DEFENDING AGAINST SYBIL ATTACKS USING SYBILLIMIT PROTOCOL
A PROJECT REPORT

Submitted by

M. I. MOHAMED AKRAM

K. SABANAYAGAN

J. SATHAM HUSSAIN

R. SRIBALAJI
in partial fulfillment for the award of the degree

of

BACHELOR OF TECHNOLOGY

in
INFORMATION TECHNOLOGY

PET ENGINEERING COLLEGE, VALLIOOR

ANNA UNIVERSITY OF TECHNOLOGY: TIRUNELVELI
MARCH 2011
ANNA UNIVERSITY OF TECHNOLOGY: TIRUNELVELI 627 007
BONAFIDE CERTIFICATE

Certified that this project report “DEFENDING AGAINST SYBIL ATTACKS USING SYBILLIMIT PROTOCOL” is the bonafide work of “M.I.MOHAMED AKRAM (96607205026), K. SABANAYAGAN (96607205041), J.SATHAM HUSSAIN (96607205042), and R.SRIBALAJI (96607205313)” who carried out the project work under my supervision.
SIGNATURE

SIGNATURE

Prof. S. Babu Rengarajan

Mrs. V. Ram Prabha

HOD / IT

ASP / IT

PET Engineering College,

PET Engineering College,

Vallioor.

Vallioor.

Submitted for project viva examination held at PET Engineering College, Vallioor on ……………………………..

Internal Examiner

External Examiner
ACKNOWLEDGEMENT

We would like to convey our thanks to our principal Dr. J. Mohamed Jahabar, for providing us necessary facilities that enable us to successfully complete our project.

We are grateful to our HOD, Prof. S. Babu Rengarajan, for able guidance in matters and pertaining to our project. I thank him for his interest and continued support.

We would like to extend our heartfelt thanks to Mrs. V. Ram Prabha, our project guide, for her valuable contribution, guidance and encouragement which has given us a new impetus to our work.

A special thanks to Mrs. J. Selvi Prabha, our project coordinator who rendered her support throughout the project.

We owe a special gratitude to our parents and friends who helped us to make this project a memorable success.

ABSTRACT
Open-access distributed systems such as peer-to-peer systems are particularly vulnerable to Sybil attacks, where a malicious user creates multiple fake identities (called Sybil nodes). Without a trusted central authority that can tie identities to real human beings, defending against Sybil attacks is quite challenging.

Among the small number of decentralized approaches, our recent SybilGuard protocol leverages a key insight on social networks to bound the number of Sybil nodes accepted. Despite its promising direction, SybilGuard can allow a large number of Sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fast-mixing, which has never been confirmed in the real world.

This project presents the novel SybilLimit protocol that leverages the same insight as SybilGuard, but offers dramatically improved and near-optimal guarantees. The number of Sybil nodes accepted is reduced by a factor or around 200 times in our experiments for a million-node system. We further prove that SybilLimit’s guarantee is at most a log n factor away from optimal when considering approaches based on fast-mixing social networks. Finally, based on three large-scale real-world social networks, we provide the first evidence that real-world social networks are indeed fast-mixing. This validates the fundamental assumption behind SybilLimit’s and SybilGuard’s approach.
LIST OF FIGURES

FIGURE NO

TITLE

PAGE NO

5.1 Dot Net Framework Architecture

11
5.2 Common Language Runtime

11
5.3 Framework Class Library

12
6.1 Execution Flow

29
6.2 DFD Level 0

30
6.3 DFD Level 1

31
6.4 DFD Level 2

32
6.5 Sequence flow Using SybilGuard

33
6.6 Sequence flow Using SybilLimit

34
6.7 UML Diagram

35
7.1

Architectural diagram

36
8.1

Sender Node

46
8.2

Intermediate Node 1

47
8.3

Intermediate Node 2

47
8.4

Intermediate Node 3

48
8.5

Attacking Node

48
8.6

Receiver Node

49
LIST OF TABLES
TABLE NO

TITLE

PAGE NO

8.1 Destination IP

40

8.2 Search Packet Receiver

40
8.3 Internal IP

40
8.4 Receiver Configuration

40
LIST OF ABBREVIATIONS

CLS

Common Language Specification
CLR

Common Language Runtime
GAC

Global Assembly Cache
GUI

Graphical User Interface
MIME

Multipurpose Internet Mail Extensions
JIT

Just-In-Time
XML

extensible Markup Language
IIS

Internet Information Services
MFC

Microsoft Foundation Classes
RAD

Rapid Application Development
CTS

Common Type System
DHT

Distributed Hash Tables
WSDL

Web Services Description Language
TABLE OF CONTENTS

CHAPTER

TITLE

PAGE NO

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBRIVATIONS

1

INTRODUCTION

1

1.1 Existing System

2

 1.1.1 Drawbacks

2

1.2 Overview of proposed system

3

 1.2.1 Advantages

3
2

OBJECTIVES

2.1 System Model

4

2.2 Attack Model

5
3

SYSTEM ANALYSIS

3.1 Hardware Requirements

6

3.2 Software Requirements

6
4

FEASIBILITY STUDY

7

4.1 Economical Feasibility

7

4.2 Operational Feasibility

7

4.3 Technical Feasibility

8
5

SOFTWARE REQUIREMENT
SPECIFICATION

5.1 Features of .Net

9

5.2 The .Net Framework

9

 5.2.1 Common Language Runtime

10

 5.2.2 The Class Library

12

5.3 Languages Supported by .Net

14

5.4 Features of SQL Server

16
6

SYSTEM DESIGN

19

 6.1 System Execution flow chart

19

 6.2 Data Flow Diagram

20

 6.3 Sequence Diagram

23

 6.4 UML Diagram

25

7

IMPLEMENTATION

26

 7.1 Modules

27

 7.1.1 Sybil Defenses
 Leveraging Social Networks

27

 7.1.2 Social Networks and
 Their Fast-Mixing Properties

28

 7.1.3 Implementing SybilGuard Protocol.
28

 7.1.4 Implementing SybilLimit Protocol.
29

7.2 Algorithm Used:

29
8

TESTING

30

8.1 Unit testing

30

8.2 Debugging

31

8.3 System Testing

32

 8.3.1 Integration testing

32

 8.3.2 Acceptance testing

33

8.4 Software Testing

34

8.5 Testing Objectives

34

8.6 Test Data and Input

35

 8.6.1 Run with Live Data

35

 8.6.2 Run with Test Data

35

8.7 Screenshots

36
9

CONCLUSION AND FUTURE WORK

41
10

BIBLIOGRPHY

42

CHAPTER - 1

1. INTRODUCTION

Decentralized distributed systems (such as peer-to-peer systems) are particularly vulnerable to sybil attacks, where a malicious user pretends to have multiple identities(called sybil identities or sybil nodes). In fact, such sybil attacks have already been observed in the real world in the Maze peer-to-peer system. Researchers have also demonstrated that it is surprisingly easy to launch sybil attacks in the widely-used eMule system. When a malicious user’s sybil nodes comprise a large fraction of the nodes in the system, that one user is able to “out vote” the honest users in a wide scope of collaborative tasks. Examples of such collaborative tasks range from Byzantine consensus and voting schemes for email spam to implicit collaboration in redundant routing and data replication in Distributed Hash Tables (DHTs). The exact form of such collaboration and the exact fraction of sybil nodes these collaborative tasks can tolerate may differ from case to case. However, a generic requirement is that the number of sybil nodes (compared to the number of honest users) needs to be properly bounded. To defend against sybil attacks, simply monitoring each node’s historical behavior is often insufficient because sybil nodes can behave nicely initially, and then launch an attack. Although a trusted central authority can thwart such attacks by issuing credentials to actual human beings or requiring payment, finding such a single entity that every user worldwide is willing to trust can be difficult or impossible (especially if that entity requires users to provide sensitive information). Without a trusted central authority, defending against sybil attacks is much harder. Among the small number of approaches, the simplest one perhaps is to bind identities to IP addresses or IP prefixes. Another approach is to require every identity to solve puzzles that require human effort, such as CAPTCHAs. Both approaches can provide only limited protection—the adversary can readily steal IP addresses with different prefixes in today’s Internet, while CAPTCHAs can be re-posted on an adversary’s website to be solved by users seeking access to that site.
1.1 Existing system(The SybilGuard approach)

Sybil-Guard, a protocol for defending against sybil attacks without relying on a trusted central authority. Sybil-Guard leverages a key insight regarding social networks. In a social network, the vertices (nodes) are identities in the distributed system and the (undirected) edges correspond to human-established trust relations in the real world. The edges connecting the honest region (i.e., the region containing all the honest nodes) and the sybil region (i.e., the region containing all the sybil identities created by malicious users) are called attack edges. SybilGuard ensures that the number of attack edges is independent of the number of sybil identities, and is limited by the number of trust relation pairs between malicious users and honest users. SybilGuard observes that if malicious users create too many sybil identities, the graph will have a small quotient cut—i.e., a small set of edges (the attack edges) whose removal disconnects a large number of nodes (all the sybil identities). On the other hand, “fast mixing” social networks do not tend to have such cuts. SybilGuard leverages the small quotient cut to limit the size of sybil attacks. SybilGuard is a completely decentralized protocol and enables any honest node V (called the verifier) to decide whether or not to accept another node S (called the suspect). “Accepting” means that V is willing to do collaborative tasks with S.
1.1.1 Drawbacks

SybilGuard suffers from two major limitations.

1. Although the end guarantees of SybilGuard are stronger than previous decentralized approaches, they are still rather weak in the absolute sense : Each attack edge allows O(√n log n) sybil nodes to be accepted.

The situation can get worse: When the number of attack edges g = (√n/ log n) SybilGuard can no longer bound the number of accepted sybil nodes at all.
2. SybilGuard critically relies on the assumption that social networks are fast mixing, an assumption that had never not been validated in the real world.
1.2 Overview of Proposed System(The SybilLimit Approach)

In this Project, we present a new protocol that leverages the same insight as SybilGuard but offers dramatically improved and near-optimal guarantees. We call the protocol SybilLimit, because
i) It limits the number of sybil nodes accepted and
ii) It is near-optimal and thus pushes the approach to the limit.
For any g = o(n/ log n), Sybil-Limit can bound the number of accepted sybil nodes per attack edge within O(log n). This is a o(√n) factor reduction from SybilGuard’s O(√n log n) guarantee.
SybilLimit accepts on average around 10 sybil nodes per attack edge, yielding nearly 200 times improvement over SybilGuard. Putting it another way, with SybilLimit, the adversary needs to establish nearly 100,000 real-world social trust relations with honest users in order for the sybil nodes to out-number honest nodes, as compared to 500 trust relations in SybilGuard.

1.2.1 Advantages

1) leveraging multiple independent instances of the random route protocol to perform many short random routes
2) exploiting intersections on edges instead of nodes
3) using the novel balance condition to deal with escaping tails of the verifier
4) using the novel benchmarking technique to safely estimate.

CHAPTER - 2

2. OBJECTIVE

In fact, Douceur’s initial paper on sybil attacks already proved a negative result showing that sybil attacks cannot be prevented unless special assumptions are made.

Recently, we proposed Sybil Guard , a new protocol for defending against sybil attacks without relying on a trusted central authority.

In a social network, the vertices (nodes) are identities in the distributed system and the (undirected) edges correspond to human-established trust relations in the real world.

In this project, we present a new protocol that leverages the same insight as Sybil Guard but offers dramatically improved and near-optimal guarantees.
2.1 System Model

SybilLimit adopts a similar system model and attack model as SybilGuard. The system has n honest human beings as honest users, each with one honest identity/node. Honest nodes obey the protocol. The system also has one or more malicious human beings as malicious users, each with one or more identities/nodes. To unify terminology, we call all identities created by malicious users as sybil identities/nodes. Sybil nodes are byzantine and may behave arbitrarily. All sybil nodes are colluding and are controlled by an adversary. A compromised honest node is completely controlled by the adversary and hence is considered as a sybil node and not as an honest node. There is an undirected social network among all the nodes, where each undirected edge corresponds to human established trust relations in the real world. The adversary may create arbitrary edges among Sybil nodes in the social network. Each honest user knows her neighbors in the social network, while the adversary has full knowledge of the entire social network. The honest nodes have m undirected edges among themselves in the social network. For expository purposes, we sometimes also consider them undirected edges as 2m directed edges. The adversary may eavesdrop on any messages sent in the protocol.
2.2 Attack Model

Every node is simultaneously a suspect and a verifier. As in SybilGuard, we assume that each suspect S has a locally generated public/private key pair, which serves to prevent the adversary from “stealing” S’s identity after S is accepted. When a verifier V accepts a suspect S, V actually accepts S’s public key, which can be used later to authenticate S. We do not assume a public key infrastructure, and the protocol does not need to solve the public key distribution problem since the system is not concerned with binding public keys to human beings or computers. A malicious user may create multiple different key pairs for her different Sybil nodes.
CHAPTER - 3
3. SYSTEM ANALYSIS

3.1 Hardware Requirements

· Processor

-
Pentium IV 2.0 GHz or above
· RAM

-
1 GB or above
· HDD

-
40 GB and above
· Display

-
640 x 480 (SVGA)
· Multimedia Support
· Keyboard
· Mouse
3.2 Software Requirements

· Platform

-
Windows 9x/NT/2000/XP
· Front End

-
ASP.NET
· Back End

-
Microsoft SQL Server
CHAPTER - 4

4. FEASIBILITY STUDY

Feasibility study enables the developer to have an assessment of the product being developed. It refers to the feasibility study of the product in terms of the product in terms of outcomes of the product, operational use and technical support required for implementing it.

Feasibility study should be performed on the basis of various criteria and parameters. The various feasibility studies are:
1. Economic feasibility

2. Operational feasibility

3. Technical feasibility

4.1 Economic Feasibility

 It refers to the benefits or outcomes we are deriving from the product as compared to the total cost we are spending for developing the product. If the benefits are more or less the same as the older system, then it is not feasible to develop the product.

4.2 Operational Feasibility

 It refers to the feasibility of the product to be operational. Some products may work very well at design and implementation but may fall in the real time environment. It includes the study of additional human resource required and their technical expertise.

4.3 Technical Feasibility
 It studies the pros and cons of using particular software for the development and its feasibility. It also studies the additional training needed to be given to the people to make the application work.
CHAPTER - 5
SOFTWARE REQUIREMENT SPECIFICATION

5.1 Features of .Net

Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script. The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.

.NET is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).
5.2 The .Net Framework
The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

Fig 5.1: Dot Net Framework Architecture
5.2.1 Common Language Runtime
The Common Language Runtime (CLR) is a runtime engine that manages .NET Code (such as C# applications). It Provides features such as memory management, thread management, object type safety, security, etc. It is a part of the .NET Framework

Managed code is a code that targets the CLR. Any .NET Language, including C#, Visual Basic, C++, Java, Cobol, etc.

Fig 5.2: Common Language Runtime

The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are

· Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.

· Memory management, notably including garbage collection.

· Checking and enforcing security restrictions on the running code.

· Loading and executing programs, with version control and other such features.

The following features of the .NET framework are also worth description:

Managed Code

The code that targets .NET contains certain extra information to describe itself. While both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data

With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications - data that doesn’t get garbage collected but instead is looked after by unmanaged code.

Common Type System

The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.

Common Language Specification

The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

5.2.2 The Class Library

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

Fig 5.3: Framework Class Library
Constructors and Destructors:

Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.
Garbage Collection

Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables.
In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.

Overloading

Overloading is another feature in C#. Overloading enables us to define multiple procedures with the same name, where each procedure has a different set of arguments. Besides using overloading for procedures, we can use it for constructors and properties in a class.

Multithreading:

C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.

Structured Exception Handling

C#.NET supports structured handling, which enables us to detect and remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally statements to create exception handlers. Using Try…Catch…Finally statements, we can create robust and effective exception handlers to improve the performance of our application.

5.3 Languages Supported By .Net

The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.
Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.

Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.

C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.

Other languages for which .NET compilers are available include

· FORTRAN

· COBOL

· Eiffel

 C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.

C#.NET is a CLS-compliant language. Any objects, classes, or components that created in C#.NET can be used in any other CLS-compliant language. In addition, we can use objects, classes, and components created in other CLS-compliant languages in C#.NET .The use of CLS ensures complete interoperability among applications, regardless of the languages used to create the application.
Objectives of .Net Framework
· To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

· To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

· Eliminates the performance problems.

There are different types of application, such as Windows-based applications and Web-based applications.

5.4 Features of SQL-SERVER

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services.
References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services

SQL-SERVER database consist of six type of objects,

They are,
· TABLE

· QUERY

· FORM

· REPORT

· MACRO

Table:
A database is a collection of data about a specific topic.
Views of Table:

We can work with a table in two types,
1. Design View

2. Datasheet View

i) Design View

To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.
ii) Datasheet View

To add, edit or analyses the data itself we work in tables datasheet view mode.
Query:

 A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dynaset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dynaset. Access either displays the dynaset or snapshot for us to view or perform an action on it, such as deleting or updating.

CHAPTER – 6

6. SYSTEM DESIGN

6.1 System Execution flow chart

[image: image4.png]
Fig 6.1: Execution flow

6.2 Data Flow Diagram

[image: image16.emf]

User Database

 User Database
Fig 6.2: DFD Level 0

[image: image17.emf]

User DB

Social network DB
Fig 6.3: DFD Level 1

 User DB

 Social Network DB

Fig 6.4: DFD Level 2
6.3 Sequence Diagram

 Authorized User

Social network data

 Fake Users

Attack social network
Fig 6.5: Sequence flow Using SybilGuard

 Authorized User

 Go to p2p network
 Successfully reach network
 Retrieve the data
Fake user

Attack

Discard
Fig 6.6: Sequence flow Using SybilLimit
6.4 UML Diagram

[image: image5.png]
Fig 6.7: UML Diagram

CHAPTER – 7

1. IMPLEMENTATION

Peer-peer networks
Social Networks

Attack
 Sybil Nodes
 Honest Nodes

Check Nodes

Filter

Original Nodes

Fig: 7.1 Architectural diagram
7.1 Modules

1. Sybil Defenses Leveraging Social Networks

2. Social Networks and Their Fast-Mixing Properties
3. Implementing SybilGuard Protocol.

4. Implementing SybilLimit Protocol.

7.1.1 Sybil Defenses Leveraging Social Networks:

SybilGuard using social networks to defend against Sybil attacks, there have been a number of research efforts adopting such an approach. Same as SybilLimit, all these efforts leverage the fact that Sybil attacks will result in small quotient cuts in the social network. Small quotient cuts, in turn, translate to a poor expansion property and a large mixing time of the graph.

If one is willing to assume global knowledge of the continuously changing social network then simply running an approximation algorithm for minimal quotient cut will bound the number of Sybil identities accepted within per attack edge, where is the number of honest identities. Also assuming global knowledge and further focusing on scenarios where only honest identities are seeking to be accepted, SumUp uses adaptive maximum flow on the social network to bound the number of Sybil identities (voters) accepted per attack edge within networks.

7.1.2 Social Networks and Their Fast-Mixing Properties:
Besides Sybil defense, social networks have been used elsewhere Social networks are one type of trust networks. Unlike many other works on trust networks, SybilLimit does not use trust propagation in the social network They show that in nearly every dataset, at nontrivial size scales social communities gradually “blend in” more and more with the rest of the network and thus become less and less community-like.” This in turn implies that, at a nontrivial scale, social networks are expander-like and will likely not contain small quotient cuts in the absence of Sybil attacks.

7.1.3 Implementing SybilGuard Protocol.

SybilGuard uses a special kind of random walk, called random routes, in the social network. In a random walk, at each hop, the current node flips a coin on the fly to select a uniformly random edge to direct the walk (the walk is allowed to turn back). For random routes, each node uses a precomputed random permutation, where is the degree of the node—as a one-to-one mapping from incoming edges to outgoing edges. A random route entering via edge will always exit via edge . This precomputed permutation, or routing table, serves to introduce external correlation across multiple random routes. Namely, once two random routes traverse the same directed edge, they will merge and stay merged (i.e., they converge). Furthermore, the outgoing edge uniquely determines the incoming edge as well; thus the random routes can be back-traced. These two properties are key to SybilGuard’s guarantees. As a side effect, such routing tables also introduce internal correlation within a single random route. Namely, if a random route visits the same node more than once, the exiting edges will be correlated.

7.1.4 Implementing SybilLimit Protocol.

SybilLimit adopts a similar system model and attack model as SybilGuard. The system has honest human beings as honest users, each with one honest identity/node. Honest nodes obey the protocol. The system also has one or more malicious human beings as malicious users, each with one or more identities/nodes. To unify terminology, we call all identities created by malicious users as sybil identities/nodes. Sybil nodes are byzantine and may behave arbitrarily. All sybil nodes are colluding and are controlled by an adversary. Compromised honest node is completely controlled by the adversary and hence is considered as a sybil node and not as an honest node.

7.2 Algorithm Used:
Sybil Guard & SybilLimit Protocol:

Theorem 1:
Consider any fast-mixing graph with nodes. A random walk of length is sufficiently long such that, with probability of at least, the last node/edge traversed is drawn from the node/edge stationary distribution of the graph. In SybilGuard, a random walk starting from an honest node in the social network is called escaping if it ever crosses any attack edge.

Theorem 2:
In any connected social network with nodes and attack edges, the probability of a length random walk starting from a uniformly random honest node being escaping is at most.
CHAPTER – 8

8. TESTING

A “Program unit” stands for a routine or a collection of routines implemented by an individual programmer. It might even be a stand-alone program or a functional unit a larger program.
8.1 Unit testing

Unit testing is performed prior to integration of the unit into a larger system. It is like

Coding and debugging -> unit testing -> integration testing

A program unit must be tested for Functional tests, Performance tests, Stress tests and Structure tests.

Functional tests refer to executing the code with standard inputs, for which the results will occur within the expected boundaries. Performance test determines the execution time spent in various parts of the unit, response time, device utilization and throughput. Performance testing will help the tuning of the system.

Stress tests drive the system to its limits. They are designed to intentionally break the unit. Structure tests verify logical execution along different execution paths. Functional, performance and stress tests are collectively known as “Black box testing”. Structure testing is referred to as “White box” or “glass box” testing. Program errors can be classified as missing path errors, computational errors and domain errors.

Even if it looks like all possible execution paths have been tested, there might still exist some more paths. A missing path error occurs, when a branching statement and the associated computations are accidentally omitted. Missing paths can be detected only by functional specifications. A domain error occurs when a program traverses the wrong path because of an incorrect predicate in a branching statement. When a test case fails to detect a computational error there is said to be a coincidental error.
8.2 Debugging

Debugging is eliminating the cause of known errors. Commonly used debugging techniques are induction, deduction and backtracking. Debugging by induction involves the following steps:

1. Collect all the information about test details and test results

2. Look for patterns

3. Form one or more hypotheses and rank /classify them.

4. Prove/disprove hypotheses. Re examine

5. Implement appropriate corrections

6. Verify the corrections. Re run the system and test again until satisfactory

Debugging by deduction involves the following steps:

1. List possible causes for observed failure

2. Use the available information to eliminate various hypotheses

3. Prove/disprove the remaining hypotheses

4. Determine the appropriate corrections

5. Carry out the corrections and verify

Debugging by backtracking involves working backward in the source code from Point where the error was observed. Run additional test cases and collect more information.
8.3 System Testing

System testing involves two activities: Integration testing and Acceptance testing. Integration strategy stresses on the order in which modules are written, debugged and unit tested. Acceptance test involves functional tests, performance tests and stress tests to verify requirements fulfillment. System checking checks the interfaces, decision logic, control flow, recovery procedures, and throughput, capacity and timing characteristics of the entire system.

8.3.1 Integration testing

Integration testing strategies include bottom-up (traditional), top-down and sandwich strategies. Bottom-up integration consists of unit testing, followed by sub system testing, followed by testing entire system. Unit testing tries to discover errors in modules. Modules are tested independently in an artificial environment known as a “test harness”. Test harnesses provide data environments and calling sequences for the routines and subsystem that are being tested in isolation.

Disadvantages of bottom-up testing include that harness preparation, which can sometimes take almost 50% or more of the coding and debugging effort for a smaller product. After testing all the modules independently and in isolation, they are linked and executed in one single integration and in isolation; they are linked and executed in one single integration run. This known as “Big bang” approach to integration testing. Isolating sources of errors is difficult in “big bang “approach.

Top-down integration starts with the main routine and one or two immediately next lower level routines. After a thorough checking the top level becomes a test harness to its immediate subordinate routines. Top-down integration offers the following advantages.

1. System integration is distributed throughout the implementation phase. Modules are integrated as they are developed.

2. Top-level interfaces are first test

3. Top-level routines provide a natural test harness for lower-level routines.

4. Errors are localized to the new modules and interfaces that are being added.

Though top-down integrations seem to offer better advantages, it may not be applicable in certain situations. Sometimes it may be necessary to test certain critical low-level modules first. In such situations, a sandwich strategy is preferable. Sandwich integration is mostly top-down, but bottom-up techniques are used on some modules and sub systems. This mixed approach retains the advantages of both strategies.

8.3.2 Acceptance testing

Acceptance testing involves planning and execution of functional tests, performance tests and stress tests in order to check whether the system implemented satisfies the requirements specifications. Quality assurance people as well as customers may simultaneously develop acceptance tests and run them. In addition to functional and performance tests, stress test are performed to determine the limits/limitations of the system developed. For example, a complier may be tested for its symbol table overflows or a real-time system may be tested for its symbol table overflows or a real-time system may be tested to find how it responds to multiple interrupts of different/same priorities.

Acceptance test tools include a test coverage analyzer, and a coding standards checker. Test coverage analyzer records the control paths followed for each test case. A timing analyzer reports the time spent in various regions of the source code under different test cases. Coding standards are stated in the product requirements. Manual inspection is usually not an adequate mechanism from detecting violations of coding standards.

8.4 Software Testing

Software testing is an important element of software quality assurance and represents the ultimate review of specification design and coding. The user tests the developed system and changes are made according the needs. The testing phase involves testing of developed system using various kinds of data. An elaborated test data is prepared and system using the data. Whole testing is noted and corrections are made.

8.5 Testing Objectives:

· Testing is a process of executing a program with the intent of finding on errors.

· A good test is on that has a high probability of finding an undiscovered errors.

Testing is vital to the success of the system. System testing is the state of implementation, which ensures that the system works accurately before live operations commence. System testing makes a logical assumption that the system is correct and that the goals are successfully achieved.
Effective Testing Prerequisites
Types of Testing Done
1. Integration Testing

An overall test plan for the project is prepared before the start of coding.

2. Validation Testing

This project will be tested under this testing using sample data and produce the correct sample output.
3. Recovery Testing

This project will be tested under this testing using correct data input and its product and the correct valid output without any errors.

4. Security Testing

This project contains password to secure the data

8. 6 Test Data and Input

Taking various types of data we do the above testing. Preparation of test data plays a vital role in system testing. After preparing the test data the system under study is tested using the test data, while testing the system by using the above testing and correction methods. The system has been verified and validated by running with both.

i) Run with live data

ii) Run with test data

8.6.1 Run with Live Data

The system was tested with the data of the old system for a particular period. Then the new reports were verified with the old one.
8.6.2 Run with Test Data

In the case the system was run with some sample data. Specification testing was also done for each conditions or combinations for conditions.

8.7 Screenshots
[image: image6.png]
Fig 8.1: Sender Node

[image: image7.png]
Fig 8.2: Intermediate Node 1

[image: image8.png]
Fig 8.3: Intermediate Node 2

[image: image9.png]
Fig 8.4: Intermediate Node 3

[image: image10.png]
Fig 8.5: Attacking Node

[image: image11.png]
Fig 8.6: Receiver Node

[image: image12.png]
Table 8.1 Destination IP

[image: image13.png]
Table 8.2 Search Packet Receiver

[image: image14.png]
Table 8.3 Internal IP

[image: image15.png]
Table 8.4 Receiver Configuration

CHAPTER - 9

9. CONCLUSION AND FUTURE WORK

This project presented SybilLimit, a near-optimal defense against sybil attacks using social networks. Compared to our previous SybilGuard protocol that accepted sybil nodes per attack edge, SybilLimit accepts only sybil nodes per attack edge. Furthermore, SybilLimit provides this guarantee even when the number of attack edges grows to. SybilLimit’s improvement derives from the combination of multiple novel techniques:
· leveraging multiple independent instances of the random route protocol to perform many short random routes
· exploiting intersections on edges instead of nodes
· using the novel balance condition to deal with escaping tails of the verifier
· Using the novel benchmarking technique to safely estimate

Finally, our results on real-world social networks confirmed their fast-mixing property and, thus, validated the fundamental assumption behind SybilLimit’s (and SybilGuard’s) approach.
As future work, we intend to implement SybilLimit within the context of some

real-world applications and demonstrate its utility.

CHAPTER – 10

10. REFERENCES

· Abraham and D. Malkhi. Probabilistic quorums for dynamic systems. In DISC, 2003.
· L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in large social networks: Membership, growth, and evolution. In ACM KDD, 2006.
· Z. Bar-Yossef, R. Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds and applications. In ACM STOC, 2001.
· R. Bazzi and G. Konjevod. On the establishment of distinct identities in overlay networks. In ACM PODC, 2005.
· S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms: Design, analysis and applications. In IEEE INFOCOM,2005.
· M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. S.Wallach. Secure routing for structured peer-to-peer overlay networks. In USENIX OSDI, 2002.
· Cheng and E. Friedman. Sybilproof reputation mechanisms. In ACM P2PEcon, 2005.
· G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and R. Anderson. Sybil-resistant DHT routing. In ESORICS, 2005. Springer-Verlag LNCS 3679.
· http://kdl.cs.umass.edu/data/dblp/dblp-info.html.
· J. Douceur. The Sybil attack. In IPTPS, 2002.
· E-Mule. http://www.emule-project.net.

· M. Feldman, K. Lai, I. Stoica, and J. Chuang. Robust incentive techniques for peer-to-peer networks. In ACM Electronic Commerce, 2004.
· Flaxman. Expansion and lack thereof in randomly perturbed graphs. Technical report, Microsoft Research ,2006. ftp://ftp.research.microsoft.com/pub/tr/TR-2006-118.pdf.
· M. Girvan andM. E. J. Newman. Community structure in social and biological networks. Proc. of the National Academy of Sciences, 99(12), 2002.

· V. Guruswami. Rapidly mixing markov chains: A comparison of techniques. Technical report, MIT Laboratory for Computer Science, May 2000. Available at http://www.cs.washington.edu/homes/venkat/pubs/papers/markov-survey.ps.
· J. Kleinberg. The small-world phenomenon: An algorithm perspective. In ACM STOC, 2000.
· L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM TOPLAS, 4(3), 1982.
· Q. Lian, Z. Zhang, M. Yang, B. Y. Zhao, Y. Dai, and X. Li. An empirical study of collusion behavior in the Maze P2P file-sharing system. In IEEE ICDCS, 2007.
· T. Lindvall. Lectures on the Coupling Method. Dover Publications, 2002.

Authorized User

Sybil Node

Fake User

Peer to Peer Network

Social Network

Fake User

Peer to Peer Network

Social Network

Authorized User

Check

Sybil Node

Sybil limits protocol

Fake User

Authorized User

Social Network

Peer to Peer Network

Sybil Node

Check

Sybil Node

Sybil limits protocol

Original Node

Filter

User

Data Base

Social Network

User

Data Base

Peer to Peer

Social Network

 Fake Users

 Authorized User

S1

S2

S3

S4

S5

S6

�

Sybil limits protocol

�

