
 Citizen Card System

Chapter -1

Abstract
Citizen card system ‘provides information about the citizen in any country. A citizen has unique id to identify to find out the personal information in each and every department or service whenever a citizen goes. If any citizen wants to utilize the service or utilities by government or private organizations, he has to go to each and every department with different id for the particular department.
 In citizen card system the citizen perform the all transactions basing on the id.
He/she perform like Banking, electricity, Banking Insurance , Tax, provident fund ,Telephone, Gas, movies, Muncipality ,credit rating etc. Credit rating tells the behavior of person whether citizen character is good or bad.

Features:
· User-friendly interface
· Effective Student Search

Functionalities:

1. User registration module.
2. personal information module.
3. Credit rating module.
4. Insurance module.
5. Taxation module.
6. Gas module.
7. RTO module.
8. Voting.
9. Banking.
10. Telephone.
11. Electricity.
12. passport

INTRODUCTION

INTRODUCTION

1.1 Purpose
‘citizen card system ‘ provides information about the citizen in any country. A citizen has unique id to identify to find out the personal information in each and every department or service when ever a citizen goes. If any citizen wants to utilize the service or utilities by government or private organizations, he has to go to each and every department with different id for the particular department.

1.2 Scope
 In citizen card system the citizen perform the all transactions basing on the id.
He/she perform like Banking, electricity, Banking Insurance , Tax, provident fund ,Telephone, Gas, movies, Muncipality ,credit rating etc. Credit rating tells the behavior of person whether citizen character is good or bad.

1.3 PROJECT OVERVIEW
Automates information related to all branches of hotels.Avoid mismanagement(verify users profiles, Registration of all employees)

1.4 PROJECT DESCRIPTION

This project is useful for credit rating,RTO,Gas registration,voting,Banking,Electricity systems.so citizen card is unique identification of a person.

If any of the above-specified functions fail the corresponding error message will be displayed which makes the project friendlier to the user. The application software is developed with oracle database and GUI based front- end tool J2EE. The information about the users is stored in the database in the related tables. All designing of pages are done with JSP’s and Java. Using Java Technologies makes our project more robust and importantly portability over different systems. Java Server Pages have both HTML and Java Code Technologies included and can use both of it.
Chapter -2

System Analysis

PROBLEM DEFINITION
2.1 Existing System
· It can manual
· It is time consuming process
· common user cant interact
Mismanagement
2.2 Proposed System
The development of new system containing the following activities, which try to automate entire process keeping in the view of database integration approach.

· Automates information related to all branches of hotels.
· Avoid mismanagement(verify users profiles, Registration of all employees)
· we can maintain all types of users details properly.
· Rich user interface.
· All transactions are performed very well

.

2.3 Operating Environment:

Software Requirements are Windows as Operating System. HTML, Cascading Style Sheets and JavaScript as Front-End designing tools. MySql is used as Database Server. Tomcat 6.0 server is the Web server. Java, JSP and Servlets are used as server side languages.
Hardware Requirements are P2 above processor, 128MB+ of main memory (RAM) and 100MB hard disk and data base memory.

[bookmark: _Toc200252953][bookmark: _Toc439994678]2.4 Design and Implementation Constraints
[bookmark: _Toc200252954][bookmark: _Toc439994679]This project will be developed using the technologies like Java, JSP, Servlets, HTML, CSS, JavaScript, SQL and Web for all which I need to fetch knowledge on all of them in order to code for the project. Also I’ll be learning clearly about Software Development Life Cycle.

2.5 User Documentation
This document also includes a user manual which assists the new user to go about the project, he can even get the online help which caters the needs of a new user and makes this project more user friendly, a step by step approach online makes it easy to use software for a naïve user.
[bookmark: _Toc200252956][bookmark: _Toc439994687][bookmark: _Toc439994682]
2.6Module Description
Credit Rating:
This module gives the information about the character of citizen. It determines whether the citizen behavior basing on all the things its good or bad. It provides the information of the citizen.
Insurance:
This module provides the amount insured and regarding its installments, Basing on citizen id the insurance details can be displayed. If the citizen wants to make a policy in the insurance then citizen can make it by his citizen id,
Taxation:
This module provides information regarding the tax paid and tax to be paid.If Adminstator wants to know particular citizen details whether he/she paid the tax or not then the administrator can check it based on id.
Gas:
This module provides information regardingthe deliveries of the gas.The information provides the amount paid by the customer to particular gas no and gas type.
RTO:
This module provides information regarding licenses for vehicles.it gives the information like vehicle name, vehicle registration number, engine number ,service owner ,owner address etc

Voting:
This module provides the online voting facility.Citizen can choose particular ara to voting .Citizen can vote according to his/her choice
Banking:
This module allows all banking transactions .Citizen can make any bank transactions basing on citizen id. Banks like SBI, ICICI, Andhra bank etc,All the banking transactions can be done with citizen id.
Telephone:
This moduleprovides information about the telephone bill payments.It provides the information about STD calls/ISD calls and their charge of particular citizen id.
Electricity:
This module provides information about electricity bill payments and all. It provides information like number of units and previous no of units and the charge for that bill basng on id of particular citizen.
Passport:
This module provides information about particular citizen.Details like citizen’s personel information and date issued,valid upto etc
Users of System:
A. Adminstrator
B.Customers
c.Normal users

2.8 Software Requirements:

Operating system : Windows XP/2003 or Linux
User interface : HTML,CSS
Client side scripting : Javascript
Programming languages : java
Web Aplications : JDBC ,servlets, jsp
IDE/workbench : My Eclipse
Database : Oracle 10G
Server Deployment : Tomcat6.0
Hardware Requirements:
Processor :Pentium iv
HardDisk :40GB
RAM :512MB or more

Chapter – 3

FEASIBILITY STUDY

3. FEASIBILITY STUDY:
	The next step in analysis is to verify the feasibility of the proposed system. “All projects are feasible given unlimited resources and infinite time“. But in reality both resources and time are scarce. Project should confirm to time bounce and should be optimal in there consumption of resources. This place a constant is approval of any project.

Feasibility has applied to Certificate Authenticator pertains to the following areas:

· Technical feasibility
· Operational feasibility
· Economical feasibility

3.1 TECHNICAL FEASIBILITY:

To determine whether the proposed system is technically feasible, we should take into consideration the technical issues involved behind the system.

 Certificate Authenticator uses the web technologies, which is rampantly employed these days worldwide. The world without the web is incomprehensible today. That goes to proposed system is technically feasible.
3.2 OPERATIONAL FEASIBILITY:

		To determine the operational feasibility of the system we should take into consideration the awareness level of the users. This system is operational feasible since the users are familiar with the technologies and hence there is no need to gear up the personnel to use system. Also the system is very friendly and to use.

3.3. ECONOMIC FEASIBILITY

To decide whether a project is economically feasible, we have to consider various factors as:
· Cost benefit analysis
· Long-term returns
· Maintenance costs
	
	The proposed 	Citizen card system is computer based. It requires average computing capabilities and access to internet, which are very basic requirements hence it doesn’t incur additional economic overheads, which renders the system economically feasible.

Chapter – 4					SYSTEM DESIGN
SYSTEM DESIGN
	System design is transition from a user oriented document to programmers or data base personnel. The design is a solution, how to approach to the creation of a new system. This is composed of several steps. It provides the understanding and procedural details necessary for implementing the system recommended in the feasibility study. Designing goes through logical and physical stages of development, logical design reviews the present physical system, prepare input and output specification, details of implementation plan and prepare a logical design walkthrough.
 The database tables are designed by analyzing functions involved in the system and format of the fields is also designed. The fields in the database tables should define their role in the system. The unnecessary fields should be avoided because it affects the storage areas of the system. Then in the input and output screen design, the design should be made user friendly. The menu should be precise and compact.
SOFTWARE DESIGN
In designing the software following principles are followed:
1. Modularity and partitioning: software is designed such that, each system should consists of hierarchy of modules and serve to partition into separate function.
2. Coupling: modules should have little dependence on other modules of a system.
3. Cohesion: modules should carry out in a single processing function.
4. Shared use: avoid duplication by allowing a single module is called by other that need the function it provides

 4.1 DATA FLOW DIAGRAMS

Citizen card system Dataflow Diagram
Context level (0 level DFD)
 (
Data Output Stage
) (
Data Input Stage
)
 (
Data Storage
) (
Admin
)
 (
Admin
)
 (
Customer
)
 (
UI Screens
) (
Citizen
) (
Citizen
)

 (
Citizen Card System
)

Login DFD:

Admin Functionalities
1st level

 (
Dept db
) (
Citizen db
) (
Login db
)

 (
Approve citizen
Registration
1.1.3
)
 (
View Requests
1.1.5
) (
Open Form
1.1.1
) (
Insert dept details
1.1.4
) (
Enter Login Details
1.1.2
)

 (
Assign citizen card
1.1.6
) (
Validates data
)

 (
Citizen db
)

Admin Functionalities
2nd level
Approving Citizen

[image:]

Departments DFD

 (
Insert dept details
1.3.1
)
 (
Enter Dept Name
1.3.3
) (
Enter Dept Id
1.3.2
)
 (
Table_dept
)

 (
Validates data
)

Citizen functionalities
1st level
 (
Image db
) (
Userinfo db
) (
Citizen card db
)

 (
Apply for citizen card
2.1.5
) (
Upload photo
2.1.4
) (
Personal details
2.1.3
) (
Login db
)
 (
yes
)
 (
Open form
2.1.0
) (
Enter Login details
2.1.1
)
 (
Validate data
)
 (
No
)
 (
New User Reg
2.1.2
)
 (
Validate data
)
 (
View status
2.1.6
)
 (
View citizen card
2.1.8
) (
View dept
2.1.7
)

 (
Citizencard db
) (
Dept db
)

2nd level
Citizen registration

 (
validates
)
 (
Enter ftname
2.2.3
) (
Enter dob
2.2.4
) (
Enter last name
2.2.2
) (
Enter first name
2.2.1
) (
New citizen registration
2.2.0
)

 (
Enter city, state
2.2.7
) (
Enter street
2.2.6
) (
Enter rno, bgroup
2.2.5
)

 (
validates
) (
Userinfo db
)

Citizen card system UML
Class Diagram
[image:]
Use case Diagrams
Admin Functionalities
[image:]
Citizen
[image:]
Use case Diagram foe Department
[image:]
Approving citizens

[image:]

Sequence Diagrams
Admin
[image:]

Department
[image:]
Citizen
[image:]

Approving citizens
[image:]

Collaboration Diagrams
Admin
[image:]
Departments
[image:]
Citizen
 (
upload
Photo
Citizen
login
view
Profile
update
Profile
addPassport
Details
addvotercar
dDetails
applyforciti
zencard
cardstat
us
viewdepar
tment
view
Citizencard
1:
2:
3:
4:
5:
6:
7:
8:
9:

11:
10:
)
Approving citizen
[image:]
Deployment Diagram
Admin
[image:]
Citizen
[image:]

Activity Diagram
Admin

 (
Home Page
)

 (
Approve citizens
) (
View requests
) (
View dept
) (
Insert dept
) (
remarks
) (
Assign citizen card
) (
View citizens
) (
invalid
) (
Administrator
) (
validates
) (
Login
)

Citizen
 (
Home Page
)

 (
Upload photo
) (
Add passport & voter details
) (
View citizen card
) (
Apply for citizen card
) (
View dept
) (
Card status
) (
View profile
) (
invalid
) (
citizen
) (
validates
) (
Login
)

4.3 DATABASE DESIGN:
create table login(userid varchar2(20),password varchar2(20),type varchar2(20));

create table userinfo(
uname varchar2(20),
fname varchar2(20),
lname varchar2(20),
ftname varchar2(20),
dob varchar2(20),
bgroup varchar2(20),
phno varchar2(20),
panno varchar2(20),
rcardno varchar2(20),
street varchar2(20),
city varchar2(20),
state varchar2(20));

create table citizencard(userid varchar2(20),ccardid varchar2(20),gdate varchar2(20),edate varchar2(20));

create table passport(userid varchar2(20),ppno varchar2(20),pname varchar2(20),
pissued varchar2(20),dissued varchar2(20),dexpired varchar2(20));

create table votercard(userid varchar2(20),vid varchar2(20),vname varchar2(20));

create table request(reqid varchar2(20),reqdesc varchar2(256),rdate varchar2(20));

create table remark(userid varchar2(20),remark varchar2(256),rdate varchar2(20));

create table dept(deptno varchar2(20),dname varchar2(20));

create table dept(deptno varchar2(20),dname varchar2(20));

create table telebill(userid varchar2(20),nocalls varchar2(20),amount varchar2(20),bgdate varchar2(20),ldate varchar2(20),status varchar2(20),pdate varchar2(20));

create table ebill(userid varchar2(20),nounits varchar2(20),amount varchar2(20),bgdate varchar2(20),ldate varchar2(20),status varchar2(20),pdate varchar2(20));

create table image(userid varchar2(20),img varchar2(30));

5.2 INPUT/OUTPUT DESIGN

 Input design: considering the requirements, procedures to collect the necessary input data in most efficiently designed. The input design has been done keeping in view that, the interaction of the user with the system being the most effective and simplified way.

Also the measures are taken for the following

· Controlling the amount of input
· Avoid unauthorized access to the certificate authenticator
· Eliminating extra steps
· Keeping the process simple
· At this stage the input forms and screens are designed.

Output design: All the screens of the system are designed with a view to provide the user with easy operations in simpler and efficient way, minimum key strokes possible. Instructions and important information is emphasized on the screen. Almost every screen is provided with no error and important messages and option selection facilitates. Emphasis is given for speedy processing and speedy transaction between the screens. Each screen assigned to make it as much user friendly as possible by using interactive procedures. So to say user can operate the system without much help from the operating manual.

Chapter -6

IMPLEMENTATION

 OVERVIEW OF SOFTWARE DEVELOPMENT TOOLS
6.1 HTML

Html is a language which is used to create web pages with html marking up a page to indicate its format, telling the web browser where you want a new line to begin or how you want text or images aligned and more are possible.

 We used the following tags in our project.

TABLE:

Tables are so popular with web page authors is that they let you arrange the elements of a web page in such a way that the browser won’t rearrange them web page authors frequently use tables to structure web pages.
 <TR>:
 <TR> is used to create a row in a table encloses <TH> and <TD> elements. <TR> contain many attributes. Some of them are,
· ALIGN: specifies the horizontal alignment of the text in the table row.
· BGCOLOR: Specifies the background color for the row.
· BORDERCOLOR: Sets the external border color for the row.
· VALIGN: Sets the vertical alignment of the data in this row.
<TH>:
 <TH> is used to create table heading.
· ALIGN: Sets the horizontal alignment of the content in the table cell. Sets LEFT, RIGHT, CENTER.
· BACKGROUND: Species the back ground image for the table cell.
· BGCOLOR: Specifies the background color of the table cell
· VALIGN: Sets the vertical alignment of the data. Sets to TOP, MIDDLE, BOTTOM or BASELINE.
· WIDTH: Specifies the width of the cell. Set to a pixel width or a percentage of the display area.
<TD>:
 <TD> is used to create table data that appears in the cells of a table.
· ALIGN: Species the horizontal alignment of content in the table cell. Sets to LEFT, CENTER, RIGHT.
· BGCOLOR: Specifies the background image for the table cell.
· BGCOLOR: sets the background color of the table cells.
· WIDTH: Species the width of the cell

FRAMES:
 Frames are used for either run off the page or display only small slices of what are supposed to be shown and to configure the frame we can use <FRAMESET>there are two important points to consider when working with <FRAMESET>.
· <FRAMESET> element actually takes the place of the <BODY> element in a document.
· Specifying actual pixel dimensions for frames.

<FRAME> Elements are used to create actual frames.
From the frameset point of view dividing the browser into tow vertical frames means creating two columns using the <FRAMESET> elements COLS attribute.
The syntax for vertical fragmentation is,			
<FRAMESET COLS =”50%, 50%”>
 </FRAMESET>
 Similarly if we replace COLS with ROWS then we get horizontal fragmentation.
 The syntax for horizontal fragmentation is,
 <FRAMESET ROWS=”50%, 50%”>
 </FRAMESET>
FORM:

 The purpose of FORM is to create an HTML form; used to enclose HTML controls, like buttons and text fields.

ATTRIBUTES:

· ACTION: Gives the URL that will handle the form data.

· NAME: Gives the name to the form so you can reference it in code set to an alphanumeric string.

· METHOD: method or protocol is used to sending data to the target action URL. The GET method is the default, it is used to send all form name/value pair information in an URL. Using the POST method, the content of the form are encoded as with the GET method, but are sent in environment variables.

CONTROLS IN HTML

<INPUT TYPE =BUTTON>:
Creates an html button in a form.
ATTRIBUTES:
· NAME: gives the element a name. Set to alphanumeric characters.
· SIZE: sets the size.
· VALUE: sets the caption of the element.

<INPUT TYPE = PASSWORD>:
Creates a password text field, which makes typed input.
ATTRIBUTES:
· NAME: gives the element a name, set to alphanumeric characters.
· VALUE: sets the default content of the element.

<INPUT TYPE=RADIO>:
Creates a radio button in a form.
ATTRIBUTE:
· NAME: Gives the element a name. Set to alphanumeric character.
· VALUE: Sets the default content of the element.

<INPUT TYPE=SUBMIT>:
 Creates a submit button that the user can click to send data in the form back to the web server.
ATTRIBUTES:
NAME: Gives the element a name. Set to alphanumeric characters.
VALUE: Gives this button another label besides the default, Submit Query. Set to alphanumeric characters.
<INPUT TYPE=TEXT>:
 Creates a text field that the user can enter or edit text in.
ATTRIBUTES:
 NAME: Gives the element a name. Set to alphanumeric characters.
 VALUE: Holds the initial text in the text field. Set to alphanumeric characters.

6.2 JAVA SCRIPT

 Java script originally supported by Netscape navigator is the most popular web scripting language today. Java script lets you embedded programs right in your web pages and run these programs using the web browser. You place these programs in a <SCRIPT> element, usually with in the <HEAD> element. If you want the script to write directly to the web page, place it in the <BODY> element.

 JAVASCRIPT METHODS:

 Writeln:
 Document.writeln() is a method, which is used to write some text to the current web page.
onClick:
 Occurs when an element is clicked.
onLoad:
 Occurs when the page loads.
onMouseDown:
 Occurs when a mouse button goes down.
onMouseMove:
 Occurs when the mouse moves.
onUnload:
 Occurs when a page is unloaded.

DRIVER MANAGER AND DRIVER:

 The java.sql package defines an interface called Java.sql.Driver that makes to be implemented by all the JDBC drivers and a class called java.sql.DriverManager that acts as the interface to the database clients for performing tasks like connecting to external resource managers, and setting log streams. When a JDBC client requests the DriverManager to make a connection to an external resource manager, it delegates the task to an approate driver class implemented by the JDBC driver provided either by the resource manager vendor or a third party.

 JAVA.SQL.DRIVERMANAGER:
 The primary task of the class driver manager is to manage the various JDBC drivers register. It also provides methods for:
· Getting connections to the databases.
· Managing JDBC logs.
· Setting login timeout.

 MANAGING DRIVERS:
 JDBC clients specify the JDBC URL when they request a connection. The driver manager can find a driver that matches the request URL from the list of register drivers and delegate the connection request to that driver if it finds a match JDBC URLs normally take the following format:
 <protocol>:<sub-protocol>:<resource>
The protocol is always jdbc and the sub-protocol and resource depend on the type of resource manager. The URL for postgreSQL is in the format:
 Jdbc: postgres ://< host> :< port>/<database>
Here host is the host address on which post master is running and database is the name of the database to which the client wishes to connect.

MANAGING CONNECTION:
DriverManager class is responsible for managing connections to the databases:
 public static Connection getConnection (String url,Properties info) throws SQLException
 This method gets a connection to the database by the specified JDBC URL using the specified username and password. This method throws an instance of SQLException if a database access error occurs.

CONNECTIONS:
The interface java.sql.Connection defines the methods required for a persistent
connection to the database. The JDBC driver vendor implements this interface. A database ‘vendor-neutral’ client never uses the implementation class and will always use only the interface. This interface defines methods for the following tasks:
· Statements, prepared statements, and callable statements are the different types of statements for issuing sql statements to the database by the JDBC clients.
· For getting and setting auto-commit mode.
· Getting meta information about the database.
· Committing and rolling back transactions.

CREATING STATEMENTS:
 The interface java.sql.Connection defines a set of methods for creating database statements. Database statements are used for sending SQL statements to the database:
 Public Statement createStatement () throws SQLException
This method is used for creating instances of the interface java.sql.Statement. This interface can be used for sending SQL statements to the database. The interface java.sql.Statement is normally used for sending SQL statements that don’t take any arguments. This method throws an instance of SQLException if a database access error occur:
 Public Statement createStatement (int resType, int resConcurrency) throws SQLException

JDBC RESULTSETS:
 A JDBC resultset represents a two dimentional array of data produced as a result of executing SQL SELECT statements against databases using JDBC statements. JDBC resultsets are represented by the interface java.sql.ResultSet. The JDBC vendor provider provides the implementation class for this interface.

SCROLLING RESULTSETS:
public boolean next() throws SQLException
public boolean previous() throws SQLException
public boolean first() throws SQLException
public boolean last() throws SQLException

ACCESSING RESULTSET DATA:

 (
Method name and Purpose
public boolean getBoolean (int i)
Gets the data in the specified column as a boolean.
public boolean getBoolean (String col)
public int getInt(int I) Gets the data in the specied columnas
 an int.
public int getInt (String col)
public String getString (int I) Gets the data in the specied column as
 a string.
Public String getString
(String col)

)

STATEMENT:

 The interface java.sql.Stament is normally used for sending SQL statements that do not have IN or OUT parameters. The JDBC driver vendor provides the implementation class for this interface. The common methods required by the different JDBC statements are defined in this interface. The methods defined by java.sql. Statement can be broadly categorized as follows:

· Executing SQL statements
· Querying results and resultsets
· Handling SQL batches
· Other miscellaneous methods

The interface java.sql.statements defines
 methods for executing different SQL statements like SELECT, UPDATE, INSERT, DELETE, and CREATE.
Public Resultset execute Query (string sql) throws SQLException
The following figure shows how the DriverManager, Driver, Connection, Statement, ResultSet classes are connected.
 (
DriverManager
Driver
Driver
 Layer
Application
Layer
Connection
Prepared Statement
Statement
Callable Statement
Result Set
Result Set
Result Set
)

6.4 JAVA SERVER PAGES (JSP)

INTRODUCTION:
Java Server Pages (JSP) technology enables you to mix regular, static HTML with dynamically generated content. You simply write the regular HTML in the normal manner, using familiar Web-page-building tools. You then enclose the code for the dynamic parts in special tags, most of which start with <% and end with %>.

THE NEED FOR JSP:
Servlets are indeed useful, and JSP by no means makes them obsolete. However,
· It is hard to write and maintain the HTML.
· You cannot use standard HTML tools.
· The HTML is inaccessible to non-Java developers.

BENEFITS OF JSP:

JSP provides the following benefits over servlets alone:
· It is easier to write and maintain the HTML: In this no extra backslashes, no double quotes, and no lurking Java syntax.
· You can use standard Web-site development tools:
 We use Macromedia Dreamweaver for most of the JSP pages. Even HTML tools that know nothing about JSP can used because they simply ignore the JSP tags.
· You can divide up your development team:
 The Java programmers can work on the dynamic code. The Web developers can concatenate on the representation layer. On large projects, this division is very important. Depending on the size of your team and the complexity of your project, you can enforce a weaker or stronger separation between the static HTML and the dynamic content.

CREATING TEMPLATE TEXT:

A large percentage of our JSP document consists of static text known as template text. In almost all respects, this HTML looks just likes normal HTML follows all the same syntax rules, and simply “passed through” to that client by the servlet created to handle the page. Not only does the HTML look normal, it can be created by whatever tools you already are using for building Web pages.
 There are two minor exceptions to the “template text passed through” rule. First, if you want to have <% 0r %> in the out port, you need to put <\% or %\> in the template text. Second, if you want a common to appear in the JSP page but not in the resultant document,
 <%-- JSP Comment -- %>
HTML comments of the form:
 <!—HTML Comment -->
are passed through to the client normally.

TYPES OF JSP SCRIPTING ELEMENTS:
JSP scripting elements allow you to insert Java code into the servlet that will be generated from the JSP page. There are three forms:
1. Expressions of the form <%=Java Expression %>, which are evaluated and inserted into the servlet’s output.
2. Sciptlets of the form <%Java code %>, which are inserted into the servlet’s_jspService method (called by service).
3. Declarations of the form<%! Field/Method Declaration %>, which are inserted into the body of the servlet class, outside any existing methods.

 USING JSP EXPRESSIONS:

A JSP element is used to insert values directly into the output. It has the following form:
 <%= Java Expression %>
The expression is evaluated, converted to a string, and inserted in the page. This evaluation is performed at runtime (when the page is requested) and thus has full access to the information about the request. For example, the following shows the date/time that the page was requested.
 Current time: <%=new java.util.Date () %>

PREDEFINED VARIABLES:

To simplify expressions we can use a number of predefined variables (or “implicit objects”). The specialty of these variables is that, the system simple tells what names it will use for the local variables in _jspService.The most important ones of these are:
· request, the HttpServletRequest.
· response, the HttpServletResponse.
· session, the HttpSession associated with the request
· out, the writer used to send output to clients.
· application, the ServletContext. This is a data structure shared by all servlets and JSP pages in the web application and is good for storing shared data.
Here is an example:

Your hostname: <%= request.getRemoteHost () %>

 COMPARING SERVLETS TO JSP PAGES

 JSP works best when the structure of the HTML page is fixed but the values at various places need to be computed dynamically. If the structure of the page is dynamic, JSP is less beneficial. Some times servlets are better in such a case. If the page consists of binary data or has little static content, servlets are clearly superior. Sometimes the answer is neither servlets nor JSP alone, but rather a combination of both.

WRITING SCRIPTLETS

If you want to do something more complex than output the value of a simple expression .JSP scriptlets let you insert arbitrary code into the servlet’s _jspService method. Scriptlets have the following form:
<% Java code %>
Scriptlets have access to the same automatically defined variables as do expressions (request, response, session, out , etc) .So for example you want to explicitly send output of the resultant page , you could use the out variable , as in the following example:
 <%
 String queryData = request.getQueryString ();
 out.println (“Attached GET data: “+ queryData);
 %>
SCRIPTLET EXAMPLE:

As an example of code that is too complex for a JSP expression alone, a JSP page that uses the bgColor request parameter to set the background color of the page .Simply using
 <BODY BGCOLOR=”<%= request.getParameter (“bgcolor”) %> “>
would violate the cardinal rule of reading form data.

USING DECLARATIONS

A JSP declaration lets you define methods or fields that get inserted into the main body of the servlet class .A declaration has the following form:
<%! Field or Method Definition %>
Since declarations do not generate output, they are normally used in conjunction with JSP expressions or scriptlets. In principle, JSP declarations can contain field (instance variable) definitions, method definitions, inner class definitions, or even static initializer blocks: anything that is legal to put inside a class definition but outside any existing methods. In practice declarations almost always contain field or method definitions.
We should not use JSP declarations to override the standard servlet life cycle methods. The servlet into which the JSP page gets translated already makes use of these methods. There is no need for declarations to gain access to service, doget, or dopost, since calls to service are automatically dispatched to _jspService , which is where code resulting from expressions and scriptlets is put. However for initialization and cleanup, we can use jspInit and jspDestroy- the standard init and destroy methods are guaranteed to call these methods in the servlets that come from JSP.

6.5 JAKARTA TOMCAT

 Tomcat is the Servlet/JSP container. Tomcat implements the Servlet 2.4 and JavaServer Pages 2.0 specification. It also includes many additional features that make it a useful platform for developing and deploying web applications and web services.

 TERMINOLOGY:

 Context – a Context is a web application.
 $CATALINA_HOME – This represents the root of Tomcat installation.
DIRECTORIES AND FILES:
/bin – Startup, shutdown, and other scripts. The *.sh files (for Unix systems) are functional duplicates of the *.bat files (for Windows systems). Since the Win32 command-line lacks certain functionality, there are some additional files in here.

 /conf – Configuration files and related DTDs. The most important file in here is server.xml. It is the main configuration file for the container.

 /logs – Log files are here by default.

 /webapps – This is where webapps go\
INSTALLATION:

 Tomcat will operate under any Java Development Kit (JDK) environment that provides a JDK 1.2 (also known as Java2 Standard Edition, or J2SE) or later platform. JDK is needed so that servlets, other classes, and JSP pages can be compiled.

DEPLOYMENT DIRECTORIES FOR DEFAULT WEB APPLICATION:

 HTML and JSP Files

· Main Location
$CATALINA_HOME/webapps/ROOT

· Corresponding URLs.
http://host/SomeFile.html
http://host/SomeFile.jsp

· More Specific Location (Arbitrary Subdirectory).
$CATALINA_HOME/webapps/ROOT/SomeDirectory

· Corresponding URLs
http://host/SomeDirectory/SomeFile.html
http://host/SomeDirectory/SomeFile.jsp

	
 Individual Servlet and Utility Class Files

· Main Location (Classes without Packages).
$CATALINA_HOME/webapps/ROOT/WEB-INF/classes

· Corresponding URL (Servlets).
http://host/servlet/ServletName

· More Specific Location (Classes in Packages).
$CATALINA_HOME/webapps/ROOT/WEB-INF/classes/packageName

· Corresponding URL (Servlets in Packages).
http://host/servlet/packageName.ServletName

 Servlet and Utility Class Files Bundled in JAR Files

· Location
$CATALINA_HOME/webapps/ROOT/WEB-INF/lib

· Corresponding URLs (Servlets)
http://host/servlet/ServletName
http://host/servlet/packageName.ServletName

Chapter -7

 TESTING

7 .SOFTWARE TESTING
Testing
 Software testing is a critical element of software quality assurance and represents the ultimate review of specification, design and code generation.

7.1 TESTING OBJECTIVES
· To ensure that during operation the system will perform as per specification.
· TO make sure that system meets the user requirements during operation
· To make sure that during the operation, incorrect input, processing and output will be detected
· To see that when correct inputs are fed to the system the outputs are correct
· To verify that the controls incorporated in the same system as intended
· Testing is a process of executing a program with the intent of finding an error
· A good test case is one that has a high probability of finding an as yet undiscovered error

The software developed has been tested successfully using the following testing strategies and any errors that are encountered are corrected and again the part of the program or the procedure or function is put to testing until all the errors are removed. A successful test is one that uncovers an as yet undiscovered error.

Note that the result of the system testing will prove that the system is working correctly. It will give confidence to system designer, users of the system, prevent frustration during implementation process etc.,

7.2 TEST CASE DESIGN:

White box testing

White box testing is a testing case design method that uses the control structure of the procedure design to derive test cases. All independents path in a module are exercised at least once, all logical decisions are exercised at once, execute all loops at boundaries and within their operational bounds exercise internal data structure to ensure their validity. Here the customer is given three chances to enter a valid choice out of the given menu. After which the control exits the current menu.
[bookmark: _Black_Box_Testing]
Black Box Testing

	Black Box Testing attempts to find errors in following areas or categories, incorrect or missing functions, interface error, errors in data structures, performance error and initialization and termination error. Here all the input data must match the data type to become a valid entry.
The following are the different tests at various levels:

Unit Testing:
		Unit testing is essentially for the verification of the code produced during the coding phase and the goal is test the internal logic of the module/program. In the Generic code project, the unit testing is done during coding phase of data entry forms whether the functions are working properly or not. In this phase all the drivers are tested they are rightly connected or not.

Integration Testing:
		All the tested modules are combined into sub systems, which are then tested. The goal is to see if the modules are properly integrated, and the emphasis being on the testing interfaces between the modules. In the generic code integration testing is done mainly on table creation module and insertion module.

Validation Testing

This testing concentrates on confirming that the software is error-free in all respects. All the specified validations are verified and the software is subjected to hard-core testing. It also aims at determining the degree of deviation that exists in the software designed from the specification; they are listed out and are corrected.
[bookmark: _System_Testing]System Testing

This testing is a series of different tests whose primary is to fully exercise the computer-based system. This involves:
· Implementing the system in a simulated production environment and testing it.
· Introducing errors and testing for error handling.

TEST CASES

TEST CASE 1:

Test case for Login form:

When a user tries to login by submitting an incorrect ID or an incorrect Password then it displays an error message “NOT A VALID USER NAME”.

TEST CASE 2:

Test case for User Registration form:

 When a user enters user id to register and ID already exists, then this result in displaying error message “USER ID ALREADY EXISTS”.

 TEST CASE 3:

 Test case for cart:

When a customer views an empty cart it displays “Cart is empty” message. When a user wants to add a product to cart without logging into the system a message “Please login to purchase” will be displayed.

TEST CASE 4: 	

 Validation cases:
 If any data field which accept the data from the user are not filled then the corresponding error messages are generated.

Chapter -8

OUTPUT SCREENS

8. OUTPUT SCREENS
Citizen card System Screens
Welcome Screen
[image:]
Registration
[image:]
[image:]
Admin Login
[image:]
Admin Page
[image:]
View Citizens
[image:]
Approving Citizens
[image:]
Citizen Personal Details
[image:]
Passport Details
[image:]
[image:]
[image:]
Voter Card Details
[image:]
[image:]

[image:]
View Requests
[image:]
Assign Citizen Card
[image:]
[image:]
[image:]
Remarks

[image:]
Inserting Departments
[image:]
[image:]
[image:]
View Departments
[image:]
Telephone Department

[image:]
Generating Telephone Bill
[image:]
[image:]
Status of the bills
[image:]
Electrical department
[image:]
[image:]
Logout Page
[image:]
Citizen Login
[image:]

Citizen Page
[image:]
View Profile
[image:]
Upload Photo
[image:]
[image:]
View Profile
[image:]
Update Profile
[image:]
[image:]
Passport Details
[image:][image:][image:]
Voter Card Details
[image:][image:]
Apply for citizen card
[image:]
[image:]
[image:]
[image:]
Card Status
[image:]
[image:]
Complaints
[image:]
[image:]
Departments
Electrical bill
[image:]

Telephone bill
[image:]
[image:]
[image:]
[image:]
[image:]
View Citizen Card
[image:]
View citizen card
[image:]

Logout
[image:]

APPENDIX

 ABBREVATIONS:

 	HTML: Hyper text mark up language.
 JSCRIPT: java script
 DFD: Data Flow Diagrams
 HTTP: Hyper Text Transfer Protocol
 JDBC: Java Data Base Connectivity.
FAQ’S

 What is java script?
 Java script is a compact, object based scripting language for developing client and server internet applications.

Client vs server side java script?

 Client side java script is interpreted only with in the browser that support it, and the code is visible to the user. Server side java script is stored in a pre-compiled state on the server, so it is browser – independent, and only the results of the java script programs are passed to the browser, so that code is never revealed.

Where can <script> container tags be placed with in an html document?

 In general, the <script> container tags may appear any where with in the html document. It is more viable to have the tags placed with in the <head> container.

BIBILIOGRAPHY

Advanced Java Programming 	 	- Dietel and Dietel
Mastering JAVA 2 - John Zukowski
Java Server Programming 		- Apress
Software Engineering 		- Roger S Pressman
Análysis & Design of InformationSystems – Senn

Websites
www.eci.gov.in
www.google.com
www.apeci.com
www.askjeeves.com

124

image2.emf
Approve

Registration

1.2.1

Enter Citizen

Id

1.2.2

Get Citizen

Details

1.2.3

Validates

Data

Verify Citizen

Data

1.2.4

Validates

Data

Tbl_Status

Details

Valid Citizen

1.2.5

Invalid Info

1.2.7

Tbl_CitizenDetails

Tbl_Citizen

Details

Yes

No

image3.emf
ApproveCitizens

fname

lname

ftname

dob

bloodgroup

pno

PANno

rno

pno

vno

street

city

state

viewProfile()

viewPassportDetails()

viewVotercardDetails()

Admin

uname

password

type

viewCitizens()

approveCitizens()

vireRequests()

assignCitizenCard()

remarks()

insertDepartments()

viewDepartments()

Citizen

fname

lname

ftname

dob

bloodgroup

pno

PANno

rno

pno

vno

street

city

state

ccardno

uname

viewProfile()

updateProfile()

addPassportDetails()

addVotercardDetails()

applyforCitizenCard()

cardStatus()

viewDepartment()

uploadPhoto()

viewCitizenCard()

Department

deptno

deptname

addDepartment()

viewDepartment()

image4.emf
login

viewCitizens

approveCitizens

viewRequests

assignCitizencard

viewRemarks

insertDepartment

Administrator

viewDepartment

image5.emf
viewProfile

updateProfile

addPassportDetails

addVotercardDetails

applyforCitizencard

cardStatus

viewDepartment

uploadPhoto

viewCard

Citizen

login

image6.emf
addDepartments

Admin

viewDepartments

image7.emf
Admin

viewProfile

viewPassportDetails

viewVotercardDetails

image8.emf
AdminviewCitizensapproveCitizensviewRequestsassign

Citizencard

remarksinsert

Department

viewDepartmentlogin

checksauthentication

if invalid

viewCitizens

approving citizens

 viewing the requests

assigning citizen card

viewing the remarks

inserting departments

viewing the departments

image9.emf
Adminlogininsert

Department

viewDepartment

checks for authentication

if invalid

adding the departments

viewing the departments

image10.emf
applyforcitizenc

ard

CitizenloginviewProfileupdateProfileaddPassport

Details

addvotercard

Details

cardstatusviewdepar

tment

upload

Photo

viewCitizencard

checks authnetication

if invalid

view profile

update profile

add passport details

 add votercard details

apply for citizen card

 card status

view department

upload photo

view citizen card

image11.emf
adminloginviewprofileviewpassportde

tails

viewvotercardde

tails

checks for authentication

if invalid

viewing the citizen profile

view citizen passportdetails

view votercard details

image12.emf
view

Requests

Admin

view

Citizens

approve

Citizens

assign

Citizencard

remarks

insert

Department

view

Department

login

1:

2:

3:

4:

5:

6:

7:

8:

9:

image13.emf
view

Department

Adminlogin

insert

Department

1:

2:

3:

4:

image14.emf
viewvotercar

ddetails

adminloginviewprofil

e

viewpasspo

rtdetails

1:

2:

3:

4:

5:

image15.emf
admin

viewcitiz

ens

approve

citizens

viewrequ

ests

assignciti

zencard

remarks

insert

department

view

department

image16.emf
Citizen

view

profile

update

profile

addpasspo

rtdetails

addvotercar

ddetails

card

status

view

department

upload

photo

view citizen

card

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.png

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image59.png

image60.png

image61.png

image62.png

image1.emf
Open Login

form

Enter User

Name and

Password

Check User

Validates

Data

Tbl_LoginMaster

User Home

Page

YesYes

No

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image69.png

image70.png

image71.png

image72.png

oleObject1.bin
Open Login form

Enter User Name and Password

Check User

Validates Data

Tbl_LoginMaster

User Home Page

Yes

Yes

No

image73.png

image74.png

image75.png

image76.png

