A GUI ORACLE INTERFACE TO JAVA
ACKNOWLEDGEMENT
I express thanks and gratitude to ___________________________ , computer science department, _________________________for his encouraging support and guidance carrying out the project.

 I would like to express gratitude and indebtedness to ___________________ internal guide, for his valuable advice and guidance without which this project would not have seen the light of the day.

I thank ________________________project guide CMC Ltd for her/his insistence on good programming technique, which helped us to design and develop a successful model of a “A GUI ORACLE INTERFACE TO JAVA”.

CONTENTS
 1. INTRODUCTION

· PROBLEM IN EXISTING SYSTEM
· SOLUTION OF THESE PROBLEMS
· HARDWARE & SOFTWARE SPECIFICATIONS
· ORGANIZATION PROFILE
2. PROJECT ANALYSIS

· STUDY OF THE SYSTEM
· PROJECT FEATURES
3. TECHNOLOGIES

· OOPS AND JAVA
· JDBC

· ABOUT ORACLE

4. PROJECT DESIGN

· UML DIAGRAMS
· DATA FLOW DIAGRAMS
· DATA BASE TABLES
· OUTPUT SCREENS
5. PROJECT CODING

· CODE EXPLANATION
6. SCREENS

7. PROJECT TESTING

· COMPILING TESTING

· EXECUTION TESTING
· OUTPUT TEST
8. FUTURE SCOPE

9. CONCLUSION

BIBLOGRAPHY
INTRODUCTION

· Objective
· Scope

· Existing System
· Proposed System

· Software Requirement Specification

· System Environment

Objective:
Graphical user interfaces are so called because we use mouse to point at graphical objects such as windows, menus, icons, buttons and other tools on the screen these graphical tools all represent different types of commands the GUI enables us to issue commands to the computer by using visual objects instead of typing commands this is one of the key advantage of the Graphical User Interface it frees us from memorizing and typing text commands

SCOPE OF THE PROJECT :

The scope of the project lies in creating an interface in JAVA for a GUI tool and main objective of the project is to develop a GUI tool for Oracle installation

We use three concepts of Java they are SWINGS, JDBC, AWT’s and also an interface Oracle (SQL PLUS).

A GUI tool would be the best thing to implement as it is more users friendly and must to people who have used a computer have used a GUI in some form or other wise most will not have used a command line interface.
EXISTING SYSTEM:
· In this we use SQL PLUS as a tool provided by the Oracle for data base installation
· Since it provides the user full access to the database ,it is a command line interface
· Using SQL PLUS tool we can access through a terminal window on a unix / linux machine or a telnet window on a PC with in the organization.
· So people who are not having any computer knowledge it is a difficult task to learn and use it
PROPOSED SYSTEM:
· In this we provide a GUI tool for Oracle installation

· This GUI tool is more user friendly compared to SQL PLUS

· Using this GUI tool the user can easily access the tables with in their data base and create, edit or delete data or tables themselves with in their own database

· So it is easier to adapt GUI tool for accessing the database rather than command line interface.

Software Requirement Specification
· The User Interface Should is user friendly to the user who uses the home page by which he/she can easily register.
· The Operations should take place transparently.
System Environment

Client

Hardware Platform: PIII or above with

RAM of 128 or above MB

And 20GB or above of HD.

Software Platform: Java Enabled Browser

Server

Hardware Platform: PIII or above with

RAM of 128 or above MB

And 20GB or above of HD.

Software Platform: Java & J2EE.
ORGANISATIONAL PROFILE

CMC limited, India’s leading information technology company, offers users both in India and abroad a range of services and solutions in areas like systems design and development, systems engineering, multivendor networking, consultancy, installation, training, maintenance and total facilities management.

CMC has extensive and continually updated expertise in real-time, online systems, process control, image processing, data communications, networking, parallel architectures, etc, Integrated with this horizontal expertise in information technology, is CMC’s vertical expertise in a whole range of industries both in infrastructure industries like poser, coal, oil and transportation, as well as service industries such as banking, law and order and education.

It is the totality of expertise that has enabled CMC to develop a variety of superior IT products and to execute a number of complex and challenging projects, not only in India, but also in Europe, America, Africa, the Middle East and Southeast Asia.

First challenge:

CMC limited commenced operation as “COMPUTER MAINTENANCE CORPORATION” in October 1976. The first challenge came just one year later in November; 1977.IBM announced that it would cease its maintenance and support operations in India from June 1978. The entire Indian computer community, the majority of whom had IBM equipment, was thrown into confusion. It was at this juncture that CMC took a bold decision: it offered to provide maintenance services to all users of IBM equipment in India, regardless of the type, age, size or location of their machines. The task was truly a staggering one but CMC faced it with confidence. Exactly six months later, CMC stepped into IBM shoes and took over the maintenance of over 800 IBM installations without any dislocation.

CMC limited is India’s largest one point computer support company providing a complete range of services. CMC has executed a large number of turnkey IT projects the world over-like the passenger railway reservation system for Indian railways, ship planning systems for various ports in Europe, traffic management system of bhilai steel plant and scheduling for London underground. CMC’s education and training programmed includes short term long term events.

CMC limited offers a wide range of education and training services both in India and abroad. CMC took the lead in this field in 1978, when the first training programmer was held. CMC, in fact, is one of the first companies in information technology to offer such a programmer.

The excellence of CMC’s training programmers has been acknowledged by the participants from COMMON WEALTH secretariat, various UNITED NATIONS agencies, the WORLD BANK, ministry of EXTERNAL AFFAIRS, department of PERSONNEL, members of PARLIAMENT, officers of the INDIAN ADMINISTRATIVE, FOREIGN AND POLICE services, and participants form the ministry of ENVIRONMENT AND FORESTS and INIDIAN BANKS.

CMC TODAY:

While hardware maintenance continues to play a major role, CMC’s activities have advanced in many new directions. CMC is one of the leading systems integrators in the country with multi-faceted expertise in information technology. As a part of the globalization activity, CMC has acquired a subsidiary company in the USA, thereby expanding its international activities. In the light of the growth of the communication sector and its importance to the liberalized economy, CMC revamped its communication network –INDONET, in terms of new protocols, communication equipment as well as host systems. The need for highly specialized software engineering skills in the coming years has triggered increased education and training activities.

In order to give focus to the above mentioned business areas, five strategic business units have been formed, namely, customer services, systems integration, international operations, INDONET and education and training. Each of the vertical units in the CMC’s line of business will operate as a profit center with increased in terms of contribution and other measures of excellence to achieve industry standards and ultimately result in greater customer satisfaction.

STUDY OF THE SYSTEM
Graphical user interfaces are so called because we use mouse to point at graphical objects such as windows, menus, icons, buttons and other tools on the screen these graphical tools all represent different types of commands the GUI enables us to issue commands to the computer by using visual objects instead of typing commands this is one of the key advantage of the Graphical User Interface it frees us from memorizing and typing text commands

Need for Computerization

· Duplication of work avoided

· Paper work is drastically reduced

· Retrieval and access of data is easy

MODULE DESCRIPTION

There is only one module in this application Administrator and user.

The user is prompted for a username and password. Once these are entered the user is able to access the tables within their database, and create, edit or delete data or tables themselves with in their database.

The Administrator do not allow the users to access the other databases or to any of the functions used to administer the database it self.

USERS
1. USER

2. ADMINISTRATOR

PRODUCT FEATURES

SQL PLUS tool can be accessed through a telnet window on a PC within the organization. The method of connecting is a command typed in by the user and then prompted for a username and password. Once these are entered the user is able to access the tables within their database and can create, edit , or delete data or tables themselves, with in their own database. The permissions for users to access the database are provided by Administrator who checks the database, modifies etc.

About JAVA
The term Java actual refers to more than just a particular language like C or Pascal. Java encompasses several parts, including:

A high level language – the Java language is a high level one that at a glance looks very similar to C and C++ but offers many unique features of its own.

Java byte code - a compiler, such as Sun's javac, transforms the Java language source code to byte code that runs in the JVM.

Java Virtual Machine (JVM) – a program, such as Sun's java, that runs on a given platform and takes the byte code programs as input and interprets them just as if it were a physical processor executing machine code.

Sun provides a set of programming tools such as javac, java and others in a bundle that it calls a Java Software Development Kit for each version of the language and for different platforms such as Windows, Linux, etc. Sun also provides a runtime bundle with just the JVM when the programming tools are not needed.

Note that because of the open nature of Java, any or all of these parts can be replaced by non-Sun components. For example, just as many different languages can create machine code for a given processor, compilers of other languages have been created that output byte code to run in the JVM. Similarly, many JVMs have been written by groups outside of Sun.

 Java, Open or Closed?
Java is not quite an open language but not quite a proprietary one either. All the core language products - compiler, virtual machines (VM), class packages, and other components - are free. Detailed specifications and source code are made openly available.

The Java Community Process (JCP) leads the development of new standards for the language. Other companies and organizations can legally create a clean sheet compiler and/or a Virtual Machine as long as it follows the publicly available specifications. Microsoft did this with the Version 1.1 JVM that it used in its Internet Explorer browser. Sun, however, does still assert final say on the specifications and controlsthecopyrightstologos,andtrademarks.
For example, Microsoft's VM differed in a some significant details from the specifications and Sun accused Microsoft of attempting to weaken Java's "write once, run anywhere" capabilities. Sun sued Microsoft and the dispute was later settled out of court.
Comparison with C++

Java has eliminated several features of C++ as listed here:

· No Pointers

· No Implicit Type Casting

· No Structures or Unions

· No Operator Overloading

· No Templates

· No Header Files

No Pointers

Java does not support any pointer arithmetic. As the improper use of pointers may lead to a system crash, elimination of pointers makes Java applications more robust.

No Implicit Type Casting

Java does not support implicit type casting except for promotions. Automatic promotions are permitted. Any demotion must be explicitly typecast. Thus, you may assign an int data type to a float data type without the use of explicit typecast; however, to convert a float to an int, an explicit type cast will be required.

No Structures and Unions

Like C++, Java does not support structures and unions. Thus, everything must be defined in terms of classes.

No Operator Overloading

The operator overloading though a useful feature is rarely used in the practice due to the complexity involved in the coding. Java does not support user defined operator overloading. The plus (+) operator for Java does not support user defined operator overloading. String concatenation is overloaded internally.
No Templates

Templates are generally used for defining mathematical libraries, etc. Java does not support the concept of templates. Note that the latest version of Java supports templates with the help of newly-added feature called generics.
No Header Files

Headers files are required for declaring global variables and function prototypes. Java does not support declaration of global variables. The method signatures can be generated during the first pass of the compiler. Thus, Java does not use concept of header files.
No Multiple Inheritances

The multiple inheritances can lead to diamond-shaped inheritance problems. C++ solves this problem by using virtual keyword. Java does not support multiple inheritances.

Advantages of JAVA
Here we list some of the major benefits that Java can provide for general science and engineering applications:

PlatformIndependence
Scientists use more types of computers and OS's that most other groups. Code that can be exchanged without requiring rewrites and recompilation saves time and effort.

Object-Oriented
Besides the usual benefits from OOP, many scientific programs can benefit from thinking in terms of objects. For example, particles in a scattering simulation are naturally self-contained objects.

Threading
Multi-processing is very useful for many scientific tasks, such as, for example, simulations of phenomena where many processes occur simultaneously.

Networking
Java comes with many networking capabilities that allow one to build distributed systems. Such capabilities can be applied, for example, to remote data taking from sensors.

Embedded Applications
The original Oak language from which Java derived was intended for embedded applications. Platform independence and the other items mentioned above, as well as the adaptability of Java that allows it to work on micro-sized platforms by shedding nonessential code, has made Java very popular for use in embedded devices such as smart cards and cell phones. It can thus also be embedded into sensors, controllers, and other types of engineering and scientific devices.

Features of Java
· Simple
· Object Oriented
· Both Compiled and Interpreted
· Java Run time Environment
· Secured
· Portable
· Multi-threaded
· Robust
· Garbage Collected
· Dynamic
· Small
Simple

Java’s small and simple. The designers of Java wanted to make it small to enable easy. Deployment in small electronic gadgets. Java may be considered a stripped-down version. Of C++, eliminating many C++ features that are not frequently used in practice.

Object Oriented

Being 100% object oriented, Java Programming is easy. Like C++, Java does not support global declarations, structures and unions. It implies that everything in Java is defined in terms of classes. This makes Java 100% object oriented.

Both Compiled and Interpreted

A language compiler typically compiles a given source program into an instruction code specific to a target CPU on which the program would eventually run. Java compiler compiles the source program into what is known as byte code. The byte code represents the instruction code for a pseudo CPU - a CPU that does not physically exist. At runtime, this CPU is emulated in software by an application called Java Virtual Machine (JVM). JVM converts the byte code into the instruction code of a real
CPU at the run time and executes the code on the real CPU. Thus, JVM interprets the compiled byte code into the real CPU instruction code at runtime. We thus say that Java is both compiled and interpreted.
 Java Run time Environment

The Java Runtime Environment (JRE), also known as Java Runtime, is part of the Java Development Kit (JDK), a set of programming tools for developing Java applications.

The Java Runtime Environment provides the minimum requirements for executing a Java Application; it consists of the Java Virtual Machine (JVM), core classes, and supporting Files.

Secured

· No Direct Memory Access

· No Viruses

JVM provides a secured runtime environment for running Java applications. The byte code verifier within JVM checks the validity of each byte code before it is submitted for execution to the CPU. JVM also checks for illegal memory access. At runtime, application is allocated a memory space. An attempt to access a memory location outside this space is trapped by JVM. Java also does not support pointer arithmetic. The prevention of illegal memory access and no support for pointer arithmetic makes it impossible to introduce a virus, which is a malicious code through a Java application.

Portable
As seen earlier, since the Java byte code runs under the Java Virtual Machine, the compiled byte code itself is portable. What is required on the client machine is merely a virtual machine with an interpreter for the byte code. Note that the virtual machine itself is not portable and is written for a specific CPU architecture.

Multi-Threaded
An executable program when loaded into the memory and made ready to run, we say that a process is created. A small unit of execution within a process is called thread of execution. Java is multi-threaded. Like C++, Java supports threading. In C++ coding for threads is quite complicated and requires a thorough understanding of concepts like Semaphores, Critical Sections, etc. Java has greatly simplified thread programming by hiding all these complexities from the programmer by introducing a single keyword “synchronized” that takes care of synchronized access to common resources.

Robust

As Java does not support pointer arithmetic and run under the constraints imposed by the security manager within a JVM, the programs written in Java are robust. It is virtually impossible to crash a client machine using Java code.

Garbage Collected

In every language, a programmer allocates the desired resources within the program code. The de-allocation of such resources at appropriate times is the responsibility of the programmer. If the resources are not de-allocated, it causes memory leaks. A de-allocation at the inappropriate time leads to null pointer exception. In Java, JVM takes care of the de-allocation by keeping track of the references to allocated resources. Whenever a resource is no more referenced using a valid reference, the JVM does garbage collection on such resource.

Dynamic

Java allows the dynamic loading of additional code modules without the prior knowledge of such modules at the time of compilation. Such dynamically loaded classes can be introspected and instantiated at run time.

Small

Java is small; the compiled byte code is usually very small. A typical Hello World application byte code is typically few hundreds of bytes. The minimal runtime environment required to run this code is usually less than 1 MB.

 Interpretation Vs Compilation

Java incorporates elements of both interpretation and compilation. Here is more information on these two approaches:

 Interpretation

An interpreter reads in one line of a program and executes it before going to the next line. The line is first parsed to its smallest component operations and then each operation executed. (This could be done with something like the switch statement in C with every possible operation case listed.)

The interpreter is normally a program compiled into the local machine code so its operations run at full speed. BASIC was one of the earliest interpreted languages and each text line is interpreted. Similarly, scripting languages like PERL are also interpreted.

Interpretation simplifies the programming environment since there are no intermediate steps between writing or modifying the code and running it. Results are known immediately, so debugging is fast. Also, the programs are easily transportable to other platforms (if an interpreter is available on them.)

The drawback is slow performance. The interpreter must read a line, translate it and find the corresponding machine level code, and then execute the instructions.

Compilation

The program text file is first converted to native machine code with a program called a compiler. (A linker program may also be necessary to connect together multiple program code files.) The output file of the compiler is the executable program that runs. FORTRAN, C/C++, and Pascal are all compiled languages.

The biggest advantage of compiled language is the fast performance since the machine code instructions load directly into the processor and execute.

In addition, the compiler can optimize the program since it looks at the whole program at once rather than simply line by line as with the interpreter.

The disadvantages include slower debugging since after every correction and modification, the program must be recompiled.

Also, since the executable is in local machine code, the executable files are not usually transportable to other platforms. The source code must be recompiled on those machines.

The Java Approach
Java incorporates both interpretation and compilation. The text program is compiled to the "machine" code, called byte codes, for the Java Virtual Machine (JVM or just VM). The JVM simulates a processor that executes the byte code instructions.

The JVM interprets the byte codes. The byte codes can be run on any platform on which a JVM has been developed. The program runs "inside" the JVM so it doesn't care what platform it is on.

Thus, Java attempts to get the best of both worlds. The compilation step allows for some degree of optimization of the code and the JVM interpretation allows for portability.

There remains the drawback of an extra compilation step after every correction during debugging. Also, the interpretation of byte codes is still slower in many cases than a program in local machine code. Advanced JVM's can ameliorate this, however, and in many cases now reach speeds similar to programs compiled to local machine code.

Java Virtual Machine

[image: image1.jpg]
Every Java code runs under a JVM. A JVM is a piece of software that runs on the client machine. A Java application may be deployed on a web server and served to the client machines as an Applet. Each client machine may run a different operating system; however, each machine is required to run a JVM of its own. The byte code supplied by the web server runs on each of the client platforms without any modifications. Thus, the compiled Java code is platform-neutral.

 JVM Design
Unlike many hardware processors, the JVM does not allow access to registers that hold program counters, operands, etc. Instead it uses operand stacks and local variables.

Every time a method is called, or invoked, a new stack (Last-In-First-Out memory) is created to hold operand values for instructions and to receive results from an instruction operation. Method argument values are passed via the stack and the method return value is passed via the stack. The stack values are 32-bit. The iconst_2 instruction in the above program puts the integer value 2 on top of the stack.

Note: This is an example of where knowing something about the JVM helps explain an important aspect of the Java language. Note that double and long values, which are 64 bits, require two of the 32 bit wide slots on the stack.

This requires the JVM to carry out two stack operations to place or remove such values on the stack. This can cause problems if a process (that is, a thread) is stopped in between these two operations. The data will be left in an indeterminate state. In fact, the stop () and suspend() and resume() methods in the original Thread class of version 1.1 were deprecated just to avoid this kind of problem.

Similarly, memory is allocated for local variables in each method invocation and each variable given a number. In the above example, the variable "i" becomes variable 1. The instruction istore_1 puts the current value at the top of the stack into the local variable 1.

There are a number of other features used in the JVM such as a Constants Pool that holds symbolic data for a class.

 JVM Implementation
Although the byte code cannot access registers or directly reference memory locations and must obey various other restrictions, the actual JVM program can use internally whatever techniques are convenient to use for a particular platform. As long as the Java byte code sees only a JVM specification compliant system, the JVM programmer has broad discretion for its implementation.

Java was always intended for a wide array of platforms, including very simple embedded processors that might provide few or no registers. So the stack approach was taken to allow for Java to run on such basic hardware. Of course, the JVM program itself will run as normal on a processor with a register architecture.

Typically the JVM is written in C (since virtually every platform has a C compiler). The simplest interpreter style approach would involve just a big switch statement
In which each instruction would jump to the code in the appropriate case section.

Most JVMs employ far more sophisticated approaches so as to optimize the performance of the byte code and achieve C like performance speeds.

Java Server Pages (JSP)

Java Server Pages (JSP) technology provides a simplified, fast way to create web pages that display dynamically-generated content. The JSP specification, developed through an industry-wide initiative led by Sun Microsystems, defines the interaction between the server and the JSP page, and describes the format and syntax of the page.
The focus of Java EE 5 has been ease of development by making use of Java language annotations that were introduced by J2SE 5.0. JSP 2.1 supports this goal

by defining annotations for dependency injection on JSP tag handlers and context listeners.

Another key concern of the Java EE 5 specification has been the alignment of its web tier technologies, namely Java Server Pages (JSP), Java Server Faces (JSF), and Java Server Pages Standard Tag Library (JSTL).

 JSP Architectures

The early JSP specifications advocated two philosophical approaches for building applications using JSP technology. These approaches, termed the JSP Model 1 and Model 2 architectures, differ essentially in the location at which the bulk of the request processing was performed.

 JSP Model 1 Architecture
In the Model 1 architecture, the JSP page alone is responsible for processing the incoming request and replying back to the client. There is still separation of presentation from content, because all data access is performed using beans. Although the Model 1 architecture should be perfectly suitable for simple applications, it may not be desirable for complex implementations. Indiscriminate usage of this architecture usually leads to a significant amount of script lets or Java code embedded within the JSP page, especially if there is a significant amount of request processing to be performed.

[image: image2.png]

JSP Model 2 Architecture

Model 2 architecture, shown in Figure 2, is a hybrid approach for serving dynamic content, since it combines the use of both servlets and JSP. It takes advantage of the predominant strengths of both technologies, using JSP to generate the presentation layer and servlets to perform process-intensive tasks. Here, the servlet acts as the controller and is in charge of the request processing and the creation of any beans or objects used by the JSP, as well as deciding, depending on the user's actions, which JSP page to forward the request to. Note particularly that there is no processing logic within the JSP page itself; it is simply responsible for retrieving any objects or beans that may have been previously created by the servlet, and extracting the dynamic content from that servlet for insertion within static templates.

[image: image3.png]
JAVA DATA BASE CONNECTIVITY (JDBC)

A database is an organized collection of data. A database management system (DBDMS) provides mechanisms for storing and organizing data in a manner consistent with the database’s format. Database management systems allows for the access and storage of data without concern for the internal representation of data.
Java Programs communicate with databases and manipulate their data using the JDBC API. A JDBC driver implements the interface to a particular database. This separation of the API from particular drivers enables developers to change the underlying database without modifying Java code that accesses the database.

A Relational database is a logical representation of data that allows the data to be accessed without consideration of the physical structure of the data. A relational database stores data in tables. A primary key is a column (or group of columns) in tables that have a unique value that cannot be duplicated in other rows. This guarantees that each row can be identified by its primary key.

While writing JDBC applications, developers generally start with JDBC-ODBC Bridge to connect to databases. But when an application reaches some advanced stage, for example, when it needs to support multithreading, the JDBC-ODBC Bridge poses a few problems. So, the need arises for a robust JDBC driver. In that case, the type of driver depends on quite a few parameters: whether the application is Internet or intranet based, whether it needs to support heterogeneous databases, the number of concurrent users, and so on.

The basic architecture underlying the four JDBC driver types and enumerate the pros and cons for choosing one type over another -- information you can use to decide what type of JDBC drivers will be best suited for your specific application.

Evaluations of five specific industry-standard drivers: Sun's JDBC-ODBC Bridge, IDS Software's IDS Driver, Ashna's JTurbo, I-net Software's I-net Sprinta, and MERANT's Sequel ink. I have also provided the steps required to evaluate each driver, as well as code snippets for specifying the class path, loading the driver, establishing a database connection, and retrieving and inserting records. You may find it useful to use the code snippets provided in your evaluation program and follow these steps to determine benchmarks suited to your software and hardware requirements.

JDBC driver types

JDBC drivers are divided into four types or levels. Each type defines a JDBC driver implementation with increasingly higher levels of platform independence, performance, and deployment administration. The four types are:

Type 1: JDBC-ODBC Bridge

Type 2: Native-API/partly Java driver

Type 3: Net-protocol/all-Java driver

Type 4: Native-protocol/all-Java driver
Type 1: JDBC-ODBC Bridge

The type 1 driver, JDBC-ODBC Bridge, translates all JDBC calls into ODBC (Open Database Connectivity) calls and sends them to the ODBC driver. As such, the ODBC driver, as well as, in many cases, the client database code, must be present on the client machine. Figure 1 shows a typical JDBC-ODBC Bridge environment.

[image: image4.png]
Figure 1. Type 1: JDBC-ODBC Bridge
Pros

The JDBC-ODBC Bridge allows access to almost any database, since the database's ODBC drivers are already available. Type 1 drivers may be useful for those companies that have an ODBC driver already installed on client machines.

Cons

The performance is degraded since the JDBC call goes through the bridge to the ODBC driver, then to the native database connectivity interface. The result comes back through the reverse process. Considering the performance issue, type 1 drivers may not be suitable for large-scale applications.

The ODBC driver and native connectivity interface must already be installed on the client machine. Thus any advantage of using Java applets in an intranet environment is lost, since the deployment problems of traditional applications remain.

Type 2: Native-API/partly Java driver

JDBC driver type 2 -- the native-API/partly Java driver -- converts JDBC calls into database-specific calls for databases such as SQL Server, Informix, Oracle, or Sybase. The type 2 driver communicates directly with the database server; therefore it requires that some binary code be present on the client machine.

[image: image5.png]
Figure 2. Type 2: Native-API/partly Java driver
Pros

Type 2 drivers typically offer significantly better performance than the JDBC-ODBC Bridge.

Cons

The vendor database library needs to be loaded on each client machine. Consequently, type 2 drivers cannot be used for the Internet. Type 2 drivers show lower performance than type 3 and type 4 drivers.

Type 3: Net-protocol/all-Java driver

JDBC driver type 3 -- the net-protocol/all-Java driver -- follows a three-tiered approach whereby the JDBC database requests are passed through the network to the middle-tier server. The middle-tier server then translates the request (directly or indirectly) to the database-specific native-connectivity interface to further the request to the database server. If the middle-tier server is written in Java, it can use a type 1 or type 2 JDBC driver to do this.

[image: image6.png]
Figure 3. Type 3: Net-protocol/all-Java driver
Pros

The net-protocol/all-Java driver is server-based, so there is no need for any vendor database library to be present on client machines. Further, there are many opportunities to optimize portability, performance, and scalability. Moreover, the net protocol can be designed to make the client JDBC driver very small and fast to load. Additionally, a type 3 driver typically provides support for features such as caching (connections, query results, and so on), load balancing, and advanced system administration such as logging and auditing.

Cons

Type 3 drivers require database-specific coding to be done in the middle tier. Additionally, traversing the record set may take longer, since the data comes through the backend server.

Type 4: Native-protocol/all-Java driver

The native-protocol/all-Java driver (JDBC driver type 4) converts JDBC calls into the vendor-specific database management system (DBMS) protocol so that client applications can communicate directly with the database server. Level 4 drivers are completely implemented in Java to achieve platform independence and eliminate deployment administration issues.

[image: image7.png]
Figure 4. Type 4: Native-protocol/all-Java driver
Pros

Since type 4 JDBC drivers don't have to translate database requests to ODBC or a native connectivity interface or to pass the request on to another server, performance is typically quite good. Moreover, the native-protocol/all-Java driver boasts better performance than types 1 and 2. Also, there's no need to install special software on the client or server. Further, these drivers can be downloaded dynamically.

Cons

With type 4 drivers, the user needs a different driver for each database.

Performance evaluation of five specific JDBC drivers
To evaluate the performance of five industry-standard drivers based on parameters such as average connection time, data retrieval time, and record insertion time, I created a sample database in SQL Server 7.0. I picked industry-standard JDBC drivers representing various driver types. Note: I didn't test any type 2 drivers because they are not readily available in the market, and I wanted to stick with pure-Java drivers for this article.
To perform the tests, I downloaded and deployed the trial versions of these drivers; then I performed several tests on each so as to determine performance measures under similar software and hardware environments. Note that the readings could vary for other environments. That being said, the results here provide relative information to evaluate each type of driver.

JDBC Architecture

Two-tier and three-tier Processing Models

The JDBC API supports both two-tier and three-tier processing models for database access.

Figure 1: Two-tier Architecture for Data Access.
[image: image8.png]
In the two-tier model, a Java applet or application talks directly to the data source. This requires a JDBC driver that can communicate with the particular data source being accessed. A user's commands are delivered to the database or other data source, and the results of those statements are sent back to the user. The data source may be located on another machine to which the user is connected via a network. This is referred to as a client/server configuration, with the user's machine as the client, and the machine housing the data source as the server. The network can be an intranet, which, for example, connects employees within a corporation, or it can be the Internet.

In the three-tier model, commands are sent to a "middle tier" of services, which then sends the commands to the data source. The data source processes the commands and sends the results back to the middle tier, which then sends them to the user. MIS directors find the three-tier model very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that it simplifies the deployment of applications. Finally, in many cases, the three-tier architecture can provide performance advantages.

Figure 2: Three-tier Architecture for Data Access.
[image: image9.png]
Until recently, the middle tier has often been written in languages such as C or C++, which offer fast performance. However, with the introduction of optimizing compilers that translate Java byte code into efficient machine-specific code and technologies such as Enterprise JavaBeans™, the Java platform is fast becoming the standard platform for middle-tier development. This is a big plus, making it possible to take advantage of Java's robustness, multithreading, and security features.

With enterprises increasingly using the Java programming language for writing server code, the JDBC API is being used more and more in the middle tier of three-tier architecture. Some of the features that make JDBC a server technology are its support for connection pooling, distributed transactions, and disconnected row sets. The JDBC API is also what allows access to a data source from a Java middle tier.

In the three-tier model, grievances are sent to a "middle tier" of system, which then sends the commands to the data source i.e., taken care by the operator. The data source processes the commands and sends the results back to the middle tier, which then sends them to the client. The three-tier model is very attractive because the middle tier makes it possible to maintain control over access and the kinds of updates that can be made to corporate data. Another advantage is that it simplifies the deployment of applications.

 ABOUT ORACLE
Among the many application development and end user products available within the Oracle family there is a common ability to access the database. Whether directly or indirectly this is achieved through the Structured Query Language (SQL).These query languages have been useful in developing the software in an efficient way. The Query language has Data Definition Language (DDL), Data Manipulation Language (DML) and Data Control Language (DCL).

DATA DEFINATION LANGUAGE (DDL) helps in defining various databases objects such as tables and views. This has been useful in defining all the relational tables of the project. It has also been used in creating many views providing for information hiding and data security. Data Definition Language (DDL) also supports alteration of the existing tables.

DATA MANIPULATION LANGUAGE (DML) is the most important of the query Language. This has features for inserting records into the tables, deleting the existing records from the tables, updating the existing records in the tables and retrieving the data from one or more tables as and when required. This has been used to fulfill the objectives of the organization. Other packages like FoxPro and Dbase do not have such features and hence make the job of querying more complex.

DATA CONTROL LANGUAGE (DCL) is used for controlling data and having access to the databases. This part of the language provides extensive security features in order to safe guard the users information from both unauthorized access and intentional damage. Granting and revoking privileges provide security. Oracle users have names and passwords and own tables, views and other database objects.

This is a procedural extension to the non-procedural SQL. It combines the data manipulation power of standard procedural languages. It supports sub-programming features such as procedures and functions, triggers, packages, exceptions and integrates well with SQL*PLUS and other application development products of ORACLE.

These facilities have eased the job of developing the software to meet the organizational requirements. Much similar programming logic has been coded as functions and procedures and has been used in many areas. For example retrieving the records, Calculation of various parameters of Pay etc.This has been a big advantage in developing the package.

 The facilities of triggers have been used to generate actions based on some database events. For example the software, on insertion of records generates an error message if the record already exists. For deletion of records the software generates an error message if the record with the given primary key value does not exist. Similarly for selection of records the software generates error messages if the record is not present.

The facility of exceptions also helped in developing a user-friendly package. Exceptions are raised and a suitable actions are taken when errors occur such as’ when no data found’, ‘Too many rows’, etc.

The facility of Cursors where used in retrieving records one bye one in an orderly way. This helps in management in viewing the records one after the other to get the required information about each employee. This usage of Cursors eliminates many errors such as ‘ Too many rows’,etc.Each record can be retrieved and studied for any amount OD time before retrieving the next record. Cursors retrieve the records in ascending order of the values of the primary key.

Reasons for Choosing Oracle
1. Direct SQL interface to the database through SQL plus lets developers and users interact with the database and applications quickly. These prototypes can be used as basic units for the real application.

2. Additional changes to these applications can be done in a very short time. There are three types of modules one can create with FORMS. They are

FORMS: Allows creation deletion and updating of data.

MENUS: Helps to define a set of main menus for the applications and also the various submenus associated with the main menu.

LIBRARY: A repository of centralized PL/SQL code accessed by other form modules. Manipulate it directly. The Interactive Developer 2000 FORMS 4.5 helps us to produce prototype.

3. The portability of the applications developed using SQL Forms to any Platform like Main Frames of Mini Computers can be achieved.

4. Oracle has the capability top interface with a wide variety of third generations’ languages such as C COBOL PASCAL.

5. Oracle is the most popularly used RDBMS in the recent because it satisfies most of the twelve CODD’s rules for an RDBMS package like:

· View Updating
· High Level insert delete update
· Physical data independence

SYSTEMATIC TREATEMENT of NULL VALUES
· Non Subversion

· Distributed Independence

· Comprehensive

· Guaranteed access

· Logical Data Independence

· Information Representation

· Dynamic on-line catalog based relational model

6. Oracle has its own CASE tools designed to help business requirements and to generate data entry and reporting modules

The Components are:

· CASE Designer

· CASE Dictionary

· Oracle forms generator

· Oracle reports generator

MODULARITY

Software architecture embodies modularity i.e software is dividing into separately named and addressable components called modules that are integrated to satisfy problem requirements. Modularity is the single attribute software that allows a program to be intellectually manageable. It is easier to solve a complex problem when it is divided or broken down into manageable pieces using the divide and conquer principle. ORACLE allows us to embed this principle while developing applications.

UML DIAGRAMS

A Diagram is the graphical presentation of a set of elements, most often rendered as a connected graph of vertices (things) and arcs (relationships).For this reason, and the UML includes nine such diagrams.

The Unified Modelling Language (UML) is probably the most widely known and used notation for object-oriented analysis and design. It is the result of the merger of several early contributions to object-oriented methods. The Unified Modelling Language (UML) is a standard language for writing software blueprints? The UML may be used to visualize, specify, construct, and document the artefacts. A Modelling language is a language whose vocabulary and rules focus on the conceptual and physical representation of a system. Modelling is the designing of software applications before coding. Modelling is an Essential Part of large software projects, and helpful to medium and even small projects as well. A model plays the analogous role in software development that blueprints and other plans (site maps, elevations, physical models) play in the building of a skyscraper. Using a model, those responsible for a software development project's success can assure themselves that business functionality is complete and correct, end-user needs are met, and program design supports requirements for scalability, robustness, security, extendibility, and other characteristics, before implementation in code renders changes difficult and expensive to make.

The underlying premise of UML is that no one diagram can capture the different elements of a system in its entirety. Hence, UML is made up of nine diagrams that can be used to model a system at different points of time in the software life cycle of a system. The nine UML diagrams are:

· Use case diagram: The use case diagram is used to identify the primary elements and processes that form the system. The primary elements are termed as "actors" and the processes are called "use cases." The use case diagram shows which actors interact with each use case.

· Class diagram: The class diagram is used to refine the use case diagram and define a detailed design of the system. The class diagram classifies the actors defined in the use case diagram into a set of interrelated classes. The relationship or association between the classes can be either an "is-a" or "has-a" relationship. Each class in the class diagram may be capable of providing certain functionalities. These functionalities provided by the class are termed "methods" of the class. Apart from this, each class may have certain "attributes" that uniquely identify the class.

· Activity diagram: The process flows in the system are captured in the activity diagram. Similar to a state diagram, an activity diagram also consists of activities, actions, transitions, initial and final states, and guard conditions.

· Sequence diagram: A sequence diagram represents the interaction between different objects in the system. The important aspect of a sequence diagram is that it is time-ordered. This means that the exact sequence of the interactions between the objects is represented step by step. Different objects in the sequence diagram interact with each other by passing "messages".

Now that we have an idea of the different UML diagrams, let us see if we can somehow group together these diagrams to enable us to further understand how to use them.

DATA FLOW DIAGRAMS

The Dataflow Diagrams allows you to create and maintain business functions, data stores, data flows and externals that are stored in the Repository.

Dataflow diagramming involves the creation of diagrams to show how data flows through your organization. Dataflow diagrams are drawn to represent data dependencies, system components or even the context of a project.

Each dataflow diagram represents a single business function for an application system .This function may be a mission statement for an entire organization, or a small series of activities for an isolated part of the organization’s business.

DFDs show the flow of data from external entities into the system, showed how the data moved from one process to another, as well as its logical storage.

There are only four symbols:

1) Squares representing external entities, which are sources or destinations of data.

[image: image10]
2) Rounded rectangles representing process, which take data as input, do something to it, and output it.

[image: image11]
3) Arrows representing the data flows , which can either be electric data or physical items.

4)Open ended rectangles representing data stores , including electronic stores such as databases or XML files and physical stores such as or filing cabinets or stacks of paper.

LEVELS OF ABSTRACTION:-

Level 0:-

The Highest level DFD is Level 0.It shows the entire application as a single process surrounded by its data stores and is sometimes known as context diagram.

Level 1:-

It shows the whole application again but with the main processes, the data flows between them and their I individual links the data stores.

Level 2:-
Each process from level 1 is expanded into its own level 2 diagram and then into lower level diagram to show further detail. Process no 1 at level 1 would be expanded into processes 1.1, 1.2, 1.3, etc... At level 2.

Data stores remain the same at all levels of abstraction but new stores may be introduced at any level. These are usually temporary stores such as views and cursors which are required in lower level processes.
 NORMALIZATION

Normalization is a process that helps analysts or database designers to design table structures for an application. The focus of normalization is to attempt to reduce redundant table data to the very minimum. Through the normalization process, the collection of data in a single table is replaced, by the same data being distributed over multiplied tables with a specific relationship being setup between the tables. By this process RDBMS schema designers try their best to reduce table data to the very minimum.

Note:-It is essential to remember that redundant data cannot be reduced to zero in any database management system.

Having said this, when the process of normalization is applied to table data and this data is spread across several associated (i.e. a specific relationship has been established) tables, it takes a query much longer to run and retrieve user data from the set of tables.

Normalization is carried out for the following reasons:

· To structure the data between tables so that data maintenance is simplified.

· To allow data retrieval at optimal speed

· To simplify data maintenance through updates, inserts and deletes.

· To reduce the need to restructure tables as new application requirements arise.

· To improve the quality of design for an application by rationalization of table data.

Normalization is a technique that:

· Decomposes data into two-dimensional tables.

· Eliminates any relationship in which table data does fully depend upon the primary key of a record.

· Eliminates any relationship that contains transitive dependencies.

A description of the three forms of Normalization is as mentioned below.

First Normal Form

When a table is decomposed into two-dimensional tables with all repeating groups of data eliminated, the table data said to be in its first normal form.

The repetitive portion of data belonging to the record is termed as repeating groups.

A table is in 1st normal form if:
· There are no repeating groups.

· All the key attributes are defined.

· All attributes are dependent on a primary key.

To convert a table to its First Normal Form:

· The normalized data in the first table is the entire table.

· A Key that will uniquely identify each record should be assigned to the table. This key has to be unique because it should be capable of identifying any specific row from the table for extracting information for use. This key is called the table’s primary key.

Second Normal Form

A table is said to be in its second normal form when each record in the table is in the first normal form and each column in the record is fully dependent on its primary key.

A table is in 2nd normal form if:

· It’s in 1st normal form.

· It includes no partial dependencies(where an attribute is dependent on only a part of a primary key)

The steps to convert a table to its Second Normal Form:

· Find and remove fields that are related to the only part of the key.

· Group the remove items in another table.

· Assign the new table with the key i.e. part of a whole composite key.

To convert the table into the second normal form remove and place these fields in a separate t
able, with the key being that part of the original key they are dependent on.

Third Normal Form

Table data is said to be in third normal format when all transitive dependencies are removed from this data.

The table is in 3rd normal form if:

· It’s in 2nd normal form.

· It contains no transitive dependencies (where a non-key attributes is dependent on another non-key attribute).
A general case of transitive dependencies is as follows:

· A, B, C are three columns in table.

· If C is related to B

· If B is related to A

· Then C is indirectly related to A

This is when Transitive dependency exists.

To convert such data to its third normal form remove this transitive dependency by splitting each relation in two separate relations. This means that data in columns A, B, C must be places in three separate tables, which are linked using a foreign key.

To convert the table into the third normal form remove and place these fields in a separate table, with the attribute it was dependent on as key. These tables are all now in their 3rd normal form, and ready to be implemented. There are other normal forms such as Boyce-Codd normal form, and 4th normal form, but these are very rarely used for business applications. In most cases, tables that are in their 3rd normal form are already conforming to these types of table formats anyway.
	S.No
	Column Name
	Data Type
	Constraints

E-R Diagrams

The Entity Relationship Diagrams is a modelling tool used for defining the information needs of a business as an entity relationship model.

Entity relationship modelling involves identifying the things of importance in an organization (entities),the properties of those things (attributes)and how they are related to one another (relationships).The resulting information model is independent of any data storage or access method.

Large entity relationship diagrams drawn for entire complex systems or smaller diagrams drawn for subset of systems .One entity many detailed subset models to be defined.

E-R Diagrams are nothing but relationship between entities.

· An Entity is an object or a thing in the real world with an independent existence.

[image: image12]
· Attributes are descriptive properties possessed by each member of an entity set.

· Relationship is an association among several entities.

USER CHARACTARISTICS

	WHO
	USER

	WHAT
	Access DB, modify DB

	WHEN
	When ever required but with access permissions

	WHERE
	With in the organization

	WHY
	to access the DB

	HOW
	By logging in and accessing the system DB

	WHO
	Administrator

	WHAT
	Provides access rights, checks DB and modifies DB

	WHEN
	Whenever required

	WHERE
	With in the organization

	WHY
	

	HOW
	By logging in and accessing the system DB

DFD’S

[image: image13]
 0 Level DFD or Context Diagram A GUI ORACLE INTERFACE TO JAVA

1st Level DFD user USER

[image: image14]
Level 1 Diagram of Administrator

Use case diagram of A GUI ORACLE INTERFACE TO JAVA

Activity diagram

[image: image15.emf]Administrator

userid : String

password : String

result : String

createNewUser(userid : String, password : String) : boolean

grantPrivilege(userid : String, tabname : String, privilege : String) : boolean

revokePrivilege(userid : String, tabname : String, privilege : String) : boolean

dropUser(userid : String) : boolean

OracleInterface

userid : String

password : String

con : Connection

st : Statement

rs : ResultSet

validateUser(userid : String, password : String)

establishConnection(id : String, pwd : String, hostname : String) : Connection

buildStatement(uid : String, tabname : String, privilege : String) : Statement

executeStatement(st : Statement) : boolean

executeStatement(st : Statement) : ResultSet

closeConnection(con : Connection) : boolean

1

1

1

1

OracleDataBase

username : String[]

tablename : String[]

privileges : String[]

records : String[]

attributes : String[]

constraints : String[]

1

11

1

CLASS DIAGRAM

[image: image16.emf]User

userid : String

password : String

result : String

createTable(tabname : String, ncols : integer, colname : String[], coltype : String[], colsize : integer[]) : boolean

alterTable(tabname : String, colname : String, coltype : String, colsize : integer, newcoltype : String, newcolsize : integer) : boolean

grantPrivilege(userid : String, tabname : String, privilege : String) : boolean

revokePrivilege(userid : String, tabname : String, privilege : String) : boolean

dropTable(tabname : String) : boolean

insertRecords(tabname : String, colname : String[], coltype : String[], colsize : integer[], colvalue : String[]) : boolean

updateRecords(tabname : String, colname : String[], coltype : String[], colsize : integer[], colvalue : String) : boolean

deleteRecords(tabname : String, colname : String[], coltype : String[], colsize : integer[], colvalue : String) : boolean

viewRecords(tabname : String, colname : String[], colcond : String[], colvalue : String) : String

OracleInterface

userid : String

password : String

con : Connection

st : Statement

rs : ResultSet

validateUser(userid : String, password : String)

establishConnection(id : String, pwd : String, hostname : String) : Connection

buildStatement(uid : String, tabname : String, privilege : String) : Statement

executeStatement(st : Statement) : boolean

executeStatement(st : Statement) : ResultSet

closeConnection(con : Connection) : boolean

OracleDataBase

username : String[]

tablename : String[]

privileges : String[]

records : String[]

attributes : String[]

constraints : String[]

*

11

*

1

11

1

SEQUENCE DIAGRAM

[image: image17.emf]AdministratorOracleInterfaceOracle

Database

send userid and password

validate user

establish connection

notify

select operation

send selected operation

send user details

send table details

build SQL statement

send SQL statement

execute statement

return result

display result

logout

close connection

[image: image18.emf]UserOracleInterfaceOracle

Database

send userid and password

establish connection

retrieve users

notify

send user details

validate user

close connection

notify

establish user connection

select language

send selected language

select operation

send selected operation

send table details

send user details

build SQL statement

send SQL statement

execute statement

return result

display result

logout

close user connection

 Fig : ER Diagram
DATA DICTONARY
Table Name: user_details

	Column name
	datatype

	 UNAME
	VARCHAR2(10)

	 PWD
	VARCHAR2(10)

	 RPWD
	VARCHAR2(10)

	 MNO
	VARCHAR2(10)

	 EMID
	.VARCHAR2(20)

Table Name: employee

	Columnname
	datatype

	 SNO
	NUMBER(10)

	 SNAME
	VARCHAR2(10)

Jakarta Tomcat 5.5 for Servlet and JSP Development

Following is a guide to installing and configuring Apache Tomcat 5.5 for use as a standalone Web server (for development) that supports servlets 2.4 and JSP 2.0. (Note: Apache Tomcat is sometimes referred to as "Jakarta Tomcat" since the Apache Java effort is known as "The Jakarta Project"). This Tomcat tutorial covers version 5.5.17, but the steps are almost the same for any Tomcat 5.5.x version. For coverage of older Tomcat versions (Apache Tomcat 5.0.x and Apache Tomcat 4.0.x), Using Tomcat as a deployment server or integrating Tomcat as a plugin within the regular Apache server or a commercial Web server is more complicated than what is described in this tutorial. Although such integration is valuable for a deployment scenario (see http://jakarta.apache.org/tomcat/tomcat-5.5-doc/), my goal here is to show how to use Tomcat as a development server on your desktop. Regardless of what deployment server you use, you'll want a standalone server on your desktop to use for development.

The examples here assume you are using Windows, but they can be easily adapted for MacOS, Linux, Solaris, and other versions of Unix. Except when I refer to specific Windows paths (e.g., C:\blah\blah), I use URL-style forward slashes for path separators (e.g., install_dir/webapps/ROOT). Adapt as necessary.

The information here is adapted from the introductory setup and configuration chapter of Core Servlets and JavaServer Pages, 2nd Edition, Volume 1 from Sun Microsystems Press and Prentice Hall. For the book table of contents, index, source code, etc., please see http://volume1.coreservlets.com/ For information on training courses (either at public venues or on-site at your company) taught by the author of the book and this Apache Tomcat tutorial, please see the servlet, JSP, Struts, JSF, AJAX, and Java 5 training courses page. To report errors or omissions in this writeup or to inquire about on-site training courses on servlets, JSP, Struts, JSF, AJAX, Java 5, and other J2EE technologies, please contact Marty Hall at hall@coreservlets.com
Executive Summary

For those who want to change the configuration or do it themselves, the rest of this section gives a summary of t
he required steps, and I then give extremely detailed instructions in the following sections.

· Install the JDK. Make sure JDK 1.5 or 1.4 is installed and your PATH is set so that both "java -version" and "javac -help" give a result.

· Configure Tomcat.
Download the software. Go to http://tomcat.apache.org/download-55.cgi and download and unpack the zip file for the current release build of Tomcat 5.5. Using Tomcat with JDK 1.5 (Java 5) is preferred, but if you use JDK 1.4, you have to also download and unpack the "Compat" zip file. The the preconfigured Tomcat version already contains the "Compat" files and can be used with either Java 5 (1.5) or Java 1.4.

1. Set the JAVA_HOME variable.Set it to refer to the base JDK directory, not the bin subdirectory.

2. Change the port to 80. Edit install_dir/conf/server.xml and change the port attribute of the Connector element from 8080 to 80.

3. Turn on servlet reloading. Edit install_dir/conf/context.xml and change <Context> to <Context reloadable="true">.

4. Enable the invoker servlet. Go to install_dir/conf/web.xml and uncomment the servlet and servlet-mapping elements that map the invoker servlet to /servlet/*.

5. Change the DOS memory settings. If you are on Windows 98/Me and get an "Out of Environment Space" error message when you start the server, right-click on install_dir/bin/startup.bat, select Properties, select Memory, and change the Initial Environment entry from Auto to at least 2816. Repeat the process for install_dir/bin/shutdown.bat. Only needed for Windows 98 and ME; not necessary on recent versions of Windows.

6. Set the CATALINA_HOME variable. Optionally, set CATALINA_HOME to refer to the top-level Tomcat installation directory. Not necessary unless you copy the startup scripts instead of making shortcuts to them.

7. Use a preconfigured Tomcat version.Optionally; use a version of Jakarta Tomcat that has all of the above changes already made, and has the test HTML, JSP, and servlet files already bundled. Just unzip the file, set your JAVA_HOME and CLASSPATH variables, and you are ready to go.

8. Test the server.
9. Verify that you can start the server. Double-click install_dir/bin/startup.bat and try accessing http://localhost/.

10. Check that you can access your own HTML & JSP pages. Drop some simple HTML and JSP pages into install_dir/webapps/ROOT and access them with http://localhost/filename.

11. Try Compiling and Deploying Servlets.

Set up your development environment.

12. Create a development directory. Put it anywhere except within the Tomcat installation hierarchy.

13. Make shortcuts to the Tomcat startup & shutdown Scripts.Put shortcuts to install_dir/bin/startup.bat and install_dir/bin/shutdown.bat in your development directory and/or on your desktop.

Set your CLASSPATH. Include the current directory ("."), the servlet/JSP JAR files (install_dir/common/lib/servlet-api.jar and install_dir/common/lib/jsp-api.jar), and your main development directory from Step 1.

14. Bookmark the servlet & JSP javadocs. Add install_dir/webapps/tomcat-docs/servletapi/index.html and install_dir/webapps/tomcat-docs/jspapi/index.html to your bookmarks/favorites list.

Compile and test some simple servlets.

15. Test a packageless servlet. Compile a simple servlet, put the .class file in install_dir/webapps/ROOT/WEB-INF/classes, and access it with http://localhost/servlet/ServletName.

16. Test a servlet that uses packages. Compile the servlet, put the .class file in install_dir/webapps/ROOT/WEB-INF/classes/packageName, and access it with http://localhost/servlet/packageName.ServletName.

17. Test a servlet that uses packages and utility classes. Compile a servlet, put both the servlet .class file and the utility file .class file in install_dir/webapps/ROOT/WEB-INF/classes/packageName, and access the servlet with http://localhost/servlet/packageName.ServletName. This third step verifies that the CLASSPATH includes the top level of your development directory.

Establish a simplified deployment method.

18. Copy to a shortcut. Make a shortcut to install_dir/webapps/ROOT. Copy packageless .class files directly there. With packages, copy the entire directory there.

19. Use the -d option of javac.Use -d to tell Java where the deployment directory is.

20. Let your IDE take care of deployment. Tell your IDE where the deployment directory is and let it copy the necessary files.

21. Use ant or a similar tool. Use the Apache make-like tool to automate copying of files.

Get more info. Access the complete set of Tomcat docs, get free JSP and servlet tutorials, read the official servlet and JSP specifications, get JSP-savvy editors and IDEs, look for J2EE jobs, etc.

Install the JDK

Your first step is to download and install Java. The servlet 2.4 (JSP 2.0) specification requires JDK 1.3 or later; J2EE 1.4 (which includes servlets 2.4 and JSP 2.0) requires JDK 1.4 or later. You might as well get a recent Java version, so use JDK 1.4 or 1.5. If you know which of those Java versions will be used on your project, get that one. In general, I recommend JDK 1.5. See the following sites for download and installation information.

· JDK 1.5 for Windows, Linux, and Solaris: http://java.sun.com/j2se/1.5.0/download.jsp. Be sure you download the full JDK (J2SE Development Kit), not just the JRE (Java Runtime Environment). The JRE is only for running already-compiled .class files, and lacks a compiler.

· JDK 1.4 for Windows, Linux, and Solaris: http://java.sun.com/j2se/1.4/download.html. Be sure you download the full SDK (Software Development Kit), not just the JRE (Java Runtime Environment). The JRE is only for running already-compiled .class files, and lacks a compiler.

· JDK 1.5 and 1.4 for MacOS: http://developer.apple.com/java/download/
Once you've installed Java, confirm that everything including your PATH is configured properly by opening a DOS window and typing "java -version" and "javac -help". You should see a real result both times, not an error message about an unknown command. Or, if you use an IDE, compile and run a simple program to confirm that the IDE knows where you installed Java.

For example, if you have JDK 1.5_08, you could set your PATH by putting the following line in your C:\autoexec.bat file.

set PATH="C:\Program Files\Java\jdk1.5.0_08\bin";%PATH%

On Windows XP, you could also go to the Start menu, select Control Panel, choose System, click on the Advanced tab, press the Environment Variables button at the bottom, and enter the PATH variable and value directly. On Windows 2000 and NT, you do Start, Settings, Control Panel, System, then Environment. However, you can use C:\autoexec.bat on those versions of Windows also (unless a system administrator has set your PC to ignore it).

Configure Tomcat

Configuring Tomcat involves five main steps and four optional steps:

1. Downloading the Jakarta Tomcat software.
2. Setting the JAVA_HOME variable.

3. Changing the port from 8080 to 80.

4. Telling Tomcat to reload servlets when they are modified.
5. Enabling the invoker servlet
6. Changing the DOS memory settings. (Win98/Me only)

7. Setting the CATALINA_HOME variable. (Optional; rarely used)

8. Using a preconfigured version of Tomcat with these changes already made.(Optional; widely used)

9. Using the Windows .exe installer instead of the .zip file. (Not Recommended)

 Testing

Testing is the process of detecting errors. Testing performs a very critical role for quality assurance and for ensuring the reliability of software. The results of testing are used later on during maintenance also.

Psychology of Testing

The aim of testing is often to demonstrate that a program works by showing that it has no errors. The basic purpose of testing phase is to detect the errors that may be present in the program. Hence one should not start testing with the intent of showing that a program works, but the intent should be to show that a program doesn’t work. Testing is the process of executing a program with the intent of finding errors.

Testing Objectives

The main objective of testing is to uncover a host of errors, systematically and with minimum effort and time. Stating formally, we can say,

· Testing is a process of executing a program with the intent of finding an error.

· A successful test is one that uncovers an as yet undiscovered error.

· A good test case is one that has a high probability of finding error, if it exists.

· The tests are inadequate to detect possibly present errors.

· The software more or less confirms to the quality and reliable standards.

Levels of Testing

In order to uncover the errors present in different phases we have the concept of levels of testing. The basic levels of testing are as shown below…

Client Needs

 Requirements

 Design

 Code

System Testing

The philosophy behind testing is to find errors. Test cases are devised with this in mind. A strategy employed for system testing is code testing.

Code Testing

This strategy examines the logic of the program. To follow this method we developed some test data that resulted in executing every instruction in the program and module i.e. every path is tested. Systems are not designed as entire nor are they tested as single systems. To ensure that the coding is perfect two types of testing is performed or for that matter is performed or that matter is performed or for that matter is performed on all systems.

Types Of Testing

· Unit Testing

· Link Testing

 UnitTesting

Unit testing, focuses verification effort on the smallest unit of software i.e. the module. Using the detailed design and the process specifications testing is done to uncover errors within the boundary of the module. All modules must be successful in the unit test before the start of the integration testing begins.

In this project each service can be thought of a module. There are three basic modules. Giving different sets of inputs has tested each module. When developing the module as well as finishing the development so that each module works without any error. The inputs are validated when accepting from the user.

In this application developer tests the programs up as system. Software units in a system are the modules and routines that are assembled and integrated to form a specific function. Unit testing is first done on modules, independent of one another to locate errors. This enables to detect errors. Through this errors resulting from interaction between modules initially avoided.
Link Testing

Link testing does not test software but rather the integration of each module in system. The primary concern is the compatibility of each module. The Programmer tests where modules are designed with different parameters, length, type etc.

Integration Testing

After the unit testing we have to perform integration testing. The goal here is to see if modules can be integrated properly, the emphasis being on testing

interfaces between modules. This testing activity can be considered as testing the design and hence the emphasis on testing module interactions.

In this project integrating all the modules forms the main system. When integrating all the modules I have checked whether the integration effects working of any of the services by giving different combinations of inputs with which the two services run perfectly before Integration.

System Testing

Here the entire software system is tested. The reference document for this process is the requirements document, and the goal is to see if software meets its requirements. Here entire ‘VOIP’ has been tested against requirements of project and it is checked whether all requirements of project have been satisfied or not.

Acceptance Testing

Acceptance Test is performed with realistic data of the client to demonstrate that the software is working satisfactorily. Testing here is focused on external behavior of the system; the internal logic of program is not emphasized. In this project ‘VOIP’ I have collected some data and tested whether project is working correctly or not.

Test cases should be selected so that the largest number of attributes of an equivalence class is exercised at once. The testing phase is an important part of software development. It is the process of finding errors and missing operations and also a complete verification to determine whether the objectives are met and the user requirements are satisfied.

Black Box Testing

This test involves the manual evaluation of the flow from one Module to the other and check accordingly for the process Flow.

BIBILOGRAPHY

References and Web Resources
· Java at Sun Microsystems., Inc - java.sun.com.

· Java user site: www.java.com.

· Java Community Process Program - www.jcp.com.

· Java Virtual Machine Specifications, 2nd Ed. - Java.Sun.com
· Java Upgrade Guide: Migrating From the Microsoft VM for Java to the Sun JRE - java.sun.com
· Java Virtual Machine - Wikipedia Stack - Wikipedia
· Java Virtual Machine Specifications, 2nd Ed. - Java.Sun.com
· Java Upgrade Guide: Migrating From the Microsoft VM for Java to the Sun JRE - java.sun.com
· Java Virtual Machine - Wikipedia
· Stack - Wikipedia
· http://java.sun.com/products/jsp/
· http://en.wikipedia.org/wiki/JavaServer_Pages
· http://en.wikipedia.org/wiki/Java_Database_Connectivity
· http://www.webopedia.com/TERM/J/JDBC.html
· http://jakarta.apache.org/tomcat/tomcat-5.5-doc
· http://www.coreservlets.com/Apache-Tomcat-Tutorial/
· http://tomcat.apache.org/download-55.cgi
External Entity

Process

Data

Data Store

User

Admin

password

uname

password

pwd

Sever name

uname

access privileges

pwd

Login name

Modifies DB

Modify DB

Checks DB

Access DB

Gets access rights

Provide access rights to users

student

Administrator

Success

filure

login

Start

Access data

Modify data

User

Provides access rights to users

Checks database

Administrator

Gets access rights

login

Administrator

Student DB

Administrator DB

Administrator DB

login

Provides access rights

Checks database

Modify data

USER DB

Administrator DB

USER

user

login

Get access rights

Administrator

Access data

Adminstrator

login

user

Provides Access

login

A GUI ORACLE INTERFACE TO JAVA

 Gets access rights

Access data base

Rights to user checks

Modifies data bases

Unit Testing

Integration Testing

System Testing

Acceptance Testing

