ABSTRACT

The current paper-pencil system is very time consuming. It is very difficult to analyze the exam manually. To take exam of more candidates more invigilators are required but no need of invigilator in case of online exam. Results are not precise when calculation and evaluations are done manually. Result processing takes more time as it is done manually. Moreover it does not have the flexibility to set any number of papers easily. Also the error correction is difficult one the paper is submitted.
Online examinations are future of all examinations. Even existing online examinations are not secure. An Ultra Secure Online Examination Management using XML-“Assesor” is developed for this purpose. It is a complete online automated solution to customize testing and test analysis management. It coordinates and integrates all the inherent activities involved in the management of testing and comprehensive feedback and analysis of the result to the examinee. This Web Application provides facility to conduct online examination worldwide. It saves time as it allows number of students to give the exam at a time and displays the results as the test gets over, so no need to wait for the result. It is automatically generated by the server. Administrator has a privilege to create, modify and delete the test papers and its particular questions. User can register, login and give the test with his specific id, and can see the results as well.
 TABLE OF CONTENTS

 CHAPTER NO.

TITLE

 PAGE NO.

 ABSTRACT 1
 LIST OF TABLES 4
 LIST OF FIGURES 5

1.

INTRODUCTION

6
1.1 INTRODUCTION OF PROJECT

6

1.2 Scope of the development project
6

 2.

PROBLEM STATEMENT

7
 3.

SYSTEM ANALYSIS

8
 3.1 Existing System

8
 3.1.1 Limitations of existing system

8
 3.2 Proposed System

8
 3.2.1 Advantages

8
 3.3 Feasibility Study

10
 3.4 System Requirements

 12

 3.4.1 Hardware Requirements

12
 3.4.2 Software Requirements

12
 3.5 Data Flow Diagram

13

 4.

GENERAL DESCRIOTION

17
 4.1 Characteristics

17
 5. Overview oF THE SYSTEM

 18
 5.1 Overview

18
 5.2 Specific Requirements 19

5.3. Functionalities
20

6.
CONCEPTS USED

23

 6.1 Software System Attributes

23

 6.2 Data Tables

24

7.
TECHNOLOGY USED

27

 5.1 ASP.NET

27

 5.2 SQL

41

 5.3 MS ACCESS

49

5.4 XML

50

 5.4
AJAX

 54

 6
CONCLUSION

56
 LIST OF TABLES
6.2.1. Login Table

23

6.2.2 Test Info Table

23

6.2.3 Question Table

24

6.2.4 Test Result Table

24
 LIST OF FIGURES
3.1 Data Flow Diagram

16

5.1 Login Page

21

5.2 Admin Page

22
 CHAPTER-1
 INTRODCTION

1.1 INTRODUCTION OF THE PROJECT

This report describes the function and the performance requirements allocated to our product. Our Product will require Microsoft Windows XP operating system and SQL Server 2005 installed on it for it’s working. This Web Application provides facility to conduct online examination worldwide. It saves time as it allows number of students to give the exam at a time and displays the results as the test gets over, so no need to wait for the result. It is automatically generated by the server. Administrator has a privilege to create, modify and delete the test papers and its particular questions. User can register, login and give the test with his specific id, and can see the results as well.

1.2- Scope of the development project
The name of of project will be “Secure Online Examination Management using XML-Assesor”. It is a complete online automated solution to customize testing and test analysis management. It coordinates and integrates all the inherent activities involved in the management of testing and comprehensive feedback and analysis of the result to the examinee.

 CHAPTER-2

 PROBLEM STATEMENT
 To develop a Web Application which provides facility to conduct online examination worldwide to saves time as it allows number of students to give the exam at a time and displays the results as the test gets over, so no need to wait for the result. It is automatically generated by the server.

 CHAPTER-3

 SYSTEM ANALYSIS

 3.1 EXISTING SYSTEM
The current system is very time consuming. It is very difficult to analyze the exam manually. To take exam of more candidates more invigilators are required but no need of invigilator in case of on line exam. Results are not precise as calculation and evaluations are done manually. Result processing takes more time as it is done manually. Moreover it do not have the flexibility to set any number of papers easily. Also the error correction is difficult one the paper is submitted. Even existing online examinations are not secure.
3.1.1 Limitations of Existing System

1. The chances of paper leakage are more in current system as compared to proposed system.

2. Concurrent login from different browsers or different systems from the same account.

3. None of the encryption techniques are used.

 3.2 PROPOSED SYSTEM

3.2.1 Advantages of the Proposed System

1. Result will be very precise and accurate and will be declared in very short span of time because calculation and evaluations are done by the simulator itself.
2. Questions will be selected from different pool of papers.

3. Prevents concurrent login from different browsers or different systems from the same account.

4. Prevents malpractices by capturing pictures of candidates at several intervals.

5. Encryption is used to prevent access to questions.

5.(a). XML is a W3C standard endorsed by software industry market leaders like software AG, IBM, SUN, Microsoft, etc.

 (b).It supports multilingual documents and Unicode.
 (c).XML is platform independent, language independent, open standard.

 3.3 FEASIBILITY STUDY

· Technical Feasibility

· Technical feasibility centers on the existing manual system of the test management process and to what extent it can support the system. According to feasibility analysis procedure the technical feasibility of the system is analyzed and the technical requirements such as software facilities, procedure, inputs are identified. It is also one of the important phases of the system development activities.

· The system offers greater levels of user friendliness combined with greater processing speed. Therefore, the cost of maintenance can be reduced. Since, processing speed is very high and the work is reduced in the maintenance point of view management convince that the project is operationally feasible.

· Economical Feasibility
· Economic analysis is most frequently used for evaluation of the Effectiveness of the system. More commonly known as cost/benefit analysis the procedure is to determine the benefit and saving that are expected from a system and compare them with costs, decisions is made to design and implement the system. This part of feasibility study gives the top management the economic justification for the new system. This is an important input to the management the management, because very often the top management does not like to get confounded by the various technicalities that bound to be associated with a project of this kind.

· A simple economic analysis that gives the actual comparison of costs and benefits is much more meaningful in such cases. In the system, the organization is most satisfied by economic feasibility. Because, if the organization implements this system, it need not require any additional hardware resources as well as it will be saving lot of time.

· Behavioral Feasibility
People are inherently resistant to change and computer has been known to facilitate changes. An estimate should be made of how strong the user is likely to move towards the development of computerized system These are various levels of users in order to ensure proper authentication and authorization and security of sensitive data of the organization.

· 3.4 SYSTEM REQUIREMENTS
3.4.1 Hardware Requirements

Processor

: Pentium-4

RAM

: 1GB or above

HD

: 4GB or above

FD, CDROM, Mouse, Keyboard.

3.4.2 Software Requirements

Operating System
: Windows XP with SP2 or higher, Vista, Win7
Packages used
: RDBMS (Sql server 2005), MS Access, Xml, Ajax, Flash
Platform

 : ASP.NET
 3.5 DATA FLOW DIAGRAM

 A Data Flow Diagram (DFD) is a diagram that describes the flow of data and the processes that change or transform data throughout a system. It is a structured analysis and design tool that can be used for flowcharting in place of, or in association with, information oriented and process oriented system flowcharts. When analysts prepare the DFD, they specify the user needs at a level of detail that virtually determines the information flow into and out of the system and the required data resources. This network is constructed by using a set of symbols that do not imply a physical implementation. The DFD reviews the current physical system, prepares input and output specification, specifies the implementation plan etc.

The data flow diagram is a way of expressing system requirements in a graphical form. This led to the modular design. A data flow diagram also known as a “Bubble short” has the purpose of clarifying system requirements and identifying major transformations that will become program in system design. Four basic symbols are used to construct data flow diagrams. They are symbols that represent data source, data flows, and data transformations and data storage. The points at which data are transformed are represented by enclosed figures, usually circles, which are called nodes
Rectangle defines a source (originator) or destination of a system data called Terminator that is external entities with which the system communicates

An Arrow identifies data flow. It is a pipeline through which information flows.

A Circle represents a process that transforms incoming data flow(s) into outgoing data flow(s).

An “Open Rectangle” is a data store. The store is used to model a collection of data packets at rest. It can be a card file, a filling cabinet or database on disk etc.

· Steps to Construct Data Flow Diagrams Top-Down Approach

1. The system designer makes a context level DFD, which shows the interaction (data flows) between the system (represented by one process) and the system environment (represented by terminators).

2. The system is decomposed in lower level DFD (Zero) into a set of processes, data stores, and the data flows between these processes and data stores.

3. Each process is then decomposed into an even lower level diagram containing its subprocesses.

4. This approach then continues on the subsequent subprocesses, until a necessary and sufficient level of detail is reached which is called the primitive process (aka chewable in one bite).

[image: image1.png]
Fig 3.1: Data flow diagram
CHAPTER-4
General Description
4.1.General Description
4.1.1. User characteristics
The user will be of two kinds:- 1.the examiner and 2. the examinees. the former will have to be familiar with the test creation and management system. If needed, the examiner should be trained up to use this product.

4.1.2. Product Perspective
The product requires windows operating system External interfaces include keyboard and mouse enabling navigations across screens.

4.1.3. Overview of data requirements
The examiner will enter all the questions and evaluation information for a particular test. This will include the type of the test (code, number of questions marking scheme), data of questions (questions strings, options correct option, tags according to the category of the question difficulty level) and the number of students and their authentication data of those who would take the test. Meanwhile examinees will attempt the test and reports will be maintained regarding attempts, correct attempts scores etc and would be available to the examinees after the test duration for self analysis. An added feature would be the feedback based on time spent on each question and subsequently also on a category of questions which would benefit the student realigning his/her time strategy for the examination.

CHAPTER-5

 Overview of the system
5.1 Overview
The online test created for taking test has following stages:

 (a) Login

 (b) Test

 (c) Result

Login

There is a quality login window because this is more secure than other login forms as in a normal login window there are multiple logins available so that more than one person ca access to test with their individual login in this project a login id and password is provided to user to use the system

 Test

Then the test window is the test is selected from a previously made question bank from that the questions are selected to compile a test on test a timer is also there to keep track of the time. The questions are selected from the various difficulty level questions. Now as the system remains small the questions can be picked up manually since if we have to take test of 100 students then there is no need to make 100 papers just 10 papers are sufficient to make but if we still need to make a huge number of question papers then the loops can be implemented to sort out questions from various difficulty levels.

Result

In result the examinee will be given his marks cutoff toppers marks and a detailed analysis of the taken test. He will be provided the time management he used that is the time spent on each question and after that totaling the productive and unproductive time. Also the no of attempted and unattempted questions will be given to him. He will be given the cutoff marks and the topper marks also for a comparison.

General Constraints, Assumptions, Dependencies, Guidelines-

This application depends on frontend-backend architecture. It will require an SQL Server 2005 to act as database system that is able to store values from interface.

 License Type

Our product is licensed with GNU GPL license type.

5.2. Specific Requirements
5.2.1 External Interface Requirements -

Input from the user will be via keyboard input and mouse point and click. The user will navigate through the software by clicking on icons and links. The icons will give appropriate responses to the given input.

5.2.2 Detailed Description of Functional Requirements-

The examiner will be able to search a student either by his name or student id. If the search result yields more than one students' data, then information of all those students will be displayed. The examinees then will be able to select the particular test and also would be able to see the solution/analysis of the test.

The information that is to be displayed automatically to the examinees after login :

i) test codes awaiting attempt

ii) tests attempted and their result table

iii) link to the merit list of a the latest test

iv) Date of Birth

v) Gender (M/F)

The information that is to be displayed to the the examiner for creating the test -

i) test questions data bank link

ii) link to the latest test's result summary of all students in the form of a table

iii)link to question id's of questions already used in the past tests

5.3. Functionalities

Following functionality will be present:

 The examinees will select the test code of still to attempt tests.

A new test widow will open mentioning the time and performance constraints set for the test vis-a-vis the duration of test and the marking scheme.

In the case of analysis of tests the testing engine would present data about his performance and analysis of the same on the parameters of time invested and marks obtained. The examiner will be able to create a test in which he/she can include questions form 1. already existing question id's or by 2. entering data into new question id's and import them into the test. The tests c an be attempted only in a give time window/duration to avoid overloading of the servers. The overall result summary of the test results will be generated for the perusal of the examiner. The summary of all the tests and their results will be generated for a specific examinees for all the tests conducted till date.
[image: image2.jpg]
5.1 Login page

[image: image3.jpg]
5.2 Admin Page

CHAPTER -6
 CONCEPTS USED

6.1. Software System Attributes

Usability: The links are provided for each form. The user is facilitated to view and make entries in the forms. Validations are provided in each field toavoid inconsistent or invalid entry in the databases. Some forms consistsHyper Links, which provides further details. Reports screen contains textboxes and drop down lists, so that reports can be produced.

Security: Application will allow only valid users to access the system. Access to any application resource will depend upon user’s designation. There are two types of users namely Administrator and Student. Security is based upon the individual user ID and Password.

 Maintainability: The installation and operation manual of examination management system will be provided to the user.

 Availability: System will be available around the clock except for the timerequired for the back up of data.

6.1.1 Acceptance Criteria
The software should meet the functional requirement and perform the functionality effectively and efficiently.

• A user-friendly interface with proper menus.

• Data transfer should be accurate and with in a reasonable amount of time keeping in mind the network traffic.

• The system should not allow entry of duplicate key values.

• System should have the ability to generate transactional Logs to avoid any accidental loss of data.

• Log file should also be generated.

6.2. Data Tables:
6.2.1. Login table

	Sr. no.
	Name
	Datatype
	Description

	1
	Login Id
	Varchar
	Contains the login id

	2
	Password
	Varchar
	Stores corresponding password

	3
	User type
	Varchar
	Either administrator or examinee

	4
	Name
	Varchar
	Name of user

	5
	DOB
	Date
	Date of birth of user

	6
	Mail id
	Varchar
	Mail id of user

	7
	Phone no
	Integer
	Phone no of user

6.2.2. Test Info table:

	Sr no
	Name
	Datatype
	Description

	1
	TEST_CODE
	Integer
	Contains code no of the test

	2
	Q_NO
	Integer
	Question of the given test

	3
	Q_ID
	Integer
	Id of the question

6.2.3. Question table:

	Sr no
	Name
	Datatype
	Description

	1
	Q_ID
	Integer
	Id of the question

	2
	Ques data
	Varchar
	Content of the question

	3
	Correct option
	Varchar
	The correct option

	4
	Option1
	Varchar
	Option1

	5
	Option2
	Varchar
	Option2

	6
	Option3
	Varchar
	Option3

	7
	Option4
	Varchar
	Option4

	8
	Option5
	Varchar
	Option5

	9
	Solution
	Varchar
	The solution of the question

	10
	Tag1
	Varchar
	Difficulty level tag

	11
	Tag2
	Varchar
	Other tags

6.2.4 Test result table:

	Sr no
	Name
	Datatype
	Description

	1
	Q_NO
	Integer
	Question no of the given test

	2
	1
	Varchar
	The response

	3
	2
	Time
	Time spent

	4
	3
	Integer
	No of visits

	5
	4
	Varchar
	The response

	6
	5
	Time
	Time spent

	7
	6
	Integer
	No of visits

	….
	…..
	……
	………

	301
	300
	Integer
	No of visits

Eg Formula used of any student of code x for response to ques 1

 =[3(x-1)+1]

.

 CHAPTER -5

TECHNOLOGY USED

5.1 ASP.NET
ASP.NET is a web application framework developed and marketed by Microsoft to allow programmers to build dynamic web sites, web applications and web services. It was first released in January 2002 with version 1.0 of the .NET Framework, and is the successor to Microsoft's Active Server Pages (ASP) technology. ASP.NET is built on the Common Language Runtime (CLR), allowing programmers to write ASP.NET code using any supported .NET language.

After the release of Internet Information Services 4.0 in 1997, Microsoft began researching possibilities for a new web application model that would solve common complaints about ASP, especially with regard to separation of presentation and content and being able to write "clean" code. Mark Anders, a manager on the IIS team, and Scott Guthrie, who had joined Microsoft in 1997 after graduating from Duke University, were tasked with determining what that model would look like. The initial design was developed over the course of two months by Anders and Guthrie, and Guthrie coded the initial prototypes during the Christmas holidays in 1997.

The initial prototype was called "XSP"; Guthrie explained in a 2007 interview that, "People would always ask what the X stood for. At the time it really didn't stand for anything. XML started with that; XSLT started with that. Everything cool seemed to start with an X, so that's what we originally named it." The initial prototype of XSP was done using Java, but it was soon decided to build the new platform on top of the Common Language Runtime (CLR), as it offered an object-oriented programming environment, garbage collection and other features that were seen as desirable features that Microsoft's Component Object Model platform didn't support. Guthrie described this decision as a "huge risk", as the success of their new web development platform would be tied to the success of the CLR, which, like XSP, was still in the early stages of development, so much so that the XSP team was the first team at Microsoft to target the CLR. With the move to the Common Language Runtime, XSP was re-implemented in C# (known internally as "Project Cool" but kept secret from the public), and renamed to ASP+, as by this point the new platform was seen as being the successor to Active Server Pages, and the intention was to provide an easy migration path for ASP developers. Mark Anders first demonstrated ASP+ at the ASP Connections conference in Phoenix, Arizona on May 2, 2000. Demonstrations to the wide public and initial beta release of ASP+ (and the rest of the .NET Framework) came at the 2000 Professional Developers Conference on July 11, 2000 in Orlando, Florida. During Bill Gates' keynote presentation, Fujitsu demonstrated ASP+ being used in conjunction with COBOL, and support for a variety of other languages was announced, including Microsoft's new Visual Basic .NET and C# languages, as well as Python and Perl support by way of interoperability tools created by ActiveState. Once the ".NET" branding was decided on in the second half of 2000, it was decided to rename ASP+ to ASP.NET. Mark Anders explained on an appearance on The MSDN Show that year that, "The .NET initiative is really about a number of factors, it's about delivering software as a service, it's about XML and web services and really enhancing the Internet in terms of what it can do ... we really wanted to bring its name more in line with the rest of the platform pieces that make up the .NET framework." After four years of development, and a series of beta releases in 2000 and 2001, ASP.NET 1.0 was released on January 5, 2002 as part of version 1.0 of the .NET Framework. Even prior to the release, dozens of books had been written about ASP.NET, and Microsoft promoted it heavily as part of their platform for web services. Guthrie became the product unit manager for ASP.NET, and development continued apace, with version 1.1 being released on April 24, 2003 as a part of Windows Server 2003. This release focused on improving ASP.NET's support for mobile devices.

Characteristics

.NET pages, known officially as "web forms", are the main building block for application development. Web forms are contained in files with an ".aspx" extension; in programming jargon, these files typically contain static (X)HTML markup, as well as markup defining server-side Web Controls and User Controls where the developers place all the required static and dynamic content for the web page. Additionally, dynamic code which runs on the server can be placed in a page within a block <% -- dynamic code -- %> which is similar to other web development technologies such as PHP, JSP, and ASP, but this practice is generally discouraged except for the purposes of data binding since it requires more calls when rendering the page.

Note that this sample uses code "inline", as opposed to code-behind.

 <%@ Page Language="C#" %>

 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

 protected void Page_Load(object sender, EventArgs e)

 {

 Label1.Text = DateTime.Now.ToLongDateString();

 }

</script>

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title>Sample page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 The current time is: <asp:Label runat="server" id="Label1" />

 </div>

 </form>

</body>

</html>

Code-behind model

It is recommended by Microsoft for dealing with dynamic program code to use the code-behind model, which places this code in a separate file or in a specially designated script tag. Code-behind files typically have names like MyPage.aspx.cs or MyPage.aspx.vb (same filename as the ASPX file, with the final extension denoting the page language). This practice is automatic in Microsoft Visual Studio and other IDEs. When using this style of programming, the developer writes code to respond to different events, like the page being loaded, or a control being clicked, rather than a procedural walk through the document.

ASP.NET's code-behind model marks a departure from Classic ASP in that it encourages developers to build applications with separation of presentation and content in mind. In theory, this would allow a web designer, for example, to focus on the design markup with less potential for disturbing the programming code that drives it. This is similar to the separation of the controller from the view in model-view-controller frameworks.

Example

<%@ Page Language="C#" CodeFile="SampleCodeBehind.aspx.cs" Inherits="Website.SampleCodeBehind"

AutoEventWireup="true" %>

The above tag is placed at the beginning of the ASPX file. The CodeFile property of the @ Page directive specifies the file (.cs or .vb) acting as the code-behind while the Inherits property specifies the Class the Page derives from. In this example, the @ Page directive is included in SampleCodeBehind.aspx, then SampleCodeBehind.aspx.cs acts as the code-behind for this page:

using System;

namespace Website

{

public partial class SampleCodeBehind : System.Web.UI.Page

{

protected void Page_Load(object sender, EventArgs e)

{

// ...

}

}

}

In this case, the Page_Load() method is called every time the ASPX page is requested. The programmer can implement event handlers at several stages of the page execution process to perform processing.
User controls

ASP.NET supports creating reusable components through the creation of User controls. A user control follows the same structure as a Web form, except that such controls are derived from the System.Web.UI.UserControl class, and are stored in ASCX files. Like ASPX files, an ASCX file contains static HTML or XHTML markup, as well as markup defining web control and other user controls. The code-behind model can be used. Programmers can add their own properties, methods, and event handlers. An event bubbling mechanism provides the ability to pass an event fired by a user control up to its containing page. Programmers can also build custom controls for ASP.NET applications. Such custom controls can be compiled into a DLL file. And by using a Register directive, the control from the DLL can be used.
Rendering technique

ASP.NET uses a visited composites rendering technique. During compilation, the template (.aspx) file is compiled into initialization code which builds a control tree (the composite) representing the original template. Literal text goes into instances of the Literal control class, and server controls are represented by instances of a specific control class. The initialization code is combined with user-written code (usually by the assembly of multiple partial classes) and results in a class specific for the page. The page doubles as the root of the control tree.

Actual requests for the page are processed through a number of steps. First, during the initialization steps, an instance of the page class is created and the initialization code is executed. This produces the initial control tree which is now typically manipulated by the methods of the page in the following steps. As each node in the tree is a control represented as an instance of a class, the code may change the tree structure as well as manipulate the properties/methods of the individual nodes. Finally, during the rendering step a visitor is used to visit every node in the tree, asking each node to render itself using the methods of the visitor. The resulting HTML output is sent to the client.

After the request has been processed, the instance of the page class is discarded and with it the entire control tree. This is usually a source of confusion among novice ASP.NET programmers that rely on class instance members that are lost with every page request/response cycle.

State management

ASP.NET applications are hosted in a web server and are accessed over the stateless HTTP protocol. As such, if the application uses stateful interaction, it has to implement state management on its own. ASP.NET provides various functionality for state management in ASP.NET applications. Conceptually, Microsoft treats "state" as mostly GUI state; big problems may arise when an application needs to keep track of "data state" such as a finite state machine that may be in a transient state between requests (lazy evaluation) or just takes long to initialize.

Application state

Application state is a collection of user-defined variables that are shared by an ASP.NET application. These are set and initialized when the Application_OnStart event fires on the loading of the first instance of the applications and are available till the last instance exits. Application state variables are accessed using the Applications collection, which provides a wrapper for the application state variables. Application state variables are identified by names.Session state

Session state is a collection of user-defined session variables, which are persisted during a user session. These variables are unique to different instances of a user session, and are accessed using the Session collection. Session variables can be set to be automatically destroyed after a defined time of inactivity, even if the session does not end. At the client end, a user session is identified either by a cookie or by encoding the session ID in the URL itself.

ASP.NET supports three modes of persistence for session variables:

In Process Mode

The session variables are maintained within the ASP.NET process. This is the fastest way; however, in this mode the variables are destroyed when the ASP.NET process is recycled or shut down. Since the application is recycled from time to time this mode is not recommended for critical applications, rather in practice this mode is not recommended for any applications.

ASPState Mode

In this mode, ASP.NET runs a separate Windows service that maintains the state variables. Because the state management happens outside the ASP.NET process and .NET Remoting must be utilized by the ASP.NET engine to access the data, this mode has a negative impact on performance in comparison to the In Process mode, although this mode allows an ASP.NET application to be load-balanced and scaled across multiple servers. However, since the state management service runs independent of ASP.NET, the session variables can persist across ASP.NET process shutdowns.

The same problem arises though - since session state server runs as a single instance it is a single point of failure as far as session state is concerned. This service can not be load balanced and also imposes restrictions on types that can be stored in a session variable.

SqlServer Mode

In this mode, the state variables are stored in a database server, accessible using SQL. Session variables can be persisted across ASP.NET process shutdowns in this mode as well. The main advantage of this mode is it would allow the application to balance load on a server cluster while sharing sessions between servers. This is the slowest method of session state management in ASP.NET.

View state

View state refers to the page-level state management mechanism, which is utilized by the HTML pages emitted by ASP.NET applications to maintain the state of the web form controls and widgets. The state of the controls is encoded and sent to the server at every form submission in a hidden field known as __VIEWSTATE. The server sends back the variable so that when the page is re-rendered, the controls render at their last state. At the server side, the application might change the viewstate, if the processing results in updating the state of any control. The states of individual controls are decoded at the server, and are available for use in ASP.NET pages using the

ViewState collection.

The main use for this is to preserve form information across postbacks. So if a user fills out a form but enters a wrong value, the form is automatically filled back in when the page is sent back to the user for correction. View state is turned on by default and normally serializes the data in every control on the page regardless of whether it is actually used during a postback. This behavior can (and should be) modified, however, as View state can be disabled on a per-control, per-page, or server-wide basis.

Developers need to be wary of storing sensitive or private information in the View state of a page or control, as the base64 string containing the View state data can easily be de-serialized, either by one of many tools available on the web, or any generic base64 decoder. By default, View state does not encrypt the __VIEWSTATE value; however, encryption can be enabled on a server-wide (and server-specific) basis allowing for a certain level of security to be maintained.

Other

Other means of state management that are supported by ASP.NET are cookies, caching, and using the query string.

Template engine

When first released, ASP.NET lacked a template engine. Because the .NET framework is object-oriented and allows for inheritance, many developers would define a new base class that inherits from "System.Web.UI.Page", write methods here that render HTML, and then make the pages in their application inherit from this new class. While this allows for common elements to be reused across a site, it adds complexity and mixes source code with markup. Furthermore, this method can only be visually tested by running the application - not while designing it. Other developers have used include files and other tricks to avoid having to implement the same navigation and other elements in every page.

ASP.NET 2.0 introduced the concept of "master pages", which allow for template-based page development. A web application can have one or more master pages, which, beginning with ASP.NET 3.5, can be nested. Master templates have place-holder controls, called ContentPlaceHolders to denote where the dynamic content goes, as well as HTML and JavaScript shared across child pages. Child pages use those ContentPlaceHolder controls, which must be mapped to the place-holder of the master page that the content page is populating. The rest of the page is defined by the shared parts of the master page, much like a mail merge in a word processor. All markup and server controls in the content page must be placed within the ContentPlaceHolder control. When a request is made for a content page, ASP.NET merges the output of the content page with the output of the master page, and sends the output to the user.

The master page remains fully accessible to the content page. This means that the content page may still manipulate headers, change title, configure caching etc. If the master page exposes public properties or methods (e.g. for setting copyright notices) the content page can use these as well.

Other file extensions associated with different versions of ASP.NET include:

Extension
Required version
Description

asax
1.0
Global.asax, used for application-level logic

ascx
1.0
Web UserControls: custom controls to be placed onto web pages.

ashx
1.0
custom HTTP handlers.

asmx
1.0
web service pages. From version 2.0 a Code behind page of an asmx file is placed into the app_code folder.

axd
1.0
when enabled in web.config requesting trace.axd outputs application-level tracing. Also used for the special webresource.axd handler which allows control/component developers to package a component/control complete with images, script, css etc. for deployment in a single file (an 'assembly')

browser
2.0
browser capabilities files stored in XML format; introduced in version 2.0. ASP.NET 2 includes many of these by default, to support common web browsers. These specify which browsers have which capabilities, so that ASP.NET 2 can automatically customize and optimize its output accordingly. Special .browser files are available for free download to handle, for instance, the W3C Validator, so that it properly shows standards-compliant pages as being standards-compliant. Replaces the harder-to-use BrowserCaps section that was in machine.config and could be overridden in web.config in ASP.NET 1.x.

config
1.0
web.config is the only file in a specific Web application to use this extension by default (machine.config similarly affects the entire Web server and all applications on it), however ASP.NET provides facilities to create and consume other config files. These are stored in XML format. cs/vb
1.0
Code files (cs indicates C#, vb indicates Visual Basic). Code behind files (see above) predominantly have the extension ".aspx.cs" or ".aspx.vb" for the two most common languages. Other code files (often containing common "library" classes) can also exist in the web folders with the cs/vb extension. In ASP.NET 2 these should be placed inside the App_Code folder where they are dynamically compiled and available to the whole application.

Directory structure

In general, the ASP.NET directory structure can be determined by the developer's preferences. Apart from a few reserved directory names, the site can span any number of directories. The structure is typically reflected directly in the urls. Although ASP.NET provides means for intercepting the request at any point during processing, the developer is not forced to funnel requests through a central application or front controller.

The special directory names (from ASP.NET 2.0 on) are

App_Browsers

 holds site-specific browser definition files.

App_Code

This is the "raw code" directory. The ASP.NET server automatically compiles files (and subdirectories) in this folder into an assembly which is accessible in the code of every page of the site. App_Code will typically be used for data access abstraction code, model code and business code. Also any site-specific http handlers and modules and web service implementation go in this directory. As an alternative to using App_Code the developer may opt to provide a separate assembly with precompiled code.

App_Data

default directory for databases, such as Access mdb files and SQL Server mdf files. This directory is usually the only one with write access for the application.

App_Local Resources

Contains localized resource files for individual pages of the site. E.g. a file called CheckOut.aspx.fr-FR.resx holds localized resources for the French version of the CheckOut.aspx page. When the UI culture is set to french, ASP.NET will automatically find and use this file for localization.

App_GlobalResources

Holds resx files with localized resources available to every page of the site. This is where the ASP.NET developer will typically store localized messages etc. which are used on more than one page.

App_Themes

holds alternative themes of the site.

App_WebReferences

holds discovery files and WSDL files for references to web services to be consumed in the site.

Bin

Contains compiled code (.dll files) for controls, components, or other code that you want to reference in your application. Any classes represented by code in the Bin folder are automatically referenced in your application.

Performance

ASP.NET aims for performance benefits over other script-based technologies (including Classic ASP) by compiling the server-side code to one or more DLL files on the web server. This compilation happens automatically the first time a page is requested (which means the developer need not perform a separate compilation step for pages). This feature provides the ease of development offered by scripting languages with the performance benefits of a compiled binary. However, the compilation might cause a noticeable but short delay to the web user when the newly-edited page is first requested from the web server, but won't again unless the page requested is updated further.

The ASPX and other resource files are placed in a virtual host on an Internet Information Services server (or other compatible ASP.NET servers; see Other Implementations, below). The first time a client requests a page, the .NET framework parses and compiles the file(s) into a .NET assembly and sends the response; subsequent requests are served from the DLL files. By default ASP.NET will compile the entire site in batches of 1000 files upon first request. If the compilation delay is causing problems, the batch size or the compilation strategy may be tweaked.

Developers can also choose to pre-compile their code before deployment, eliminating the need for just-in-time compilation in a production environment. This also eliminates the need of having the source code on the web server.

Extension

Microsoft has released some extension frameworks that plug into ASP.NET and extend its functionality. Some of them are:

ASP.NET AJAX

An extension with both client-side as well as server-side components for writing ASP.NET pages that incorporate AJAX functionality.

ASP.NET MVC Framework

An extension to author ASP.NET pages using the MVC architecture.

ASP.NET compared with ASP classic

ASP.NET attempts to simplify developers' transition from Windows application development to web development by offering the ability to build pages composed of controls similar to a Windows user interface. A web control, such as a button or label, functions in very much the same way as its Windows counterpart: code can assign its properties and respond to its events. Controls know how to render themselves: whereas Windows controls draw themselves to the screen, web controls produce segments of HTML and JavaScript which form part of the resulting page sent to the end-user's browser.

ASP.NET encourages the programmer to develop applications using an event-driven GUI model, rather than in conventional web-scripting environments like ASP and PHP. The framework attempts to combine existing technologies such as JavaScript with internal components like "ViewState" to bring persistent (inter-request) state to the inherently stateless web environment.

Other differences compared to ASP classic are:

Compiled code means applications run faster with more design-time errors trapped at the development stage.

Significantly improved run-time error handling, making use of exception handling using try-catch blocks.

Similar metaphors to Microsoft Windows applications such as controls and events.

An extensive set of controls and class libraries allows the rapid building of applications, plus user-defined controls allow commonly-used web template, such as menus. Layout of these controls on a page is easier because most of it can be done visually in most editors. ASP.NET leverages the multi-language capabilities of the .NET Common Language Runtime, allowing web pages to be coded in VB.NET, C#, J#, Delphi.NET, Chrome etc. Ability to cache the whole page or just parts of it to improve performance.

Ability to use the code-behind development model to separate business logic from presentation. If an ASP.NET application leaks memory, the ASP.NET runtime unloads the AppDomain hosting the erring application and reloads the application in a new AppDomain. Session state in ASP.NET can be saved in a Microsoft SQL Server database or in a separate process running on the same machine as the web server or on a different machine. That way session values are not lost when the web server is reset or the ASP.NET worker process is recycled.

Versions of ASP.NET prior to 2.0 were criticized for their lack of standards compliance. The generated HTML and JavaScript sent to the client browser would not always validate against W3C/ECMA standards. In addition, the framework's browser detection feature sometimes incorrectly identified web browsers other than Microsoft's own Internet Explorer as "downlevel" and returned HTML/JavaScript to these clients with some of the features removed, or sometimes crippled or broken. However, in version 2.0, all controls generate valid HTML 4.0, XHTML 1.0 (the default) or XHTML 1.1 output, depending on the site configuration. Detection of standards-compliant web browsers is more robust and support for Cascading Style Sheets is more extensive.

Web Server Controls: these are controls introduced by ASP.NET for providing the UI for the web form. These controls are state managed controls and are WYSIWYG controls.

Development tools

Several available software packages exist for developing ASP.NET applications:

Product Developer Licensing Notes

ASP.NET Intellisense Generator BlueVision LLC
Free

Microsoft Visual Studio
Microsoft Free and Commercial

CodeGear Delphi
Embarcadero Technologies Commercial

Macromedia HomeSite
Adobe Systems Commercial

Microsoft Expression Web Microsoft
Commercial

Microsoft SharePoint Designer
Microsoft
Free

MonoDevelop Novell and the Mono community
Free Open Source

SharpDevelop ICSharpCode Team
Free Open Source

Eiffel for ASP.NET Eiffel Software
Free Open Source and Commercial

Macromedia Dreamweaver Adobe Systems
Commercial
Supports important ASP.NET 2.0 features, and produces very inefficient code for ASP.NET 1.x: also, code generation and ASP.NET features support through version 8.0.1 was little if any changed from version MX: version 8.0.2 does add changes to improve security against SQL injection attacks

Frameworks

It is not essential to use the standard webforms development model when developing with ASP.NET. Noteworthy frameworks designed for the platform include: Base One Foundation Component Library (BFC) is a RAD framework for building .NET database and distributed computing applications. DotNetNuke is an open source solution which is comprised of both a web application framework and a content management system which allows for advanced extensibility through modules, skins, and providers.

Castle Monorail, an open-source MVC framework with an execution model similar to Ruby on Rails. The framework is commonly used with Castle ActiveRecord, an ORM layer built on NHibernate. Spring.NET, a port of the Spring framework for Java. Skaffold.NET, A simple framework for .NET applications, used in enterprise applications.

Versions

Date Version Remarks New ASP.NET related features January 16, 2001.0 First version released together with Visual Studio .NET Object oriented web application development supporting Inheritance, Polymorphism and other standard OOP features. Developers are no longer forced to use Server.CreateObject(...), so early-binding and type safety are possible. Based on Windows programming; the developer can make use of DLL class libraries and other features of the web server to build more robust applications that do more than simply rendering HTML (i.e. exception handling) April 24, 2003
1.1
released together with Windows Server 2003 released together with Visual Studio .NET 2003 Mobile controls Automatic input validation November 7, 2005
2.0 codename Whidbey

released together with Visual Studio 2005 and Visual Web Developer Express and SQL Server 2005 New data controls (GridView, FormView, DetailsView) New technique for declarative data access (SqlDataSource, ObjectDataSource, XmlDataSource controls) Navigation controls Master pages Login controls Themes Skins Web parts Personalization services Full pre-compilation New localization technique Support for 64-bit processors Provider class model November 21, 2006 3.0 Windows Communication Foundation which can use ASP.NET to host services.

Windows CardSpace which uses ASP.NET for login roles. November 19, 2007 3.5 Released with Visual Studio 2008 and Windows Server 2008

New data controls (ListView, DataPager) ASP.NET AJAX included as part of the framework Support for HTTP pipelining and syndication feeds.

WCF Support for RSS, JSON, POX and Partial Trust August 11, 2008
3.5 Service Pack 1 -
Released with Visual Studio 2008 Service Pack 1 Incorporation of ASP.NET Dynamic Data Support for controlling browser history in an ASP.NET AJAX application Capability to combine multiple Javascript files into a single file for more efficient downloading New namespaces System.Web.Abstraction and System.Web.Routing

Other Implementations

The Mono Project supports ASP.NET 1.1 and most of ASP.NET 2.0. ASP.Net can be run with mono using one of three options: Apache hosting using the mod_mono module, FastCGI hosting, and XSP.

5.2 SQL Server
Microsoft SQL Server is a relational model database server produced by Microsoft. Its primary query languages are T-SQL and ANSI SQL.

SQL Server 2005

SQL Server 2005 (codenamed Yukon), released in October 2005, is the successor to SQL Server 2000. It included native support for managing XML data, in addition to relational data. For this purpose, it defined an xml data type that could be used either as a data type in database columns or as literals in queries. XML columns can be associated with XSD schemas; XML data being stored is verified against the schema. XML is converted to an internal binary data type before being stored in the database. Specialized indexing methods were made available for XML data. XML data is queried using XQuery; SQL Server 2005 added some extensions to the T-SQL language to allow embedding XQuery queries in T-SQL. In addition, it also defines a new extension to XQuery, called XML DML, that allows query-based modifications to XML data. SQL Server 2005 also allows a database server to be exposed over web services using TDS packets encapsulated within SOAP (protocol) requests. When the data is accessed over web services, results are returned as XML.

For relational data, T-SQL has been augmented with error handling features and support for recursive queries. SQL Server 2005 has also been enhanced with new indexing algorithms and better error recovery systems. Data pages are checksummed for better error resiliency, and optimistic concurrency support has been added for better performance. Permissions and access control have been made more granular and the query processor handles concurrent execution of queries in a more efficient way. Partitions on tables and indexes are supported natively, so scaling out a database onto a cluster is easier. SQL CLR was introduced with SQL Server 2005 to let it integrate with the .NET Framework.

SQL Server 2005 introduced "MARS" (Multiple Active Results Sets), a method of allowing usage of database connections for multiple purposes.

SQL Server 2008

Architecture

Protocol layer

Protocol layer implements the external interface to SQL Server. All operations that can be invoked on SQL Server are communicated to it via a Microsoft-defined format, called Tabular Data Stream (TDS). TDS is an application layer protocol, used to transfer data between a database server and a client. Initially designed and developed by Sybase Inc. for their Sybase SQL Server relational database engine in 1984, and later by Microsoft in Microsoft SQL Server, TDS packets can be encased in other physical transport dependent protocols, including TCP/IP, Named pipes, and Shared memory. Consequently, access to SQL Server is available over these protocols. In addition, the SQL Server API is also exposed over web services.

Data storage

The main unit of data storage is a database, which is a collection of tables with typed columns. SQL Server supports different data types, including primary types such as Integer, Float, Decimal, Char (including character strings), Varchar (variable length character strings), binary (for unstructured blobs of data), Text (for textual data) among others. It also allows user-defined composite types (UDTs) to be defined and used. SQL Server also makes server statistics available as virtual tables and views (called Dynamic Management Views or DMVs). A database can also contain other objects including views, stored procedures, indexes and constraints, in addition to tables, along with a transaction log. A SQL Server database can contain a maximum of 231 objects, and can span multiple OS-level files with a maximum file size of 220 TB. The data in the database are stored in primary data files with an extension .mdf. Secondary data files, identified with an .ndf extension, are used to store optional metadata. Log files are identified with the .ldf extension.

Storage space allocated to a database is divided into sequentially numbered pages, each 8 KB in size. A page is the basic unit of I/O for SQL Server operations. A page is marked with a 96-byte header which stores metadata about the page including the page number, page type, free space on the page and the ID of the object that owns it. Page type defines the data contained in the page - data stored in the database, index, allocation map which holds information about how pages are allocated to tables and indexes, change map which holds information about the changes made to other pages since last backup or logging, or contain large data types such as image or text. While page is the basic unit of an I/O operation, space is actually managed in terms of an extent which consists of 8 pages. A database object can either span all 8 pages in an extent ("uniform extent") or share an extent with up to 7 more objects ("mixed extent"). A row in a database table cannot span more than one page, so is limited to 8 KB in size. However, if the data exceeds 8 KB and the row contains Varchar or Varbinary data, the data in those columns are moved to a new page (or possibly a sequence of pages, called an Allocation unit) and replaced with a pointer to the data.

For physical storage of a table, its rows are divided into a series of partitions (numbered 1 to n). The partition size is user defined; by default all rows are in a single partition. A table is split into multiple partitions in order to spread a database over a cluster. Rows in each partition are stored in either B-tree or heap structure. If the table has an associated index to allow fast retrieval of rows, the rows are stored in-order according to their index values, with a B-tree providing the index. The data is in the leaf node of the leaves, and other nodes storing the index values for the leaf data reachable from the respective nodes. If the index is non-clustered, the rows are not sorted according to the index keys. An indexed view has the same storage structure as an indexed table. A table without an index is stored in an unordered heap structure. Both heaps and B-trees can span multiple allocation units.

Buffer management

SQL Server buffers pages in RAM to minimize disc I/O. Any 8 KB page can be buffered in-memory, and the set of all pages currently buffered is called the buffer cache. The amount of memory available to SQL Server decides how many pages will be cached in memory. The buffer cache is managed by the Buffer Manager. Either reading from or writing to any page copies it to the buffer cache. Subsequent reads or writes are redirected to the in-memory copy, rather than the on-disc version. The page is updated on the disc by the Buffer Manager only if the in-memory cache has not been referenced for some time. While writing pages back to disc, asynchronous I/O is used whereby the I/O operation is done in a background thread so that other operations do not have to wait for the I/O operation to complete. Each page is written along with its checksum when it is written. When reading the page back, its checksum is computed again and matched with the stored version to ensure the page has not been damaged or tampered with in the meantime.

Logging and Transaction

SQL Server ensures that any change to the data is ACID-compliant, i.e., it uses transactions to ensure that any operation either totally completes or is undone if fails, but never leaves the database in an intermediate state. Using transactions, a sequence of actions can be grouped together, with the guarantee that either all actions will succeed or none will. SQL Server implements transactions using a write-ahead log. Any changes made to any page will update the in-memory cache of the page, simultaneously all the operations performed will be written to a log, along with the transaction ID which the operation was a part of. Each log entry is identified by an increasing Log Sequence Number (LSN) which ensure that no event overwrites another. SQL Server ensures that the log will be written onto the disc before the actual page is written back. This enables SQL Server to ensure integrity of the data, even if the system fails. If both the log and the page were written before the failure, the entire data is on persistent storage and integrity is ensured. If only the log was written (the page was either not written or not written completely), then the actions can be read from the log and repeated to restore integrity. If the log wasn't written then integrity is also maintained although the database state remains unchanged as if the transaction never occurred. If it was only partially written, then the actions associated with the unfinished transaction are discarded. Since the log was only partially written, the page is guaranteed to have not been written, again ensuring data integrity. Removing the unfinished log entries effectively undoes the transaction. SQL Server ensures consistency between the log and the data every time an instance is restarted.

Concurrency and locking

SQL Server allows multiple clients to use the same database concurrently. As such, it needs to control concurrent access to shared data, to ensure data integrity - when multiple clients update the same data, or clients attempt to read data that is in the process of being changed by another client. SQL Server provides two modes of concurrency control: pessimistic concurrency and optimistic concurrency. When pessimistic concurrency control is being used, SQL Server controls concurrent access by using locks. Locks can be either shared or exclusive. Exclusive lock grants the user exclusive access to the data - no other user can access the data as long as the lock is held. Shared locks are used when some data is being read - multiple users can read from data locked with a shared lock, but not acquire an exclusive lock. The latter would have to wait for all shared locks to be released. Locks can be applied on different levels of granularity - on entire tables, pages, or even on a per-row basis on tables. For indexes, it can either be on the entire index or on index leaves. The level of granularity to be used is defined on a per-database basis by the database administrator.

While a fine grained locking system allows more users to use the table or index simultaneously, it requires more resources. So it does not automatically turn into higher performing solution. SQL Server also includes two more lightweight mutual exclusion solutions - latches and spinlocks - which are less robust than locks but are less resource intensive. SQL Server uses them for DMVs and other resources that are usually not busy. SQL Server also monitors all worker threads that acquire locks to ensure that they do not end up in deadlocks - in case they do, SQL Server takes remedial measures, which in many cases is to kill one of the threads entangled in a deadlock and rollback the transaction it started. To implement locking, SQL Server contains the Lock Manager. The Lock Manager maintains an in-memory table that manages the database objects and locks, if any, on them along with other metadata about the lock. Access to any shared object is mediated by the lock manager, which either grants access to the resource or blocks it.

SQL Server also provides the optimistic concurrency control mechanism, which is similar to the multiversion concurrency control used in other databases. The mechanism allows a new version of a row to be created whenever the row is updated, as opposed to overwriting the row, i.e., a row is additionally identified by the ID of the transaction that created the version of the row. Both the old as well as the new versions of the row are stored and maintained, though the old versions are moved out of the database into a system database identified as Tempdb. When a row is in the process of being updated, any other requests are not blocked (unlike locking) but are executed on the older version of the row. If the other request is an update statement, it will result in two different versions of the rows - both of them will be stored by the database, identified by their respective transaction IDs.

Data retrieval

The main mode of retrieving data from an SQL Server database is querying for it. The query is expressed using a variant of SQL called T-SQL, a dialect Microsoft SQL Server shares with Sybase SQL Server due to its legacy. The query declaratively specifies what is to be retrieved. It is processed by the query processor, which figures out the sequence of steps that will be necessary to retrieve the requested data. The sequence of actions necessary to execute a query is called a query plan. There might be multiple ways to process the same query. For example, for a query that contains a join statement and a select statement, executing join on both the tables and then executing select on the results would give the same result as selecting from each table and then executing the join, but result in different execution plans. In such case, SQL Server chooses the plan that is supposed to yield the results in the shortest possible time. This is called query optimization and is performed by the query processor itself.SQL Server includes a cost-based query optimizer which tries to optimize on the cost, in terms of the resources it will take to execute the query.

Given a query, the query optimizer looks at the database schema, the database statistics and the system load at that time. It then decides which sequence to access the tables referred in the query, which sequence to execute the operations and what access method to be used to access the tables. For example, if the table has an associated index, whether the index should be used or not - if the index is on a column which is not unique for most of the columns (low "selectivity"), it might not be worthwhile to use the index to access the data. Finally, it decides whether to execute the query concurrently or not. While a concurrent execution is more costly in terms of total processor time, because the execution is actually split to different processors might mean it will execute faster. Once a query plan is generated for a query, it is temporarily cached. For further invocations of the same query, the cached plan is used. Unused plans are discarded after some time.

SQL Server also allows stored procedures to be defined. Stored procedures are parameterized T-SQL queries, that are stored in the server itself (and not issued by the client application as is the case with general queries). Stored procedures can accept values sent by the client as input parameters, and send back results as output parameters. They can call defined functions, and other stored procedures, including the same stored procedure (up to a set number of times). They can be selectively provided access to. Unlike other queries, stored procedures have an associated name, which is used at runtime to resolve into the actual queries. Also because the code need not be sent from the client every time (as it can be accessed by name), it reduces network traffic and somewhat improves performance. Execution plans for stored procedures are also cached as necessary.

SQL CLR

Main article: SQL CLR

Microsoft SQL Server 2005 includes a component named SQL CLR ("Common Language Runtime") via which it integrates with .NET Framework. Unlike most other applications that use .NET Framework, SQL Server itself hosts the .NET Framework runtime, i.e., memory, threading and resource management requirements of .NET Framework are satisfied by SQLOS itself, rather than the underlying Windows operating system. SQLOS provides deadlock detection and resolution services for .NET code as well. With SQL CLR, stored procedures and triggers can be written in any managed .NET language, including C# and VB.NET. Managed code can also be used to define UDT's (user defined types), which can persist in the database. Managed code is compiled to .NET assemblies and after being verified for type safety, registered at the database. After that, they can be invoked like any other procedure. However, only a subset of the Base Class Library is available, when running code under SQL CLR. Most APIs relating to user interface functionality are not available.

When writing code for SQL CLR, data stored in SQL Server databases can be accessed using the ADO.NET APIs like any other managed application that accesses SQL Server data. However, doing that creates a new database session, different from the one in which the code is executing. To avoid this, SQL Server provides some enhancements to the ADO.NET provider that allows the connection to be redirected to the same session which already hosts the running code. Such connections are called context connections and are set by setting context connection parameter to true in the connection string. SQL Server also provides several other enhancements to the ADO.NET API, including classes to work with tabular data or a single row of data as well as classes to work with internal metadata about the data stored in the database. It also provides access to the XML features in SQL Server, including XQuery support. These enhancements are also available in T-SQL Procedures in consequence of the introduction of the new XML Datatype (query,value,nodes functions).Services

SQL Server also includes an assortment of add-on services. While these are not essential for the operation of the database system, they provide value added services on top of the core database management system. These services either run as a part of some SQL Server component or out-of-process as Windows Service and presents their own API to control and interact with them.

Service Broker
The Service Broker, which runs as a part of the database engine, provides a reliable messaging and message queuing platform for SQL Server applications. Used inside an instance, it is used to provide an asynchronous programming environment. For cross instance applications, Service Broker communicates over TCP/IP and allows the different components to be synchronized together, via exchange of messages.

Replication Services
SQL Server Replication Services are used by SQL Server to replicate and synchronize database objects, either in entirety or a subset of the objects present, across replication agents, which might be other database servers across the network, or database caches on the client side. Replication follows a publisher/subscriber model, i.e., the changes are sent out by one database server ("publisher") and are received by others ("subscribers"). SQL Server supports three different types of replication:
Transaction replication

Each transaction made to the publisher database (master database) is synced out to subscribers, who update their databases with the transaction. Transactional replication synchronizes databases in near real time.
Merge replication

Changes made at both the publisher and subscriber databases are tracked, and periodically the changes are synchronized bi-directionally between the publisher and the subscribers. If the same data has been modified differently in both the publisher and the subscriber databases, synchronization will result in a conflict which has to be resolved - either manually or by using pre-defined policies. rowguid needs to be configured on a column if merge replication is configured.

Snapshot replication

Snapshot replication published a copy of the entire database (the then-snapshot of the data) and replicates out to the subscribers. Further changes to the snapshot are not tracked.

Analysis Services

Main article: SQL Server Analysis Services

SQL Server Analysis Services adds OLAP and data mining capabilities for SQL Server databases. The OLAP engine supports MOLAP, ROLAP and HOLAP storage modes for data. Analysis Services supports the XML for Analysis standard as the underlying communication protocol. The cube data can be accessed using MDX queries. Data mining specific functionality is exposed via the DMX query language. Analysis Services includes various algorithms - Decision trees, clustering algorithm, Naive Bayes algorithm, time series analysis, sequence clustering algorithm, linear and logistic regression analysis, and neural networks - for use in data mining.

Reporting Services

Main article: SQL Server Reporting Services

SQL Server Reporting Services is a report generation environment for data gathered from SQL Server databases. It is administered via a web interface. Reporting services features a web services interface to support the development of custom reporting applications. Reports are created as RDL files.

Reports can be designed using recent versions of Microsoft Visual Studio (including Visual Studio.NET 2003 onwards) with Business Intelligence Development Studio, installed or with the included Report Builder. Once created, RDL files can be rendered in a variety of formats including Excel, PDF, CSV, XML, TIFF (and other image formats), and HTML Web Archive.

Notification Services

Main article: SQL Server Notification Services

Originally introduced as a post-release add-on for SQL Server 2000, Notification Services was bundled as part of the Microsoft SQL Server platform for the first and only time with SQL Server 2005. with Sql Server 2005, SQL Server Notification Services is a mechanism for generating data-driven notifications, which are sent to Notification Services subscribers. A subscriber registers for a specific event or transaction (which is registered on the database server as a trigger); when the event occurs, Notification Services can use one of three methods to send a message to the subscriber informing about the occurrence of the event. These methods include SMTP, SOAP, or by writing to a file in the filesystem.. Notification Services was discontinued by Microsoft with the release of SQL Server 2008 in August 2008, and is no longer an officially supported component of the SQL Server database platform.

Integration Services

Main article: SQL Server Integration Services

SQL Server Integration Services is used to integrate data from different data sources. It is used for the ETL capabilities for SQL Server for data warehousing needs. Integration Services includes GUI tools to build data extraction workflows integration various functionality such as extracting data from various sources, querying data, transforming data including aggregating, duplication and merging data, and then loading the transformed data onto other sources, or sending e-mails detailing the status of the operation as defined by the user.

5.3 MS Access

Microsoft Office Access, previously known as Microsoft Access, is a relational database management system from Microsoft that combines the relational Microsoft Jet Database Engine with a graphical user interface and software-development tools. It is a member of the Microsoft Office suite of applications, included in the Professional and higher editions or sold separately. In mid-May 2010, the current version of Microsoft Access 2010 was released by Microsoft in Office 2010; Microsoft Office Access 2007 was the prior version.

Access stores data in its own format based on the Access Jet Database Engine. It can also import or link directly to data stored in other applications and databases.

Software developers and data architects can use Microsoft Access to develop application software, and "power users" can use it to build simple applications. Like other Office applications, Access is supported by Visual Basic for Applications, an object-oriented programming language that can reference a variety of objects including DAO (Data Access Objects), ActiveX Data Objects, and many other ActiveX components. Visual objects used in forms and reports expose their methods and properties in the VBA programming environment, and VBA code modules may declare and call Windows operating-system functions.

Microsoft Access is used to make databases.

When reviewing Microsoft Access in the real world, it should be understood how it is used with other products. An all-Access solution may have Microsoft Access Forms and Reports managing Microsoft Access tables. However, Microsoft Access may be used only as the 'front-end', using another product for the 'back-end' tables, such as Microsoft SQL Server and non-Microsoft products such as Oracle and Sybase. Similarly, some applications will only use the Microsoft Access tables and use another product as a front-end, such as Visual Basic or ASP.NET. Microsoft Access may be only part of the solution in more complex applications, where it may be integrated with other technologies such as Microsoft Excel, Microsoft Outlook or ActiveX Data Objects.

Access tables support a variety of standard field types, indices, and referential integrity. Access also includes a query interface, forms to display and enter data, and reports for printing. The underlying Jet database, which contains these objects, is multiuser-aware and handles record-locking and referential integrity including cascading, updates and deletes.

Repetitive tasks can be automated through macros with point-and-click options. Microsoft Access is popular among non-programmers and professional developers alike. Non-programmers can create visually pleasing and relatively advanced solutions with very little or no code. It is also easy to place a database on a network and have multiple users share and update data without overwriting each other's work.

5.4 XML

An XML database is a data persistence software system that allows data to be stored in XML format. This data can then be queried, exported and serialized into the desired format.

Two major classes of XML database exist:

1. XML-enabled: these map all XML to a traditional database (such as a relational database), accepting XML as input and rendering XML as output. This term implies that the database does the conversion itself (as opposed to relying on middleware).

2. Native XML (NXD): the internal model of such databases depends on XML and uses XML documents as the fundamental unit of storage, which are, however, not necessarily stored in the form of text files.

The increasingly common use of XML for data transport, which has meant that "data is extracted from databases and put into XML documents and vice-versa". It may prove more efficient (in terms of conversion costs) and easier to store the data in XML format.
Example,

<?xml version="1.0"?>

<assessor1>

 <Groups>

 <RECORD>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

 </Groups>

 <Usersrecord>

 <RECORD>

 <UserName Type="Text">Amul</UserName>

 <Password Type="Text">123456</Password>

 <Category Type="Text">Admin</Category>

 <Groupname Type="Text">

 </Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">bhalu</UserName>

 <Password Type="Text">1234</Password>

 <Category Type="Text">User</Category>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">cse</UserName>

 <Password Type="Text">109</Password>

 <Category Type="Text">User</Category>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">fg</UserName>

 <Password Type="Text">12</Password>

 <Category Type="Text">Admin</Category>

 <Groupname Type="Text">

 </Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">motu</UserName>

 <Password Type="Text">123</Password>

 <Category Type="Text">User</Category>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">sanju</UserName>

 <Password Type="Text">sony</Password>

 <Category Type="Text">User</Category>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">sunny</UserName>

 <Password Type="Text">12345</Password>

 <Category Type="Text">Admin</Category>

 <Groupname Type="Text">

 </Groupname>

 </RECORD>

 <RECORD>

 <UserName Type="Text">tg</UserName>

 <Password Type="Text">123</Password>

 <Category Type="Text">User</Category>

 <Groupname Type="Text">general</Groupname>

 </RECORD>

All XML databases now support at least one form of querying syntax. Minimally, just about all of them support for performing queries against documents or collections of documents. XPath provides a simple pathing system that allows users to identify nodes that match a particular set of criteria.

In addition to XPath, many XML databases support XSLT as a method of transforming documents or query-results retrieved from the database. XSLT provides a declarative languagewritten using an XML grammar. It aims to define a set of XPath filters that can transform documents (in part or in whole) into other formats including Plain text, XML, or HTML.

5.5 AJAX

Ajax is a group of interrelated web development methods used on the client-side to create interactive web applications. With Ajax, web applications can retrieve data from the server asynchronously in the background without interfering with the display and behavior of the existing page. Data is usually retrieved using the XMLHttpRequest object. Despite the name, the use of XML is not needed, and the requests need not be asynchronous.

Like DHTML and LAMP, Ajax is not one technology, but a group of technologies. Ajax uses a combination of HTML and CSS to mark up and style information. The DOM is accessed with JavaScript to dynamically display, and to allow the user to interact with the information presented. JavaScript and the XMLHttpRequest object provide a method for exchanging data asynchronously between browser and server to avoid full page reloads.

CHAPTER -6

 CONCLUSION

This project is to develop an ultra secure online testing engine which has various extended facilities as compared to a real one. The performance of our product will be best if the minimum requirements are met. It is a complete online automated solution to customize testing and test analysis management. It uses XML database along with SQL and MSAccess. It captures and stores pictures of examinees at random interval of time. It coordinates and integrates all the inherent activities involved in the management of testing and comprehensive feedback and analysis of the result to the examinee.

