge multiple menu items.

To merge menus at run time

Call the MergeMenu method of the menu or menu item that will be displayed. Supply the menu or menu item to be incorporated as the argument.

fileMenuItem.MergeMenu(myContextMenu);

Adding Menu Items at Run Time

You can dynamically add new items to an existing menu at run time. For example, you might add menu items that display the pathnames of the most recently opened files. New menu items will not have event handlers associated with them, but you can specify a method to handle the Click event as an argument to the constructor of the new menu item. This method must be a Sub (void) method and have the same signature as other event handlers. An example follows:

public void ClickHandler (object sender, System.EventArgs e)

{

// Implementation details omitted

}

To add menu items at run time

1. Declare and instantiate a new menu item. You can specify a method to handle the Click event at this time if you choose. For example:

// This example assumes the existence of a method called

// ClickHandler which has the correct event handler signature

MenuItem myItem;

myItem = new MenuItem("Item 1",

new EventHandler(ClickHandler));

2. Add the new method to the MenuItems collection of the menu you want to modify.

fileMenuItem.MenuItems.Add(myItem);

Lesson 5: Validating User Input

In most applications, the user enters information for the application through the user interface. Data validation ensures that all data entered by a user falls within acceptable parameters before proceeding with program execution. For example, you might have a field where a user enters a zip code as part of an address. Using validation, you could verify that the field contained five and only five characters, all of which were numeric, before proceeding. Validating user input reduces the chance of an input error and makes your application more robust.

In this lesson, you will learn how to use events to validate user input and direct the focus on your forms. You will learn to use field-level validation, which validates entries as they are made, and form-level validation, which validates all the entries on a form at once. You will learn to use control properties to help restrict input, and you will use the ErrorProvider component to provide error messages to your users.

You can choose between two different types of validation for user input: form-level validation and field-level validation. Form-level validation verifies data after the user has filled in all the fields. For example, a user might be directed to fill in a name, address, and phone number, and then click OK. With form-level validation, all the fields on the form would be validated when the user clicked OK.

Field-level validation, on the other hand, verifies that the data in each field is appropriate. For example, if a user fills in a field that holds a phone number, field-level validation can verify that the number contains a valid area code before moving to the next field. As each digit is entered, control events can verify that only numbers are entered.

Field-Level Validation

You might want to validate data as it is entered into each field. Field-level validation gives you control over user input as it occurs. In this section, you will learn how to use control events to validate user input and how to use TextBox control properties to help restrict input to appropriate parameters.

Using TextBox Properties

The TextBox control is the most common control for user input. Several TextBox control properties let you restrict user input values to only those that are acceptable. Some of these properties include

· MaxLength
· PasswordChar
· ReadOnly
· MultiLine
Setting the MaxLength Property

The MaxLength property limits the number of characters that can be entered into a text box. If the user attempts to exceed the number returned by MaxLength, the text box will accept no further input and the system will beep to alert the user. This property is useful for text boxes that always contain data of the same length, such as a zip code field.

Using the PasswordChar Property

The PasswordChar property allows you to hide user input at run time. For example, if you set the PasswordChar property to an asterisk (*), the text box will display an asterisk for each character, regardless of user input. This behavior is commonly seen in password logon boxes.

Although an asterisk is the character most commonly used for passwords, you can choose any valid character—semicolons or ampersands, for example. The Text property value is always set to the value the user enters, regardless of the password character.

Setting the ReadOnly Property

The ReadOnly property determines whether a user can edit the value displayed in a text box. If ReadOnly is set to true, the text cannot be changed by user input. If ReadOnly is set to false, the user can edit the value normally.

Using the MultiLine Property

The MultiLine property determines whether a text box can accept multiple lines. When set to true, the user can enter multiple lines in the text box, each separated by a carriage return. The individual lines are stored as an array of strings in the TextBox.Lines collection and can be accessed by their index.

Using Events in Field-Level Validation

Field-level keyboard events allow you to immediately validate user input. Controls that can receive keyboard input raise the following three keyboard events:

· KeyDown
· KeyPress
· KeyUp
KeyDown and KeyUp

The KeyDown and KeyUp events are raised when a key is pressed and a key is released, respectively. The control that has the focus raises the event. When these events are raised, they package information about which key or combination of keys were pressed or released in an instance of KeyEventArgs, a class that describes the key combination. A method that handles the KeyDown or KeyUp event must include a KeyEventArgs parameter in its signature. Properties of KeyEventArgs are summarized in Table 2.4.

	Table 2-4. KeyEventArgs Properties

	Property
	Description

	Alt
	Gets a value describing whether the Alt key was pressed

	Control
	Gets a value describing whether the Ctrl key was pressed

	Handled
	Gets or sets a value indicating whether the event was handled

	KeyCode
	Returns an enum value representing which key was pressed

	KeyData
	Returns data representing the key that was pressed, together with whether the Alt, Ctrl, or Shift key was pressed

	KeyValue
	Returns an integer representation of the KeyData property

	Modifiers
	Gets the modifier flags for the event, indicating what combination of Alt, Ctrl, or Shift keys was pressed

	Shift
	Gets a value describing whether the Shift key was pressed

The KeyUp and KeyDown events are most commonly used for determining if the Alt, Ctrl, or Shift key has been pressed. This information is exposed through properties in the KeyEventArgs reference that is passed to the handler. The KeyEventArgs properties—Alt, Control, and Shift—are properties that return a Boolean value, which indicates whether those keys are down. A value of true is returned if the corresponding key is down, and false is returned if the key is up. The following code demonstrates a KeyUp event handler that checks whether the Alt key is pressed:

private void textBox1_KeyUp(object sender,

System.Windows.Forms.KeyEventArgs e)

{

if (e.Alt == true)

MessageBox.Show("The ALT key is still down");

}

You also can use the KeyEventArgs.KeyCode property to examine the actual key that triggered the event. This property returns a Key value that represents the key that was pressed (in the case of a KeyDown event) or released (in the case of a KeyUp event). The following code shows a simple event handler that displays a message box containing a string representation of the key that was pressed:

private void textBox1_KeyDown(object sender,

System.Windows.Forms.KeyEventArgs e)

{

MessageBox.Show(e.KeyCode.ToString());

}

KeyPress

When a user presses a key that has a corresponding ASCII value, the KeyPress event is raised. Keys with a corresponding ASCII value include any alphabetic or numeric characters (alphanumeric a–z, A–Z, and 0–9), as well as some special keyboard characters, such as the Enter and Backspace keys. If a key or a key combination does not produce an ASCII value, it will not raise the KeyPress event. Examples of keys that do not raise this event include Ctrl, Alt, and the function keys.

This event is most useful for intercepting keystrokes and evaluating them. When this event is raised, an instance of KeyPressEventArgs passes to the event handler as a parameter. The KeyPressEventArgs instance contains information about the keystroke that can be used for validating user input. The KeyPressEventArgs.KeyChar property contains the ASCII character represented by the keystroke that raised the event. If you want to make sure that the key pressed was a numeric key, for example, you can evaluate the KeyChar property in your KeyPress event handler. The KeyPressEventArgs.Handled property can be used to set whether this event has been handled.

Validating Characters

The Char data type contains several Shared (static) methods that are useful for validating characters trapped by the KeyPress event. These methods include

· Char.IsDigit
· Char.IsLetter
· Char.IsLetterOrDigit
· Char.IsPunctuation
· Char.IsLower
· Char.IsUpper
Each of these methods, with their descriptive names, evaluates a character and returns a Boolean value. The Char.IsDigit function returns true if a character is a numeric digit and false if it is not. The Char.IsLower function returns true if a character is a lowercase letter, false otherwise. The other methods behave similarly. The following code uses the Char.IsNumber method to test whether the key pressed was a numeric key:

private void textBox1_KeyPress (object sender,

System.Windows.Forms.KeyPressEventArgs e)

{

if (Char.IsDigit(e.KeyChar) == true)

MessageBox.Show("You pressed a number key");

}

Handling the Focus

Focus is the ability of an object to receive user input through the mouse or the keyboard. Although you can have several controls on your form, only one can have the focus at any given time. The control that has the focus is always on the active form of the application.

Every control implements the Focus method. This method sets the focus to the control that called it. The Focus method returns a Boolean value that indicates whether the control was successful in setting the focus. Disabled or invisible controls cannot receive the focus. You can determine whether a control can receive the focus by checking the CanFocus property, which returns true if the control can receive the focus and false if it cannot.

// This example checks to see if textBox1 can receive the focus and

// sets the focus to it if it can.

if (textBox1.CanFocus == true)

textBox1.Focus();

Focus events occur in the following order:

1. Enter
2. GotFocus
3. Leave
4. Validating
5. Validated
6. LostFocus
The Enter and Leave events are raised when the focus arrives at a control and when the focus leaves a control, respectively. GotFocus and LostFocus are raised when a control first obtains the focus and when the focus leaves the control, respectively. Although you can use these events for field-level validation, the Validating and Validated events are more suited to that task.

The Validating and Validated Events

The easiest way to validate data is to use the Validating event. The Validating event occurs before a control loses the focus. This event is raised only when the CausesValidation property of the control that is about to receive the focus is set to true. Thus, if you want to use the Validating event to validate data entered in your control, the CausesValidation of the next control in the tab order should be set to true. To use Validating events, the CausesValidation property of the control to be validated also must be set to true. By default, the CausesValidation property of all controls is set to true when controls are created at design time. Typically, the only controls that have CausesValidation set to false are controls such as Help buttons.

The Validating event allows you to perform sophisticated validation on your controls. For example, you can implement an event handler that tests whether the value entered corresponds to a specific format. Another possible use is an event handler that disallows the focus to leave the control until a suitable value has been entered.

The Validating event includes an instance of the CancelEventArgs class. This class contains a single property, Cancel. If the input in your control does not fall within required parameters, you can use the Cancel property within your event handler to cancel the Validating event and return the focus to the control.

The Validated event fires after a control has been successfully validated. You can use this event to perform any actions based on the validated input.

The following code demonstrates a handler for the Validating event. This method requires an entry in TextBox1 before it will allow the focus to move to the next control.

private void textBox1_Validating(object sender,

System.ComponentModel.CancelEventArgs e)

{

// Checks the value of textBox1

if (textBox1.Text == "")

// Resets the focus if there is no entry in TextBox1

e.Cancel = true;

}

To use the Validating event of a text box

1. Add a text box to a form.

2. Create an event handler to handle the Validating event for the text box. In the event handler, set the e.Cancel property to true to cancel validating and return the focus to the text box.

3. Set the CausesValidation property to false for any controls for which you do not want the Validating event to fire.

Form-Level Validation

Form-level validation is the process of validating all fields on a form at once. A centralized procedure implements form-level validation and is usually called when the user is ready to proceed to another step. Implementing a form-level keyboard handler is a more advanced method of form-level validation.

The following code demonstrates how to create a form-level validation method. When a button named btnValidate is pressed, the sample tests whether all the text boxes on a form have received input and then resets the focus to the first text box it encounters with no input.

private void btnValidate_Click(object sender, System.EventArgs e)

{

// Loops through each control on the form

foreach (System.Windows.Forms.Control aControl in this.Controls)

{

// Checks to see if the control being considered is a Textbox

// and if it contains an empty string

if (aControl is System.Windows.Forms.TextBox & aControl.Text

== "")

{

// If a textbox is found to contain an empty string, it is

// given the focus and the method is exited.

aControl.Focus();

return;

}

}

}

Form-Level Keyboard Handler

A keyboard handler is a somewhat more sophisticated technique for form-level validation. A centralized keyboard handler allows you to manage data input for all fields on a form. For example, you can create a method that enables command buttons only after appropriate input has been entered into each field and that performs specific actions with each keystroke.

The KeyPress, KeyDown, and KeyUp events are used to implement a form-level keyboard handler. If a form has no visible or enabled controls, it will raise keyboard events. If the form has controls, however, these events will not be raised. For the form to raise these events, the KeyPreview property of the form must be set to true. When set to true, the form raises keystroke events before the control that has the focus. For example, assume that there is a KeyPress handler for the form, that there is a KeyPress handler for a text box on that form, and that the KeyPreview property of the form is set to true. When a key is pressed, the form raises the KeyPress event first and the form’s KeyPress event handler executes first. When execution is complete, the text box’s KeyPress event handler will execute.

If you are using form-level validation, you can prevent a control’s KeyPress event handler from executing by setting the KeyPressEventArgs.Handled property to True, as shown in the following example:

private void Form1_KeyPress(object sender,

System.Windows.Forms.KeyPressEventArgs e)

{

// This handles the event and prevents it from being passed to

// the control's KeyPress event handler

e.Handled = true;

}

Providing User Feedback

When invalid input is entered into a field, the user should be alerted and given an opportunity to correct the error. There are many ways to inform the user of an input error. If the error is obvious and self-explanatory, an audio cue can alert the user to the problem. In Visual Basic .NET, the Beep method produces an attention-getting sound.

NOTE
 does not have an inherent beep function where as VB.Net do have it.

Other ways to draw a user’s attention to an error include changing a control’s BackColor or ForeColor. For example, a text box with invalid input could have its BackColor changed to red.

If a more detailed message is required, you can use the MessageBox.Show method. This method displays a small, modal dialog box with an informative message. Because the dialog box is displayed modally, it halts program execution and is impossible for the user to ignore. The following example shows how to call the MessageBox.Show method, along with an informative message:

MessageBox.Show("That value is not valid for this control");

The ErrorProvider Component

The ErrorProvider component provides an easy way to communicate validation errors to your users. The ErrorProvider allows you to set an error message for each control on your form whenever the input is invalid. An error message produces an error icon next to the control, and error message text is shown as a Tool Tip when the mouse hovers over the affected control. The ErrorProvider component is found in the Windows Forms tab of the Toolbox.

Displaying an Error

To cause an error condition to be displayed next to a control, you use the SetError method of the ErrorProvider component. The SetError method requires the name of the control to be set and the text to be provided. The method is invoked as shown:

// This example assumes the existence of a control named nameTextBox

// and an ErrorProvider named myErrorProvider

myErrorProvider.SetError(nameTextBox, "Name cannot be left blank!");

You can also set an error at design time. In the Properties window, you will see that once you add an ErrorProvider control to your form, each control has a new property named Error on x where x is the name of the ErrorProvider. You can set this property to a value in the Properties window. If a value is set for the error, the control immediately shows an error at run time.

Different properties of the ErrorProvider component affect how the information is displayed to the user. The Icon property controls which icon is displayed next to the control. You might want to have multiple error providers on a single form—one that reports errors and one that reports warnings. You could use different icons for each to provide visual cues to the user. Another property is the BlinkStyle property. This property determines whether the error icon blinks when displayed. The BlinkRate property determines how rapidly the icon blinks.

To create a validation handler that uses the ErrorProvider component

1. Create your form, and add an ErrorProvider component. The ErrorProvider component appears in the component tray.

2. Set the CausesValidation property of the control for which you want to provide errors to true if it is not true already.

3. In the event handler for that control’s Validating event, test the value. Use the SetError method to set the error to be displayed when an error condition occurs. The following code demonstrates a validation handler for a text box named pswordTextBox and an error provider named myErrorProvider:

ADO .NET

Most applications need data access at one point of time making it a crucial component when working with applications. Data access is making the application interact with a database, where all the data is stored. Different applications have different requirements for database access. VB .NET uses ADO .NET (Active X Data Object) as it's data access and manipulation protocol which also enables us to work with data on the Internet. Let's take a look why ADO .NET came into picture replacing ADO.

Evolution of ADO.NET

The first data access model, DAO (data access model) was created for local databases with the built-in Jet engine which had performance and functionality issues. Next came RDO (Remote Data Object) and ADO (Active Data Object) which were designed for Client Server architectures but soon ADO took over RDO. ADO was a good architecture but as the language changes so is the technology. With ADO, all the data is contained in a recordset object which had problems when implemented on the network and penetrating firewalls. ADO was a connected data access, which means that when a connection to the database is established the connection remains open until the application is closed. Leaving the connection open for the lifetime of the application raises concerns about database security and network traffic. Also, as databases are becoming increasingly important and as they are serving more people, a connected data access model makes us think about its productivity. For example, an application with connected data access may do well when connected to two clients, the same may do poorly when connected to 10 and might be unusable when connected to 100 or more. Also, open database connections use system resources to a maximum extent making the system performance less effective.

Why ADO.NET?

To cope up with some of the problems mentioned above, ADO .NET came into existence. ADO .NET addresses the above mentioned problems by maintaining a disconnected database access model which means, when an application interacts with the database, the connection is opened to serve the request of the application and is closed as soon as the request is completed. Likewise, if a database is Updated, the connection is opened long enough to complete the Update operation and is closed. By keeping connections open for only a minimum period of time, ADO .NET conserves system resources and provides maximum security for databases and also has less impact on system performance. Also, ADO .NET when interacting with the database uses XML and converts all the data into XML format for database related operations making them more efficient.

The ADO.NET Data Architecture

Data Access in ADO.NET relies on two components: DataSet and Data Provider.

DataSet
The dataset is a disconnected, in-memory representation of data. It can be considered as a local copy of the relevant portions of the database. The DataSet is persisted in memory and the data in it can be manipulated and updated independent of the database. When the use of this DataSet is finished, changes can be made back to the central database for updating. The data in DataSet can be loaded from any valid data source like Microsoft SQL server database, an Oracle database or from a Microsoft Access database.

Data Provider

The Data Provider is responsible for providing and maintaining the connection to the database. A DataProvider is a set of related components that work together to provide data in an efficient and performance driven manner. The .NET Framework currently comes with two DataProviders: the SQL Data Provider which is designed only to work with Microsoft's SQL Server 7.0 or later and the OleDb DataProvider which allows us to connect to other types of databases like Access and Oracle. Each DataProvider consists of the following component classes:

The Connection object which provides a connection to the database
The Command object which is used to execute a command
The DataReader object which provides a forward-only, read only, connected recordset
The DataAdapter object which populates a disconnected DataSet with data and performs update

Data access with ADO.NET can be summarized as follows:

A connection object establishes the connection for the application with the database. The command object provides direct execution of the command to the database. If the command returns more than a single value, the command object returns a DataReader to provide the data. Alternatively, the DataAdapter can be used to fill the Dataset object. The database can be updated using the command object or the DataAdapter.

[image: image13.png]
Component classes that make up the Data Providers

The Connection Object
The Connection object creates the connection to the database. Microsoft Visual Studio .NET provides two types of Connection classes: the SqlConnection object, which is designed specifically to connect to Microsoft SQL Server 7.0 or later, and the OleDbConnection object, which can provide connections to a wide range of database types like Microsoft Access and Oracle. The Connection object contains all of the information required to open a connection to the database.

The Command Object
The Command object is represented by two corresponding classes: SqlCommand and OleDbCommand. Command objects are used to execute commands to a database across a data connection. The Command objects can be used to execute stored procedures on the database, SQL commands, or return complete tables directly. Command objects provide three methods that are used to execute commands on the database:

ExecuteNonQuery: Executes commands that have no return values such as INSERT, UPDATE or DELETE
ExecuteScalar: Returns a single value from a database query
ExecuteReader: Returns a result set by way of a DataReader object

The DataReader Object
The DataReader object provides a forward-only, read-only, connected stream recordset from a database. Unlike other components of the Data Provider, DataReader objects cannot be directly instantiated. Rather, the DataReader is returned as the result of the Command object's ExecuteReader method. The SqlCommand.ExecuteReader method returns a SqlDataReader object, and the OleDbCommand.ExecuteReader method returns an OleDbDataReader object. The DataReader can provide rows of data directly to application logic when you do not need to keep the data cached in memory. Because only one row is in memory at a time, the DataReader provides the lowest overhead in terms of system performance but requires the exclusive use of an open Connection object for the lifetime of the DataReader.

The DataAdapter Object
The DataAdapter is the class at the core of ADO .NET's disconnected data access. It is essentially the middleman facilitating all communication between the database and a DataSet. The DataAdapter is used either to fill a DataTable or DataSet with data from the database with it's Fill method. After the memory-resident data has been manipulated, the DataAdapter can commit the changes to the database by calling the Update method. The DataAdapter provides four properties that represent database commands:

SelectCommand
InsertCommand
DeleteCommand
UpdateCommand

When the Update method is called, changes in the DataSet are copied back to the database and the appropriate InsertCommand, DeleteCommand, or UpdateCommand is executed.

4. PROJECT DICTIONARY

ER-Diagram:

4.1. DATAFLOW DIAGRAMS

A data flow diagram is graphical tool used to describe and analyze movement of data through a system. These are the central tool and the basis from which the other components are developed. The transformation of data from input to output, through processed, may be described logically and independently of physical components associated with the system. These are known as the logical data flow diagrams. The physical data flow diagrams show the actual implements and movement of data between people, departments and workstations. A full description of a system actually consists of a set of data flow diagrams. Using two familiar notations Yourdon, Gane and Sarson notation develops the data flow diagrams. Each component in a DFD is labeled with a descriptive name. Process is further identified with a number that will be used for identification purpose. The development of DFD’s is done in several levels. Each process in lower level diagrams can be broken down into a more detailed DFD in the next level. The lop-level diagram is often called context diagram. It consists a single process bit, which plays vital role in studying the current system. The process in the context level diagram is exploded into other process at the first level DFD.

The idea behind the explosion of a process into more process is that understanding at one level of detail is exploded into greater detail at the next level. This is done until further explosion is necessary and an adequate amount of detail is described for analyst to understand the process.

Larry Constantine first developed the DFD as a way of expressing system requirements in a graphical from, this lead to the modular design.

A DFD is also known as a “bubble Chart” has the purpose of clarifying system requirements and identifying major transformations that will become programs in system design. So it is the starting point of the design to the lowest level of detail. A DFD consists of a series of bubbles joined by data flows in the system.

DFD SYMBOLS:

In the DFD, there are four symbols

1. A square defines a source(originator) or destination of system data

2. An arrow identifies data flow. It is the pipeline through which the information flows

3. A circle or a bubble represents a process that transforms incoming data flow into outgoing data flows.

4. An open rectangle is a data store, data at rest or a temporary repository of data

 SHAPE * MERGEFORMAT

Process that transforms data flow.

 Source or Destination of data

 Data flow

 Data Store

CONSTRUCTING A DFD:

Several rules of thumb are used in drawing DFD’s:

1. Process should be named and numbered for an easy reference. Each name should be representative of the process.

2. The direction of flow is from top to bottom and from left to right. Data Traditionally flow from source to the destination although they may flow back to the source. One way to indicate this is to draw long flow line back to a source. An alternative way is to repeat the source symbol as a destination. Since it is used more than once in the DFD it is marked with a short diagonal.

3. When a process is exploded into lower level details, they are numbered.

4. The names of data stores and destinations are written in capital letters. Process and dataflow names have the first letter of each work capitalized

A DFD typically shows the minimum contents of data store. Each data store should contain all the data elements that flow in and out.

Questionnaires should contain all the data elements that flow in and out. Missing interfaces redundancies and like is then accounted for often through interviews.

SAILENT FEATURES OF DFD’s

1. The DFD shows flow of data, not of control loops and decision are controlled considerations do not appear on a DFD.

2. The DFD does not indicate the time factor involved in any process whether the dataflows take place daily, weekly, monthly or yearly.

3. The sequence of events is not brought out on the DFD.

TYPES OF DATA FLOW DIAGRAMS

1. Current Physical

2. Current Logical

3. New Logical

4. New Physical

CURRENT PHYSICAL:

In Current Physical DFD proecess label include the name of people or their positions or the names of computer systems that might provide some of the overall system-processing label includes an identification of the technology used to process the data. Similarly data flows and data stores are often labels with the names of the actual physical media on which data are stored such as file folders, computer files, business forms or computer tapes.

CURRENT LOGICAL:

The physical aspects at the system are removed as mush as possible so that the current system is reduced to its essence to the data and the processors that transform them regardless of actual physical form.

NEW LOGICAL:

This is exactly like a current logical model if the user were completely happy with he user were completely happy with the functionality of the current system but had problems with how it was implemented typically through the new logical model will differ from current logical model while having additional functions, absolute function removal and inefficient flows recognized.

NEW PHYSICAL:

The new physical represents only the physical implementation of the new system.
RULES GOVERNING THE DFD’S

PROCESS

1) No process can have only outputs.

2) No process can have only inputs. If an object has only inputs than it must be a sink.

3) A process has a verb phrase label.

 DATA STORE
1) Data cannot move directly from one data store to another data store, a process must move data.

2) Data cannot move directly from an outside source to a data store, a process, which receives, must move data from the source and place the data into data store

3) A data store has a noun phrase label.

SOURCE OR SINK
The origin and /or destination of data.

1) Data cannot move direly from a source to sink it must be moved by a process

2) A source and /or sink has a noun phrase land

DATA FLOW

1) A Data Flow has only one direction of flow between symbol. It may flow in both directions between a process and a data store to show a read before an update. The later is usually indicated however by two separate arrows since these happen at different type.

2) A join in DFD means that exactly the same data comes from any of two or more different processes data store or sink to a common location.

3) A data flow cannot go directly back to the same process it leads. There must be atleast one other process that handles the data flow produce some other data flow returns the original data into the beginning process.

4) A Data flow to a data store means update (delete or change).

5) A data Flow from a data store means retrieve or use.

A data flow has a noun phrase label more than one data flow noun phrase can appear on a single arrow as long as all of the flows on the same arrow move together as one package.

3.1. DATA FLOW DIAGRAMS

Data flow diagrams represent the flow of data through a system. A DFD is composed of:

Data movement shown by tagged arrows.

Transformation or process of data shown by named bubbles.

Sources and destination of data represented by named rectangles.

Static storage or data at rest denoted by an open rectangle that is named.

 The DFD is intended to represent information flow but it is not a flow chart and it is not intended to indicate decision-making, flow of control, loops and other procedural aspects of the system. DFD is a useful graphical tool and is applied at the earlier stages of requirements analysis. It may be further refined at preliminary design states and is used as mechanism for creating a top level structural design for software.

 The DFD drawn first at a preliminary level is further expanded into greater details:

The context diagram is decomposed and represented with multiple bubbles.

Each of these bubbles may be decomposed further and documented as more detailed DFD’s
CONTEXT LEVEL DIAGRAM

 SHAPE * MERGEFORMAT

Fig.5.1 Context Level DFD forFile Splitter
 SHAPE * MERGEFORMAT

Use case for File Splitter

[image: image17.emf]User

User2

Download File

Select File to Split

Split File

Save

User1

Transfer to Floppy/CD

Sequence for File Splitter
[image: image18.emf] : User

Download File :

split

Select File to

Split : split

Split File : splitSend/Save File

: split

1: Download

2: Select File

3: Split File

4: Save/ Send File

Collaboration diagram of File Splitter
[image: image19.emf] : User

Download

File : split

Select File to

Split : split

Split File

: split

Send/Save

File : split

1: Download

2: Select File

3: Split File

4: Save/ Send File

What is Testing?

A process of executing a program with the explicit intention of finding errors, that is making the program fail.

Software Testing:

It is the process of testing the functionality and correctness of software by running it. Process of executing a program with the intent of finding an error.

 A good test case is one that has a high probability of finding an as yet undiscovered error. A successful test is one that uncovers an as yet undiscovered error. Software Testing is usually performed for one of two reasons:

· Defect detection

· Reliability estimation

 Black Box Testing:

Applies to software systems or module, tests functionality in terms of inputs and outputs at interfaces.Test reveals if the software function is fully operational with reference to requirements specification.

 White Box Testing:

Knowing the internal workings i.e., to test if all internal operations are performed according to program structures and data structures.

To test if all internal components have been adequately exercised.

Software Testing Strategies:

A strategy for software testing will begin in the following order:

1. Unit testing

2. Integration testing

3. Validation testing

4. System testing

Unit testing

 It concentrates on each unit of the software as implemented in source code and is a white box oriented. Using the component level design description as a guide, important control paths are tested to uncover errors within the boundary of the module. In the unit testing,

The step can be conducted in parallel for multiple components.

Integration testing:

 Here focus is on design and construction of the software architecture. Integration testing is a systematic technique for constructing the program structure while at the same time conducting tests to uncover errors associated with interfacing. The objective is to take unit tested components and build a program structure that has been dictated by design.

Validation testing:

 In this, requirements established as part of software requirements analysis are validated against the software that has been constructed i.e., validation succeeds when software functions in a manner that can reasonably expected by the customer.
System testing: In this software and other system elements are tested as a whole.
4.3. DATA DICTIONARY

Table Name: register

	Column Name
	Data Type

	Userid
	Int

	Username
	Varchar(100)

	Login
	Varchar(100)

	Pwd
	Varchar(100)

5.1. I/O SAMPLES

Login Form
[image: image20.png]
Registration Form

[image: image21.png]
[image: image22.png]
[image: image23.png]
Selecting file to be splitted

[image: image24.png]
[image: image25.png]
Select source

[image: image26.png]
Select Size

[image: image27.png]
Select remaining size to be splitted

[image: image28.png]
Merging file

[image: image29.png]
[image: image30.png]
[image: image31.png][image: image32.png]

User1

User2

File Splitter

 	User3

User

Select File to split

Password

Split File

Show data

 Splitted data

Merger

Merge the files

Collect the splitted files

Send request

Split file

Take file

Splitter

User

Choose file

Register

Login

