 Credit Card Fraud Detection Using Hidden Markov Model
 Scope of the project

To detect and block from fraud transactions using a credit card.
 Introduction

Credit-card-based purchases can be categorized into two types: 1) physical card and 2) virtual card. In a physical-card based purchase, the cardholder presents his card physically to a merchant for making a payment. To carry out fraudulent transactions in this kind of purchase, an attacker has to steal the credit card. If the cardholder does not realize the loss of card, it can lead to a substantial financial loss to the credit card company. In the second kind of purchase, only some important information about a card (card number, expiration date, secure code) is required to make the payment. Such purchases are normally done on the Internet or over the telephone. To commit fraud in these types of purchases, a fraudster simply needs to know the card details. Most of the time, the genuine cardholder is not aware that someone else has seen or stolen his card information. The only way to detect this kind of fraud is to analyze the spending patterns on every card and to figure out any inconsistency with respect to the “usual” spending patterns. Fraud detection based on the analysis of existing purchase data of cardholder is a promising way to reduce the rate of successful credit card frauds. Since humans tend to exhibit specific behaviorist profiles, every cardholder can be represented by a set of patterns containing information about the typical purchase category, the time since the last purchase, the amount of money spent, etc. Deviation from such patterns is a potential threat to the system.

HMM BACKGROUND

 An HMMis a double embedded stochastic process with two hierarchy levels. It can be used to model much more complicated stochastic processes as compared to a traditional Markov model.AnHMMhas a finite set of states governed by a set of transition probabilities. In a particular state, an outcome or observation can be generated according to an associated probability distribution. It is only the outcome and not the state that is visible to an external observer. HMM-based applications are common in various areas such as speech recognition, bioinformatics, and genomics. In recent years, Joshi and Phoba have investigated thecapabilities ofHMMin anomaly detection. They classify TCP network traffic as an attack or normal using HMM. Cho and Park suggest an HMM-based intrusion detection system that improves the modeling time and performance by considering only the privilege transition flows based on the domain knowledge of attacks. Ourston etal. have proposed the application of HMM in detecting multistage network attacks. Hoang et al. present a new method to process sequences of system calls for anomaly detection using HMM.The key idea is to build a multilayer model of program behaviors based on both HMMs and enumerating methods for anomaly detection. Lane has used HMM to model human behavior. Once human behavior is correctly modeled, any detected deviation is a cause for concern since an attacker is not expected to have a behavior similar to the genuine user. Hence, an alarm is raised in case of any deviation.

An HMM can be characterized by the following :

1. N is the number of states in the model. We denote the set of states S ¼ fS1; S2; . . . SNg, where Si, i ¼ 1; 2; . . .;N is an individual state. The state at time

instant t is denoted by qt. 2. M is the number of distinct observation symbols per

state. The observation symbols correspond to the physical output of the system being modeled. We denote the set of symbols V ¼ fV1; V2; . . . VMg, where

Vi, i ¼ 1; 2; . . .;M is an individual symbol.
Existing System:

In case of the existing system the fraud is detected after the fraud is done that is, the fraud is detected after the complaint of the card holder. And so the card holder faced a lot of trouble before the investigation finish. And also as all the transaction is maintained in a log, we need to maintain a huge data. And also now a days lot of online purchase are made so we don’t know the person how is using the card online, we just capture the IP address for verification purpose. So there need a help from the cyber crime to investigate the fraud. To avoid the entire above disadvantage we propose the system to detect the fraud in a best and easy way.

Proposed System:

 In proposed system, we present a Hidden Markov Model (HMM).Which does not require fraud signatures and yet is able to detect frauds by considering a cardholder’s spending habit. Card transaction processing sequence by the stochastic process of an HMM. The details of items purchased in Individual transactions are usually not known to an FDS running at the bank that issues credit cards to the cardholders. Hence, we feel that HMM is an ideal choice for addressing this problem. Another important advantage of the HMM-based approach is a drastic reduction in the number of False Positives transactions identified as malicious by an FDS although they are actually genuine. An FDS runs at a credit card issuing bank. Each incoming transaction is submitted to the FDS for verification. FDS receives the card details and the value of purchase to verify, whether the transaction is genuine or not. The types of goods that are bought in that transaction are not known to the FDS. It tries to find any anomaly in the transaction based on the spending profile of the cardholder, shipping address, and billing address, etc.

Hardware Requirements

· SYSTEM

: Pentium IV 2.4 GHz

· HARD DISK
 : 40 GB

· FLOPPY DRIVE
: 1.44 MB

· MONITOR

: 15 VGA colour

· MOUSE

: Logitech.

· RAM

: 256 MB
Software Requirements

· Operating system
:- Windows XP Professional

· Front End

: - Asp .Net 2.0.

· Coding Language
:- Visual C# .Net
· Back-End

: - Sql Server 2005.
 Modules

1. New card

2. Login

3. Security information

4. Transaction

5. Verification
 Module Description

New card

In this module, the customer gives there information to enroll a new card. The information is all about there contact details. They can create there own login and password for there future use of the card.

Login

In Login Form module presents site visitors with a form with username and password fields. If the user enters a valid username/password combination they will be granted access to additional resources on website. Which additional resources they will have access to can be configured separately.

Security information

In Security information module it will get the information detail and its store’s in database. If the card lost then the Security information module form arise. It has a set of question where the user has to answer the correctly to move to the transaction section. It contain informational privacy and informational self-determination are addressed squarely by the invention affording persons and entities a trusted means to user, secure, search, process, and exchange personal and/or confidential information.

Transaction

The method and apparatus for pre-authorizing transactions includes providing a communications device to a vendor and a credit card owner. The credit card owner initiates a credit card transaction by communicating to a credit card number, and storing therein, a distinguishing piece of information that characterizes a specific transaction to be made by an authorized user of the credit card at a later time. The information is accepted as "network data" in the data base only if a correct personal identification code (PIC) is used with the communication. The "network data" will serve to later authorize that specific transaction. The credit card owner or other authorized user can then only make that specific transaction with the credit card. Because the transaction is pre-authorized, the vendor does not need to see or transmit a PIC.

Verification

Verification information is provided with respect to a transaction between an initiating party and a verification-seeking party, the verification information being given by a third, verifying party, based on confidential information in the possession of the initiating party. In verification the process will seeks card number and if the card number is correct the relevant process will be executed. If the number is wrong, mail will be sent to the user saying the card no has been block and he can’t do the further transaction.

 Module I/O
New card

Given Input- Request from the user for the card.
Expected Output-Assigning an account to requested user.
Login

Given Input- Give username and password of particular user.
Expected Output- Login to user’s account.
Security information

Given Input- Give the security information by answering security questions.
Expected Output-Updation of account with the security details.
Transaction

Given Input- Give the account details and performs transaction.
Expected Output- Updation of database.
Verification

Given Input- Checks with user’s stored details like security answers or hidden details.
Expected Output-If the verification is success, user can perform transaction, else blocks the card.

Literature review

 Ghosh and Reilly have proposed credit card fraud detection with a neural network. They have built a detection system, which is trained on a large sample of labeled credit card account transactions. These transactions contain example fraud cases due to lost cards, stolen cards, application fraud, counterfeit fraud, mail-order fraud, and nonreceived issue (NRI) fraud. Recently, Syeda et al. have used parallel granular neural networks (PGNNs) for improving the speed of data mining and knowledge discovery process in credit card fraud detection. A complete system has been implemented for this purpose. Stolfo et al. suggest a credit card fraud detection system (FDS) using metalearning techniques to learn models of fraudulent credit card transactions. Metalearning is a general strategy that provides a means for combining and integrating a number of separately built classifiers or models. A metaclassifier is thus trained on the correlation of the predictions of the base classifiers. The same group has also worked on a cost-based model for fraud and intrusion detection . They use Java agents for Metalearning (JAM), which is a distributed data mining system for credit card fraud detection. A number of important performance metrics like True Positive—False Positive (TP-FP) spread and accuracy have been defined by them. Aleskerov et al. present CARDWATCH, a database mining system used for credit card fraud detection. The system, based on a neural learning module, provides an interface to a variety of commercial databases. Kim and Kim have identified skewed distribution of data and mix of legitimate and fraudulent transactions as the two main reasons for the cmplexity of credit card fraud detection . Based on this observation, they use fraud density of real transaction data as a confidence value and generate the weighted fraud score to reduce the number of misdetections. Fan et al. suggest the application of distributed data mining in credit card fraud detection. Brause et al. have developed an approach that involves advanced data mining techniques and neural network algorithms to obtain high fraud coverage. Chiu and Tsai have proposed Web services and data mining techniques to establish a collaborative scheme for fraud detection in the banking industry. With this scheme, participating banks share knowledge about the fraud patterns in a heterogeneous and distributed environment. To establish a smooth channel of data exchange, Web services techniques such as XML, SOAP, and WSDL are used. Phua et al. have done an extensive survey of existing data-mining-based FDSs and published a comprehensive report. Prodromidis and Stolfo use an agent-based approach with distributed learning for detecting frauds in credit card transactions. It is based on artificial intelligence and combines inductive learning algorithms and metalearning methods for achieving higher accuracy. Phua .suggest the use of metaclassifier similar to infrauddetectionproblems.TheyconsidernaiveBayesian, C4.5, and Back Propagation neural networks as the base classifiers. A metaclassifier is used to determine which classifier should be considered based on skewness of data. Although they do not directly use credit card fraud detection as the target application, their approach is quite generic. Vatsa et al. have recently proposed a game-theoretic approach to credit card fraud detection. They model the interaction between anattackerandanFDSas a ltistagegamebetween two players, each trying to maximize his payoff. The problem with most of the abovementioned approaches is that they require labeled data for both genuine,

as well as fraudulent transactions, to train the classifiers. Getting real-world fraud data is one of the biggest problems associated with credit card fraud detection. Also, these approaches cannot detect new kinds of frauds for which labeled data is not available. In contrast, we present a Hidden Markov Model (HMM)-based credit card FDS, which does

not require fraud signatures and yet is able to detect frauds by considering a cardholder’s spending habit.Wemodel a credit card transaction processing sequence by the stochastic

process of an HMM. The details of items purchased in individual transactions are usually not known to an FDS running at the bank that issues credit cards to the cardholders. This can be represented as the underlying finite Markov chain, which is not observable. The transactions can only be observed through the other stochastic process that produces the sequence of the amount of money spent in each transaction. Hence, we feel that HMM is an ideal choice for addressing this problem. Another important advantage of the HMM-based approach is a drastic reduction in the number of False Positives (FPs)—transactions identified as malicious by an FDS although they are actually genuine. Since the number of genuine transactions is a few orders of magnitude higher than the number of malicious transactions, an FDS should be designed in such a way that the number of FPs is as low as possible.

 Techniques and Algorithm Used

 HMM Model
To map the credit card transaction processing operation in terms of an HMM, we start by first deciding the observation symbols in our model.Wequantize the purchase values x into M price ranges V1; V2; . . . VM, forming the observation symbols at the issuing bank. The actual price range for each symbol is configurable based on the spending habit of individual cardholders. These price ranges can be determined dynamically by applying a clustering algorithm on the values of each cardholder’s transactions, as shown in Section 5.2. We use Vk, k ¼ 1; 2; . . .M, to represent both the observation symbol, as well as the corresponding price range.
 In this work, we consider only three price ranges, namely, low (l), medium (m), and high(h). Our set of observation symbols is, therefore, V ¼ fl; m; hg making M ¼ 3. For example, let l=(0, $100], m =($100,$500], and h=($500, credit card limit]. If a cardholder performs a transaction of $190, then the corresponding observation symbol is m.
A credit cardholder makes different kinds of purchases of different amounts over a period of time. One possibility is to consider the sequence of transaction amounts and look for deviations in them. However, the sequence of types of purchase is more stable compared to the sequence of transaction amounts. The reason is that, a cardholder makes purchases depending on his need for procuring different types of items over a period of time. This, in turn, generates a sequence of transaction amounts. Each individual transaction amount usually depends on the corresponding type of purchase. Hence, we consider the transition in the type of purchase as state transition in our model. The type of each purchase is linked to the line of business of the corresponding merchant. This information about the merchant’s line of business is not known to the issuing bank running the FDS. Thus, the type of purchase of the cardholder is hidden from the FDS. The set of all possible types of purchase and, equivalently, the set of all possible lines of business of merchants forms the set of hidden states of the HMM. It should be noted at this stage that the line of business of the merchant is known to the acquiring bank, since this information is furnished at the time of registration of a merchant. Also, some merchants may be dealing in various types of commodities (For example, Wal-Mart, K-Mart, or Target sells tens of thousands of different items). Such types of line of business are considered as Miscellaneous, and we do not attempt to determine the actual types of items purchased

in these transactions. Any assumption about availability of this information with the issuing bank and, hence, with the FDS, is not practical and, therefore, would not have been valid.
 Advantages

Highly Security from unauthorized use of credit card

1. Avoids fraud usage of card through online transactions.

2. Detect if card used by others if card lost.
 Applications

All the applications using credit cards.
Screen Shot:

New Card:

[image: image1.png]
Login

[image: image2.png]
TRANSACTION:

[image: image3.png]
PRODUCT INFO:

[image: image4.png]
USER PROFILE:

[image: image5.png]
SECURITY:[image: image6.png]
LANGUAGE DESCRIPTION

Active Server Pages.NET

ASP.NET is a programming framework built on the common language runtime that can be used on a server to build powerful Web applications. ASP.NET offers several important advantages over previous Web development models:

· Enhanced Performance. ASP.NET is compiled common language runtime code running on the server. Unlike its interpreted predecessors, ASP.NET can take advantage of early binding, just-in-time compilation, native optimization, and caching services right out of the box. This amounts to dramatically better performance before you ever write a line of code.

· World-Class Tool Support. The ASP.NET framework is complemented by a rich toolbox and designer in the Visual Studio integrated development environment. WYSIWYG editing, drag-and-drop server controls, and automatic deployment are just a few of the features this powerful tool provides.

· Power and Flexibility. Because ASP.NET is based on the common language runtime, the power and flexibility of that entire platform is available to Web application developers. The .NET Framework class library, Messaging, and Data Access solutions are all seamlessly accessible from the Web. ASP.NET is also language-independent, so you can choose the language that best applies to your application or partition your application across many languages. Further, common language runtime interoperability guarantees that your existing investment in COM-based development is preserved when migrating to ASP.NET.

· Simplicity. ASP.NET makes it easy to perform common tasks, from simple form submission and client authentication to deployment and site configuration. For example, the ASP.NET page framework allows you to build user interfaces that cleanly separate application logic from presentation code and to handle events in a simple, Visual Basic - like forms processing model. Additionally, the common language runtime simplifies development, with managed code services such as automatic reference counting and garbage collection.

· Manageability. ASP.NET employs a text-based, hierarchical configuration system, which simplifies applying settings to your server environment and Web applications. Because configuration information is stored as plain text, new settings may be applied without the aid of local administration tools. This "zero local administration" philosophy extends to deploying ASP.NET Framework applications as well. An ASP.NET Framework application is deployed to a server simply by copying the necessary files to the server. No server restart is required, even to deploy or replace running compiled code.

· Scalability and Availability. ASP.NET has been designed with scalability in mind, with features specifically tailored to improve performance in clustered and multiprocessor environments. Further, processes are closely monitored and managed by the ASP.NET runtime, so that if one misbehaves (leaks, deadlocks), a new process can be created in its place, which helps keep your application constantly available to handle requests.

· Customizability and Extensibility. ASP.NET delivers a well-factored architecture that allows developers to "plug-in" their code at the appropriate level. In fact, it is possible to extend or replace any subcomponent of the ASP.NET runtime with your own custom-written component. Implementing custom authentication or state services has never been easier.

· Security. With built in Windows authentication and per-application configuration, you can be assured that your applications are secure.

Language Support

The Microsoft .NET Platform currently offers built-in support for three languages: C#, Visual Basic, and JScript.

What is ASP.NET Web Forms?

The ASP.NET Web Forms page framework is a scalable common language runtime programming model that can be used on the server to dynamically generate Web pages.

Intended as a logical evolution of ASP (ASP.NET provides syntax compatibility with existing pages), the ASP.NET Web Forms framework has been specifically designed to address a number of key deficiencies in the previous model. In particular, it provides:

· The ability to create and use reusable UI controls that can encapsulate common functionality and thus reduce the amount of code that a page developer has to write.

· The ability for developers to cleanly structure their page logic in an orderly fashion (not "spaghetti code").

· The ability for development tools to provide strong WYSIWYG design support for pages (existing ASP code is opaque to tools).

ASP.NET Web Forms pages are text files with an .aspx file name extension. They can be deployed throughout an IIS virtual root directory tree. When a browser client requests .aspx resources, the ASP.NET runtime parses and compiles the target file into a .NET Framework class. This class can then be used to dynamically process incoming requests. (Note that the .aspx file is compiled only the first time it is accessed; the compiled type instance is then reused across multiple requests).

An ASP.NET page can be created simply by taking an existing HTML file and changing its file name extension to .aspx (no modification of code is required). For example, the following sample demonstrates a simple HTML page that collects a user's name and category preference and then performs a form postback to the originating page when a button is clicked:

ASP.NET provides syntax compatibility with existing ASP pages. This includes support for <% %> code render blocks that can be intermixed with HTML content within an .aspx file. These code blocks execute in a top-down manner at page render time.

Code-Behind Web Forms

ASP.NET supports two methods of authoring dynamic pages. The first is the method shown in the preceding samples, where the page code is physically declared within the originating .aspx file. An alternative approach--known as the code-behind method--enables the page code to be more cleanly separated from the HTML content into an entirely separate file.

Introduction to ASP.NET Server Controls

In addition to (or instead of) using <% %> code blocks to program dynamic content, ASP.NET page developers can use ASP.NET server controls to program Web pages. Server controls are declared within an .aspx file using custom tags or intrinsic HTML tags that contain a runat="server" attribute value. Intrinsic HTML tags are handled by one of the controls in the System.Web.UI.HtmlControls namespace. Any tag that doesn't explicitly map to one of the controls is assigned the type of System.Web.UI.HtmlControls.HtmlGenericControl.

Server controls automatically maintain any client-entered values between round trips to the server. This control state is not stored on the server (it is instead stored within an <input type="hidden"> form field that is round-tripped between requests). Note also that no client-side script is required.

In addition to supporting standard HTML input controls, ASP.NET enables developers to utilize richer custom controls on their pages. For example, the following sample demonstrates how the <asp:adrotator> control can be used to dynamically display rotating ads on a page.

1. ASP.NET Web Forms provide an easy and powerful way to build dynamic Web UI.

2. ASP.NET Web Forms pages can target any browser client (there are no script library or cookie requirements).

3. ASP.NET Web Forms pages provide syntax compatibility with existing ASP pages.

4. ASP.NET server controls provide an easy way to encapsulate common functionality.

5. ASP.NET ships with 45 built-in server controls. Developers can also use controls built by third parties.

6. ASP.NET server controls can automatically project both uplevel and downlevel HTML.

7. ASP.NET templates provide an easy way to customize the look and feel of list server controls.

8. ASP.NET validation controls provide an easy way to do declarative client or server data validation.

Crystal Reports

Crystal Reports for Visual Basic .NET is the standard reporting tool for Visual Basic.NET; it brings the ability to create interactive, presentation-quality content — which has been the strength of Crystal Reports for years — to the .NET platform.

With Crystal Reports for Visual Basic.NET, you can host reports on Web and Windows platforms and publish Crystal reports as Report Web Services on a Web server.

To present data to users, you could write code to loop through recordsets and print them inside your Windows or Web application. However, any work beyond basic formatting can be complicated: consolidations, multiple level totals, charting, and conditional formatting are difficult to program.

With Crystal Reports for Visual Studio .NET, you can quickly create complex and professional-looking reports. Instead of coding, you use the Crystal Report Designer interface to create and format the report you need. The powerful Report Engine processes the formatting, grouping, and charting criteria you specify.

Report Experts
Using the Crystal Report Experts, you can quickly create reports based on your development needs:

· Choose from report layout options ranging from standard reports to form letters, or build your own report from scratch.

· Display charts that users can drill down on to view detailed report data.

· Calculate summaries, subtotals, and percentages on grouped data.

· Show TopN or BottomN results of data.

· Conditionally format text and rotate text objects.

ACTIVE X DATA OBJECTS.NET

ADO.NET Overview

ADO.NET is an evolution of the ADO data access model that directly addresses user requirements for developing scalable applications. It was designed specifically for the web with scalability, statelessness, and XML in mind.

ADO.NET uses some ADO objects, such as the Connection and Command objects, and also introduces new objects. Key new ADO.NET objects include the DataSet, DataReader, and DataAdapter.

The important distinction between this evolved stage of ADO.NET and previous data architectures is that there exists an object -- the DataSet -- that is separate and distinct from any data stores. Because of that, the DataSet functions as a standalone entity. You can think of the DataSet as an always disconnected recordset that knows nothing about the source or destination of the data it contains. Inside a DataSet, much like in a database, there are tables, columns, relationships, constraints, views, and so forth.

A DataAdapter is the object that connects to the database to fill the DataSet. Then, it connects back to the database to update the data there, based on operations performed while the DataSet held the data. In the past, data processing has been primarily connection-based. Now, in an effort to make multi-tiered apps more efficient, data processing is turning to a message-based approach that revolves around chunks of information. At the center of this approach is the DataAdapter, which provides a bridge to retrieve and save data between a DataSet and its source data store. It accomplishes this by means of requests to the appropriate SQL commands made against the data store.

The XML-based DataSet object provides a consistent programming model that works with all models of data storage: flat, relational, and hierarchical. It does this by having no 'knowledge' of the source of its data, and by representing the data that it holds as collections and data types. No matter what the source of the data within the DataSet is, it is manipulated through the same set of standard APIs exposed through the DataSet and its subordinate objects.

While the DataSet has no knowledge of the source of its data, the managed provider has detailed and specific information. The role of the managed provider is to connect, fill, and persist the DataSet to and from data stores. The OLE DB and SQL Server .NET Data Providers (System.Data.OleDb and System.Data.SqlClient) that are part of the .Net Framework provide four basic objects: the Command, Connection, DataReader and DataAdapter. In the remaining sections of this document, we'll walk through each part of the DataSet and the OLE DB/SQL Server .NET Data Providers explaining what they are, and how to program against them.

The following sections will introduce you to some objects that have evolved, and some that are new. These objects are:

· Connections. For connection to and managing transactions against a database.

· Commands. For issuing SQL commands against a database.

· DataReaders. For reading a forward-only stream of data records from a SQL Server data source.

· DataSets. For storing, remoting and programming against flat data, XML data and relational data.

· DataAdapters. For pushing data into a DataSet, and reconciling data against a database.

 When dealing with connections to a database, there are two different options: SQL Server .NET Data Provider (System.Data.SqlClient) and OLE DB .NET Data Provider (System.Data.OleDb). In these samples we will use the SQL Server .NET Data Provider. These are written to talk directly to Microsoft SQL Server. The OLE DB .NET Data Provider is used to talk to any OLE DB provider (as it uses OLE DB underneath).

Connections

Connections are used to 'talk to' databases, and are respresented by provider-specific classes such as SQLConnection. Commands travel over connections and resultsets are returned in the form of streams which can be read by a DataReader object, or pushed into a DataSet object.

Commands

Commands contain the information that is submitted to a database, and are represented by provider-specific classes such as SQLCommand. A command can be a stored procedure call, an UPDATE statement, or a statement that returns results. You can also use input and output parameters, and return values as part of your command syntax. The example below shows how to issue an INSERT statement against the Northwind database.

DataReaders

The DataReader object is somewhat synonymous with a read-only/forward-only cursor over data. The DataReader API supports flat as well as hierarchical data. A DataReader object is returned after executing a command against a database. The format of the returned DataReader object is different from a recordset. For example, you might use the DataReader to show the results of a search list in a web page.

DataSets and DataAdapters

DataSets
The DataSet object is similar to the ADO Recordset object, but more powerful, and with one other important distinction: the DataSet is always disconnected. The DataSet object represents a cache of data, with database-like structures such as tables, columns, relationships, and constraints. However, though a DataSet can and does behave much like a database, it is important to remember that DataSet objects do not interact directly with databases, or other source data. This allows the developer to work with a programming model that is always consistent, regardless of where the source data resides. Data coming from a database, an XML file, from code, or user input can all be placed into DataSet objects. Then, as changes are made to the DataSet they can be tracked and verified before updating the source data. The GetChanges method of the DataSet object actually creates a second DatSet that contains only the changes to the data. This DataSet is then used by a DataAdapter (or other objects) to update the original data source.

The DataSet has many XML characteristics, including the ability to produce and consume XML data and XML schemas. XML schemas can be used to describe schemas interchanged via WebServices. In fact, a DataSet with a schema can actually be compiled for type safety and statement completion.

DataAdapters (OLEDB/SQL)

The DataAdapter object works as a bridge between the DataSet and the source data. Using the provider-specific SqlDataAdapter (along with its associated SqlCommand and SqlConnection) can increase overall performance when working with a Microsoft SQL Server databases. For other OLE DB-supported databases, you would use the OleDbDataAdapter object and its associated OleDbCommand and OleDbConnection objects.

The DataAdapter object uses commands to update the data source after changes have been made to the DataSet. Using the Fill method of the DataAdapter calls the SELECT command; using the Update method calls the INSERT, UPDATE or DELETE command for each changed row. You can explicitly set these commands in order to control the statements used at runtime to resolve changes, including the use of stored procedures. For ad-hoc scenarios, a CommandBuilder object can generate these at run-time based upon a select statement. However, this run-time generation requires an extra round-trip to the server in order to gather required metadata, so explicitly providing the INSERT, UPDATE, and DELETE commands at design time will result in better run-time performance.

1. ADO.NET is the next evolution of ADO for the .Net Framework.

2. ADO.NET was created with n-Tier, statelessness and XML in the forefront. Two new objects, the DataSet and DataAdapter, are provided for these scenarios.

3. ADO.NET can be used to get data from a stream, or to store data in a cache for updates.

4. There is a lot more information about ADO.NET in the documentation.

5. Remember, you can execute a command directly against the database in order to do inserts, updates, and deletes. You don't need to first put data into a DataSet in order to insert, update, or delete it.

6. Also, you can use a DataSet to bind to the data, move through the data, and navigate data relationships

TESTING AND IMPLEMENTATION

TESTING:

· Testing is a process of executing a program with a intent of finding an error.

· Testing presents an interesting anomaly for the software engineering.

· The goal of the software testing is to convince system developer and customers that the software is good enough for operational use. Testing is a process intended to build confidence in the software.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Testing is a set of activities that can be planned in advance and conducted

 systematically.

· Software testing is often referred to as verification & validation.

 TYPE OF TESTING:

 The various types of testing are

· White Box Testing

· Black Box Testing

· Alpha Testing

· Beta Testing

· Win Runner And Load Runner

· Unit Testing

· System Testing

 WHITE BOX TESTING:
· It is also called as glass-box testing. It is a test case design method that uses the control structure of the procedural design to derive test cases.

· Using white box testing methods, the software engineer can derive test cases that

1. Guarantee that all independent parts within a module have been exercised at least once,

2. Exercise all logical decisions on their true and false sides.

 BLACK BOX TESTING:

· Its also called as behavioral testing . It focuses on the

functional requirements of the software.

· It is complementary approach that is likely to uncover a .

different class of errors than white box errors.

· A black box testing enables a software engineering to derive a
sets of input conditions that will fully exercise all functional
requirements for a program.

 ALPHA TESTING:

Alpha testing is the software prototype stage when the software is first able to run. It will not have all the intended functionality, but it will have core functions and will be able to accept inputs and generate outputs. An alpha test usually takes place in the developer's offices on a separate system.

 BETA TESTING:

The beta test is a “ live “ application of the software in an environment that cannot be controlled by the developer. The beta test is conducted at one or more customer sites by the end user of the software.

WIN RUNNER & LOAD RUNNER:

We use Win Runner as a load testing tool operating at the GUI layer as it allows us to record and playback user actions from a vast variety of user applications as if a real user had manually executed those actions.

 LOAD RUNNER TESTING:

With Load Runner , you can Obtain an accurate picture of end-to-end system performance. Verify that new or upgraded applications meet specified performance requirements.

TESTING USED IN THIS PROJECT:

SYSTEM TESTING :

 Testing of the debugging programs is one of the most critical aspects of the computer programming triggers, without programs that works, the system would never produce the output for which it was designed. Testing is best performed when user development are asked to assist in identifying all errors and bugs. The sample data are used for testing . It is not quantity but quality of the data used the matters of testing. Testing is aimed at ensuring that the system was accurately an efficiently before live operation commands.

VALIDATION TESTING:
 software is completely assembled as a package, interfacing error have been uncovered and corrected and a final series of software tests. That is, validation tests begin, validation testing can be defined many ways but a simple definition is that validation succeeds when the software functions in manner that can be reasonably expected be the customer. Here all the validations given to the design is completely checked.
Table design:

Database Name: Tab
LOGIN:

	Column Name
	Data Type

	Uname
	Varchar(25)

	pwd
	Varchar(25)

	roll
	Varchar(5)

	uid
	int

NEW CARD:

	Column Name
	Data Type

	CardNo

	varchar(16)

	CreditLimit

	int

	holderName
	varchar(50)

	HolderAddress
	varchar(100)

	BankName

	varchar(50)

	ACNO

	varchar(25)

NEW CARD INFORMATION:

	Column Name
	Data Type

	FirstName
	varchar(25)

	LastName

	varchar(25)

	Uid

	Int

	UName

	varchar(25)

	pwd

	varchar(25)

	Email

	varchar(25)

	DOB

	datetime

	Gender

	varchar(6)

	address1

	varchar(50)

	address2
	varchar(50)

	city
	varchar(25)

	state
	varchar(25)

	country
	varchar(25)

	pincode
	int

	phone
	int

	cardNo

	varchar(16)

SECURITY INFORMATION:

	Column Name
	Data Type

	uid

	int

	SecQues1

	varchar(50)

	SecAnswer1
	varchar(50)

	SecQues2
	varchar(50)

	SecAnswer2
	varchar(50)

	SecQues3
	varchar(50)

	SecAnswer3
	varchar(50)

	SecQues4
	varchar(50)

	SecAnswer4
	varchar(50)

	SecQues5
	varchar(50)

	SecAnswer5
	varchar(50)

	Email
	varchar(25)

	DOB
	datetime

	gender
	varchar(6)

ACCOUNT INFORMATION:

	Column Name
	Data Type

	CardNo
	varchar(16)

	HolderName
	varchar(50)

	HolderAddress
	varchar(100)

	AcNo
	varchar(25)

	BankName
	varchar(50)

	PlaceofTransaction
	varchar(50)

	PlaceId
	int

	Amount
	int

	DateTime
	datetime

PRODUCT LIST:

	Column Name
	Data Type

	ProId
	int

	pName
	varchar(100)

	pRate
	float

	pQty

	int

	pTotal
	float

PRODUCT INFORMATION:

	Column Name
	Data Type

	pName
	varchar(100)

	pRate
	float

