8

INTRODUCTION

PROJECT OVERVIEW

The revolutionary trends of computerization have reached the peaks achieving global goals in all fields and sectors. The IRecruit systems getting computerized are leading to a new and innovative way to approach to above said. With the major organizations hosting services of HRMS our project specifically aims to the total computerization of the IRecruit.

With the total automation of IRecruit, the manual dependency is minimized to a large extent. It inherits all the properties of computerizing a system which includes quick response, less processing time, non-diligence, fast recovery, robustness, flexibility, reliability, scalability.

Today’s trend demands high rate of automation for the IRecruit as the organizations are growing in exponential form and maintaining employment records in a consistent format. To satisfy the needs of clients, today’s organization need more and more of workforce. The IRecruit system takes care of this by taking in resumes from new aspirants and allowing the HR to view them in and do selections there upon.

PROJECT SCOPE

The project mainly focuses on recording information related to managing information related to JobPostings, People, Companies, Resumes and Candidates. Retrieving information like Job details, Resumes details, candidate details etc,.generating reports like Use Reports, Job Reports, Transaction Reports, Usage Reports, and Skill Reports. For Candidate there is a creation of new login, searching for a new job, etc. The system also enables the HR personnel to view the resumes of new aspirants and select them based on the selection criteria.

SCREEN DESIGN / GRAPHICAL USER INTERFACE

The system uses a very user-friendly interface developed using Hyper Text Markup Language (HTML), which most users are acquainted with and is broadly used on the world wide web(WWW). The controls are placed on the forms in an easily accessible manner so that user strain is minimized to the maximum extent.

 Whenever a user enters any form the system also states the action to be performed in an easily understandable and pleasant speech. The navigation of the user form one area of the system to another is very easy using easy to access and properly placed hyperlinks which user can access on the click of a button.

The system also poses a unique format for each type of users; this ensures that user is presented with options he has access to. This ensures a great deal of security to the system and to the organization as an employee is not given an option to carryout unauthorized activity.

General Description

 The system has Four major modules:

· Candidate module

· Employee module

· Recruiter module

· Administrator module

The welcome form of the Candidate module displays the options to a person. It has options for him to post his/her resume, searching the job, and manage Candidate. Or he/she can sing-up new account. The sign-in form is the entry point of an candidate to the site through he/she has to login everyday. When we select Candidate link in form it displays the information about the candidate. From this page candidate can manage candidate information and can post resumes.

From the search job option candidate can search the jobs posted using several criteria’s like search words, function, location, time span.

The Employee Welcome page have the following links home, Job Postings, Resumes, People, Companies, other. Through this employee of the company nothing but the recruiter or Hr manager can see the resumes of the different candidates, can create new job etc.

The Administrator page have the following links like home, Job Postings, Resumes, People, Companies, other. With this he can manage all the details about the companies, people, JobPostings etc.

Description about the sub modules in this system

· Job Postings

1. Job Maintenance

a. PDF Report: Exports the report of the jobs to the pdf format about the job which is selected
b. Edit Job: Editing the job details which is selected

c. Candidate: Edit the candidate details

d. Refresh post date: Change post date to today’s date

e. Activate: Activate the job to view the candidates

f. Required skills: Select the skills for the job

g. Job history: View the transactions that are made to the job

2. Job Search: Search and manage the job details by using some search criteria like search words, functions, location, Time span, active status, companies.

3. Create Job : Create new job

· People
1. Manage All: Manage all the people nothing but candidates, employee, applicant details. It contains following sub options

a. Edit User: Edit the user information like username and password

b. Edit Person: Edit person details like name, address, qualification etc.

c. Evaluations: Can create new evaluations or modify existing evaluations

d. Resumes: Can upload resumes, enter text resumes or remove resumes

e. Candidate info: View the candidate info with the jobs that are applied

f. Interviews: Can view and manage the interview schedule

2. Manage Candidates: Can manage the above options a-f for the specified candidates.

3. Manage Employees: Can manage the above options a-f for the specified Employee.

4. Manage Applicants: Can manage the above options a-f for the specified applicant.

5. Search for Person : Can search a person and manage the person by using the above a-f options

6. Create Person : Create a new Person and assign the roles to the persons like admin, recruiter, employee, candidate etc.

· Companies
1. Manage Companies

 Can manage companies by selecting given below options

a. Edit Company

Edit company details like name, address, reference id, etc.

b. Add Division

Adds new Division to the company

c. Company Jobs

View Jobs and edit job details

d. Add job

Adds new Job to the company

e. Remove

Remove company

f. Associates

Edit associates for the company

2. Create Company

Creates new company

· Resumes

1. Scan Resumes

Scans resumes with the criteria

2. Manage Resumes

Manages resumes received from the candidates

3. Emailed Resumes

Manages emailed resumes

· Other

1. Reports

 It contains the following reports types

a) User Reports

1) User List Report

A complete list of users including all employees and all candidates.

2) Candidate List Report

A report listing all candidates registered.
3) Employee List Report

 A report listing all employees
b) Job Reports

1) Active Jobs

 A list of active jobs and their current status.
2) All jobs (Active + Inactive)

 A list of all jobs and their current status.
3) Active Jobs (Company Grouping)

 A list of all active jobs grouped by companies/divisions.

4) All Jobs Company Grouping

 A list of all jobs grouped by companies/divisions.
c) Transaction Reports

1) Transactions for past 3 days

Report all transaction past 3 days
2) Transactions for past 30 days

Report all transaction over the past 30 days.
d) Usage Reports

1) Usage over past 3 days

Report all usage requests in past 3 days.
2) Usage over past 30 days

Report all usage requests in past 30 days.
e) Skill Reports

 1. Skills setup

 A report showing the current skills assessment configuration.
2. Manage Locations

Manage Locations like remove etc

3. Run Job Agents

Lists the information like Active jobs, Scheduled interviews, Job Applicants, Resume Scans, etc.

Candidate Module

This is a very useful candidate through this he can search the jobs that are posted by the companies. And then he can post their resume to the selected companies.

This module mainly contains three functionalities.

· Home

· Candidate

· Job Search

Home : By selecting Home he can access the home page of the candidate Home page. It contains the links like home, candidate, job search, login details or sign-up link.

Candidate : By selecting candidate link in home page . He can view the details. He/she can manage their details like updating information like personal details, upload resume, enter text resume, update profile, search agents, remove profile etc.

Job Search : By selecting JobSearch link in home page. He/She can search the jobs posted by giving information like search word, function, location, time span.

Employee Module

This module focuses on the basic employee of the company. The employee is given a login form wherein he enters the login details user id and password. The employee has to maintain details about job postings, people, companies, resumes, other reports.

The options given to a basic employee are

· Job Postings

1. Job Maintenance

2. Job Search

3. Create Job

· People

1. Manage Candidates

2. Manage Applicants

3. Search for Person

4. Create Person

· Companies

1. Manage Companies

2. Create Company

· Resumes

1. Scan Resumes

2. Manage Resumes

3. Emailed Resumes

· Other

1. Reports

2. Manage Locations

3. Run Job Agents

Employee is nothing but the user of the application in the company that is maintained this project. He has the ability to manage all the above tasks.

Employee Module

This module focuses on the recruiter of the company. The recruiter given a login form wherein he enters the login details user id and password. The recruiter has to maintain details about job postings, companies, resumes, other reports.

The options given to a basic employee are

· Job Postings

1. Job Maintenance

2. Job Search

3. Create Job

· People

1. Manage Candidates

2. Manage Applicants

3. Search for Person

4. Create Person

· Resumes

1. Scan Resumes

2. Manage Resumes

3. Emailed Resumes

· Other

1. Reports

2. Manage Locations

3. Run Job Agents

Employee is nothing but the user of the application in the company that is maintained this project. He has the ability to manage all the above tasks.

Administrator Module

This module focuses on the basic employee who acts as administrator of the system. Each employee is given a user id and password, which identifies him uniquely. The employee is given a login form wherein he enters the login details user id and password. The administrator has the ability to maintain everything in the system. He can create users and given permission to the user like System Administration, recruiter, employee, candidate etc.

As he is a basic employee the system shows his form with his/her select options

.The options given to a basic employee are

· Job Postings

1. Job Maintenance

2. Job Search

3. Create Job

· People

1. Manage All

2. Manage Candidates

3. Manage Employees

4. Manage Applicants

5. Search for Person

6. Create Person

· Companies

1. Manage Companies

2. Create Company

· Resumes

1. Scan Resumes

2. Manage Resumes

3. Emailed Resumes

· Other

1. Reports

2. Manage Locations

3. Run Job Agents

The administrator has the abilities to do all the above tasks.

SYSTEM ANALYSIS

Need of the system

Present day organizations, especially large companies house employees in large numbers they need number of employees. In order to recruit employees they consult consultants or recruiters, so that the recruiters get the applications and scan resumes and send relevant applications to the final hr that need employees. The burden on recruiters department is immense. The lack of consistency in record maintenance leads to both loss of property as well as employee confidence.

With the total automation of IRECUIT, the manual dependency is minimized to a large extent. It should inherit all the properties of computerizing a system, which includes quick response, less processing time, non-diligence, fast recovery, robustness, flexibility, reliability, scalability…

In addition to these characteristics the system should maintain data in consistent format all the while.

Proposed System

The proposed system should have the above features. The features of the system are, it maintains the employee details, candidate details, resume details, company details and Job Posting of companies. The system should also be easy to access, accurate and consistent results can be obtained.

The employee details include all the personal information, login information. The system should be able to maintain the details about the applicants and company details. After that, they scan resumes and forward relevant profiles to the required recruit managers. The system should also provide a new aspirant to be able to submit his/her resume and it should also take care of intimating HR about it.

FEASIBILITY STUDY REPORT

After analyzing the existing system, the organization is in need of automation of existing manual system. The organization has the capacity to stand the cost of developing new system and is willing to do that. The product will be of utmost use and the level of ease has been increased to a great extent.

SOFTWARE REQUIREMENT SPECIFICATION

Introduction

Purpose

The purpose of this project is to handle Recruitment Process of organizations.

Document Conventions

1. All the main headings are in BOLD and underlined.

2. Error message will be denoted using a (*) prefix.

3. The steps in the document follow Software Development Lifecycle methodology.

Product Scope

The scope of the project is limited to a multiple organizations.

Reference

Java Server Programming J2EE edition – wrox.

J2EE Complete reference -McGraw Hill.

Oracle 8i-Oracle Press

Java Servlet Programming –Oreilly .

Overall Description

Product Perspective

This project has been developed in replacement of existing manual system. This project mainly focuses on automation and customizing the existing IRECUIT module.

Product Function

The different functionalities provided by this module are as follows:

1. Maintains employee details.

2. Provides the functionality of submitting resume.

3. Maintains company details.

4. Maintains candidate details.

5. Maintains job postings.

6. Scans Resumes.

User Classes and Characteristics

The project may consist of user classes:

Employee class

Maintains details of the employee like address, user profile, company details

Company class

The class contains the company details like name and address, job postings. Each company has its own unique department id.

Candidate class

This class contains information like name, qualification, skill set, resume etc.

Resume class

The main aim of using this class is to able the user to enter the resume details and when he submits the form it stores the details in the database for later viewing.

Login class

The class displays the login screen and after validates the login id with the password in the database. And more classes

Operating Environment

· Operating System

Windows 2000 professional or higher

· Hardware platform

Pentium III processor or higher

256 MB RAM

· Software specifications

 Jboss 3.3, J2SDK 1.4

Oracle 8i

Internet Explorer5.0 or Mozilla

Design and Implementation Constraints

Coding standards for variables

- Do not start or end variable names with underscores.

- Do not initialize variables in definition.

- Global variables should be initialized separately in a initialization

 routine.

- Initialize only one variable per statement and explicitly.

Coding Standards for function

- Use prototyping for all the function.

- Argument should be listed one per a line.

- Return from only one place and function as for as possible.

- Watch out for functions that do not null terminate strings.

Design and Implementation Constraints

- Only authorized users should be able to access the system.

- Administrator can only create users

- The entire user interfaces need to be in HTML format.

User Documentation
A complete documentation depicting the functionality of the system should be provided with the system.

Assumptions and Dependencies

 The project assumes that all the employees need to login and logout.

External Interface Requirements
User Interfaces

- The interfaces between the user and system should be done using

 the HTML forms.

- The HTML fields are of the same font.

- The HTML forms have to be titled with the functionality of the form.

- The colors used should be uniform throughout the application.

Hardware Interfaces

· The system is being developed on Windows platform on a network and intended to work in a many organizations.

Software Interfaces

· The application connects to the database using the jdbc type 4 drivers for oracle.

· The project gets its inputs from the HTML forms which are processed by the servlets, Beans and JSPs.

Communication Interfaces

· The HTML forms communicate to the servlets using the HTTP 1.1 protocol.

· The data is being passed along in encrypted format.

System Features

· It maintains employee records

· Maintains resume details.

· Maintains employee details.

· Provides the functionality of submitting resume.

· Maintains company details.

· Maintains candidate details.

· Maintains job postings.

· Scans Resumes.

Other Non-Functional Requirements

Performance Requirements

· The system needs to be reliable.

· When the system is unable to process a particular request an appropriate error message should be generated.

Safety Requirements

· The details need to be maintained properly.

· When and employee leaves the organization his details need to be removed both in masters and dependent tables and the same employee id should not be assigned to any new employee.

Security Requirements

· The information passes between the html forms and the servlets should be in encrypted format.

· The system should be accessible to authorized personnel only.

SYSTEM DEVELOPMENT ENVIRONMENT

Java coding standards

Why Coding Standards are Important

Coding standards for Java are important because they lead to greater consistency within your code and the code of your teammates. Greater consistency leads to code that is easier to understand, which in turn means it is easier to develop and to maintain. This reduces the overall cost of the applications that you create. You have to remember that your Java code will exist for a long time, long after you have moved on to other projects. An important goal during development is to ensure that you can transition your work to another developer, or to another team of developers, so that they can continue to maintain and enhance your work without having to invest an unreasonable effort to understand your code. Code that is difficult to understand runs the risk of being scrapped and rewritten – I wouldn’t be proud of the fact that my code needed to be rewritten, would you? If everyone is doing their own thing then it makes it very difficult to share code between developers, raising the cost of development and maintenance. Inexperienced developers, and cowboys who do not know any better, will often fight having to follow standards. They claim they can code faster if they do it their own way. Pure hogwash. They might be able to get code out the door faster, but I doubt it. Cowboy programmers get hung up during testing when several difficult-to-find bugs crop up, and when their code needs to be enhanced it often leads to a major rewrite by them because they’re the only ones who understand their code. Is this the way that you want to operate? I certainly do not.

The Prime Directive

No standard is perfect and no standard is applicable to all situations: sometimes you find yourself in a situation where one or more standards do not apply. This leads me to introduce what I consider to be the prime directive of standards:

When you go against a standard, document it : All standards, except for this one, can be broken. If you do so, you must document why you broke the standard, the potential implications of breaking the standard, and any conditions that may/must occur before the standard can be applied to this situation. The bottom line is that you need to understand each standard, understand when to apply them, and just as importantly when not to apply them.

Important Instructions to maintain standards

Use full English descriptors that accurately describe the variable/field/class/… For example, use names like first Name, grandTotal, or CorporateCustomer. Although names like x1, y1, or fn are easy to type because they’re short, they do not provide any indication of what they represent and result in code that is difficult to understand, maintain, and enhance (Nagler, 1995; Ambler, 1998a).

Use terminology applicable to the domain. If your users refer to their clients as customers, then use the term Customer for the class, not Client. Many developers will make the mistake of creating generic terms for concepts when perfectly good terms already exist in the industry/domain.

Use mixed case to make names readable. You should use lower case letters in general, but capitalize the first letter of class names and interface names, as well as the first letter of any non-initial word (Kanerva, 1997).

Use abbreviations sparingly, but if you do so then use them intelligently: This means you should maintain a list of standard short forms (abbreviations), you should choose them wisely, and you should use them consistently. For example, if you want to use a short form for the word “number,” then choose one of nbr, no, or num, document which one you chose (it doesn’t really matter which one), and use only that one.

Avoid long names (< 15 characters is a good idea): Although the class name

PhysicalOrVirtualProductOrService : might seem to be a good class name at the time this name is simply too long and you should consider renaming it to something shorter, perhaps something like Offering (NPS, 1996).

Avoid names that are similar or differ only in case : For example, the variable names persistent Object and persistent Objects should not be used together, nor should anSqlDatabase and anSQLDatabase (NPS, 1996).

Avoid leading or trailing underscores : Names with leading or trailing underscores are usually reserved for system purposes, and may not be used for any user-created names except for pre-processor defines (NPS, 1996). More importantly, underscores are annoying and difficult to type so I try to avoid their use whenever possible.

Good Documentation
We will also be discussing documentation conventions, so let’s discuss some of the basics first:

Comments should add to the clarity of your code : The reason why you document your code is to make it more understandable to you, your coworkers, and to any other developer who comes after you (Nagler, 1995).

If your program isn’t worth documenting, it probably isn’t worth running (Nagler, 1995) : What can I say, Nagler hit the nail on the head with this one.

Avoid decoration, i.e. do not use banner-like comments : In the 1960s and 1970s COBOL programmers got into the habit of drawing boxes, typically with asterisks, around their internal comments (NPS, 1996). Sure, it gave them an outlet for their artistic urges, but frankly it was a major waste of time that added little value to the end product. You want to write clean code, not pretty code. Furthermore, because many of the fonts used to display and print your code are proportional, and many aren’t, you can’t line up your boxes properly anyway.

Keep comments simple. Some of the best comments I have ever seen are simple, point-form notes. You do not have to write a book, you just have to provide enough information so that others can understand your code.

Write the documentation before you write the code. The best way to document code is to write the comments before you write the code. This gives you an opportunity to think about how the code will work before you write it and will ensure that the documentation gets written. Alternatively, you should at least document your code as you write it. Because documentation makes your code easier to understand you are able to take advantage of this fact while you are developing it. The way I look at it, if you are going to invest the time writing documentation you should at least get something out of it (Ambler, 1998a).

Document why something is being done, not just what. Fundamentally, I can always look at a piece of code and figure out what it does. For example, I can look at the code in Example 1 below and figure out that a 5% discount is being given on orders of $1,000 dollars or more. Why is this being done? Is there a business rule that says that large orders get a discount? Is there a limited-time special on large orders or is it a permanent program? Was the original programmer just being generous? I do not know unless it is documented somewhere, either in the source code itself or in an external document (Ambler, 1998a).

An Overview of J2EE

The following topics describe the J2EE Platform requirements for each kind of J2EE platform element.

J2EE Application Components

The J2EE runtime environment defines four application component types that a J2EE product must support:

Application clients are Java programming language programs that are typically GUI programs that execute on a desktop computer. Application clients offer a user experience similar to that of native applications, and have access to all of the facilities of the J2EE middle tier.

Applets are GUI components that typically execute in a web browser, but can execute in a variety of other applications or devices that support the applet-programming model. Applets can be used to provide a powerful user interface for J2EE applications. Servlets, JSP pages, filters, and web event listeners typically execute in a web container and may respond to HTTP requests from web clients. Servlets, JSP pages, and filters may be used to generate HTML pages that are an application’s user interface. They may also be used to generate XML or other format data that is consumed by other application components. A special kind of servlet provides support for web services using the SOAP/HTTP protocol. Servlets, pages created with the JavaServer Pages™ technology, web filters, and web event listeners are referred to collectively in this specification as “web components.” Web applications are composed of web components and other data such as HTML pages. Web components execute in a web container. A web server includes a web container and other protocol support, security support, and so on, as required by J2EE specifications. Enterprise JavaBeans™ (EJB) components execute in a managed environment that supports transactions. Enterprise beans typically contain the business logic for a J2EE application. Enterprise beans may directly provide web services using the SOAP/HTTP protocol.

J2EE Server Support for Application Components:

The J2EE servers provide deployment, management, and execution support for conforming application components. Application components can be divided into three categories according to their dependence on a J2EE server:

Components that are deployed, managed, and executed on a J2EE server. These components include web components and Enterprise JavaBeans components. See the separate specifications for these components.

Components that are deployed and managed on a J2EE server, but are loaded to and executed on a client machine. These components include web resources such as HTML pages and applets embedded in HTML pages.

Components deployment and management is not completely defined by this specification. Application Clients fall into this category. Future versions of this specification may more fully define deployment and management of Application Clients.

J2EE Containers

Containers provide the runtime support for J2EE application components. Containers provide a federated view of the underlying J2EE APIs to the application components. J2EE application components never interact directly with other J2EE application components.

J2EE Servers

Underlying a J2EE container is the server of which it is a part. A J2EE Product Provider typically implements the J2EE server-side functionality using an existing transaction processing infrastructure in combination with Java 2 Platform, Standard Edition (J2SE) technology. The J2EE client functionality is typically built on J2SE technology.

Resource Adapters

A resource adapter is a system-level software component that implements network connectivity to an external resource manager. A resource adapter can extend the functionality of the J2EE platform either by implementing one of the J2EE standard service APIs (such as a JDBC™ driver), or by defining and implementing a resource adapter for a connector to an external application system.

Java™ Transaction API (JTA)

The Java Transaction API consists of two parts:

An application-level demarcation interface is used by the container and application components to demarcate transaction boundaries. An interface between the transaction manager and a resource manager used at the J2EE SPI level (in a future release).

RMI-IIOP

The RMI-IIOP subsystem is composed of APIs that allow for the use of RMI-style programming that is independent of the underlying protocol, as well as an implementation of those APIs that supports both the J2SE native RMI protocol (JRMP) and the CORBA IIOP protocol. J2EE applications can use RMI-IIOP, with IIOP protocol support, to access CORBA services that are compatible with the RMI programming restrictions (see the RMI-IIOP spec for details).

JDBC™ API

The JDBC API is the API for connectivity with relational database systems. The JDBC API has two parts: an application-level interface used by the application components to access a database, and a service provider interface to attach a JDBC driver to the J2EE platform. Support for the service provider interface is not required in J2EE products.

Java Connector Architecture

The Connector architecture is a J2EE SPI that allows resource adapters that support access to Enterprise Information Systems to be plugged in to any J2EE product. The Connector architecture defines a standard set of system-level contracts between a J2EE server and a resource adapter.

Security Service

The Java™ Authentication and Authorization Service (JAAS) enables services to authenticate and enforce access controls upon users. It implements a Java technology version of the standard Pluggable Authentication Module (PAM) framework, and extends the access control architecture of the Java 2 Platform in a compatible fashion to support user-based authorization. The Java™ Authorization Service Provider Contract for Containers (JACC) defines a contract between a J2EE application server and an authorization service provider, allowing custom authorization service providers to be plugged into any J2EE product.
Deployment

The Java 2 Platform, Enterprise Edition Deployment Specification defines a contract between deployment tools and J2EE products. The J2EE products provide plug-in components that run in the deployment tool and allow the deployment tool to deploy applications into the J2EE product. The deployment tool provides services used by these plug-in components.

J2EE Architecture

[image: image1.png]
Web Applications and Exploded Directory Format (EDF)
Overview of Web Applications

A Web application contains an application’s resources, such as servlets, JavaServer Pages (JSPs), JSP tag libraries, static resources such as HTML pages and image files. A Web Application can also define links to outside resources such as Enterprise Java Beans (EJBs). Web applications deployed on WebLogic Server use a standard J2EE deployment descriptor file and Web Logic-specific deployment descriptor file to define their resources and operating attributes. JSP and HTTP servlets can access all services and APIs available in Web Logic Server. These services include EJB, database connections via Java Database Connectivity (JDBC), Java Messaging Service (JMS), XML, and more. A Web archive (WAR file) contains the files that make up a Web application (WAR file). A WAR file is deployed as a unit on one or more Web Logic Server instances. A Web archive on Web Logic Server always includes the following files: One servlet or Java Server Page (JSP), along with any helper classes. A web.xml deployment descriptor, which is a J2EE standard XML document that describes the contents of a WAR file.A weblogic.xml deployment descriptor, which is an XML document containing Web Logic Server-specific elements for Web applications. A Web archive may also include HTML or XML pages and supporting files such as image and multimedia files. The WAR file can be deployed alone or packaged in an enterprise application archive (EAR file) with other application components. If deployed alone, the archive must end with a .war extension. If deployed in an EAR file, the archive must end with an .ear extension. BEA recommends that you package and deploy your stand-alone Web applications as part of an enterprise application. This is a BEA best practice, which allows for easier application migration, additions, and changes. Also, packaging your applications as part of an enterprise application allows you to take advantage of the split development directory structure, which provides a number of benefits over the traditional single directory structure.

Note: If you are deploying a directory in exploded format (not archived), do not name the directory .ear, .jar, and so on.

Web Application Directory Structure

Web applications use a standard directory structure defined in the J2EE specification. You can deploy a Web application as a collection of files that use this directory structure, known as exploded directory format, or as an archived file called a WAR file. BEA recommends that you package and deploy your WAR file as part of an enterprise application. This is a BEA best practice, which allows for easier application migration, additions, and changes. Also, packaging your Web application as part of an enterprise application allows you to take advantage of the split development directory structure, which provides a number of benefits over the traditional single directory structure. Web application components are assembled in a directory in order to stage the WAR file for the jar command. HTML pages, JSP pages, and the non-Java class files they reference are accessed beginning in the top level of the staging directory. The WEB-INF directory contains the deployment descriptors for the Web application (web.xml) and weblogic.xml) and two subdirectories for storing compiled Java classes and library JAR files. These subdirectories are respectively named classes and lib. JSP taglibs are stored in the Web Applications Basics WEB-INF directory at the top level of the staging directory. The Java classes include servlets, helper classes and, if desired, precompiled JSP. The entire directory, once staged, is bundled into a WAR file using the jar command. The WAR file can be deployed alone or as part of an enterprise application (recommended) with other application components, including other Web applications, EJB components, and Web Logic Server components. JSP pages and HTTP servlets can access all services and APIs available in Web Logic Server. These services include EJBs, database connections through Java Database Connectivity (JDBC), Java Message Service (JMS), XML, and more.

Main Steps to Create a Web Application

The following is an example of a Web application directory structure, in which myWebApp/ is the staging directory:

Web Application Directory Structure

[image: image2.wmf]Web Application Structure (EDF) Format

web.xml

weblogic.xml

mylib.jar

lib/

myservlet.class

mypackage

classes/

WEB-INF

.html,.htm,image files

*.jsp

My Web App

An Overview of JSP

The Java Server Pages™ Technology

Java Server Pages™ technology is the Java™ technology in the J2EE platform for building applications containing dynamic Web content such as HTML, DHTML, XHTML and XML. The Java Server Pages technology enables the authoring of Web pages that create dynamic content easily but with maximum power and flexibility.

The Java Server Pages technology provides a textual description for the creation of a response from a request. The technology builds on the following concepts:

Template Data

Substantial portions of dynamic content is actually fixed. The JSP technology allow for the natural manipulation of this data.

Addition of Dynamic Data

The JSP technology allows the addition of dynamic data to the template data in a way that is simple yet powerful.

Encapsulation of Functionality

The JSP technology provides two related mechanisms for the encapsulation of functionality: the standard Java Beans component architecture and the tag library

mechanism.

Good Tool Support

The JSP technology has features that enable the creation of good authoring tools. The result is a flexible and powerful server-side technology.

Benefits of the Java Server Pages Technology

The Java Server Pages technology offers a number of benefits:

Write Once, Run Anywhere™ properties

The Java Server Pages technology is platform independent, both in its dynamic Web pages, Web servers, and its underlying server components. You can author JSP pages on any platform, run them on any Web server or Web enabled application server, and access them from any Web browser.

High quality tool support

The Write Once, Run Anywhere properties of JSP allows the user to choose best-of-breed tools. Additionally, an explicit goal of the Java Server Pages design is to enable the creation of high quality portable tools.

Separation of Roles

JSP supports the separation of roles: developers write components that interact with server-side objects.

Reuse of components and tag libraries

The Java Server Pages technology emphasizes the use of reusable components such as Java Beans™ components, Enterprise Java Beans™ components and tag libraries.

Separation of dynamic and static content

The Java Server Pages technology enables the separation of static content from dynamic content that is inserted into the static template.

Support for scripting and actions

The Java Server Pages technology supports scripting elements as well as actions. Actions permit the encapsulation of useful functionality in a convenient form that can also be manipulated by tools; scripts provide a mechanism to glue together this functionality in a per-page manner.

Web access layer for N-tier enterprise application architecture(s)

The Java Server Pages technology is an integral part of the Java 2 Platform Enterprise

Edition (J2EE), which brings Java technology to enterprise computing.

An Overview of Servlets
What is a Servlet
A servlet is a web component, managed by a container that generates dynamic content. Servlets are small, platform independent Java classes compiled to an architecture neutral byte code that can be loaded dynamically into and run by a web server. Servlets interact with web clients via a request response paradigm implemented by the servlet container. This request-response model is based on the behavior of the Hypertext Transfer Protocol (HTTP).

What is a Servlet Container
The servlet container, in conjunction with a web server or application server, provides the network services over which requests and responses are set, decodes MIME based requests, and formats MIME based responses. A servlet container also contains and manages servlets through their lifecycle. A servlet container can either be built into a host web server or installed as an add-on component to a Web Server via that server’s native extension API. Servlet Containers can also be built into or possibly installed into web-enabled Application Servers. All servlet containers must support HTTP as a protocol for requests and responses, but may also support other request / response based protocols such as HTTPS (HTTP over SSL). The minimum required version of the HTTP specification that a container must implement is HTTP/1.0. It is strongly suggested that containers implement the HTTP/1.1 specification as well.

A Servlet Container may place security restrictions on the environment that a servlet can executed In a Java 2 Platform Standard Edition 1.2 (J2SE) or Java 2 Platform Enterprise Edition 1.3 (J2EE) environment, these restrictions should be placed using the permission architecture defined by Java 2 Platform. For example, high end application servers may limit certain action, such as the creation of a Thread object, to insure that other components of the container are not negatively impacted.

SYSTEM DESIGN

Data Dictionary

Table Name: action code

	Field Name
	Type
	Constraint

	 Code
	varchar(25)
	primary key

	 Description
	varchar(100),
	

Table Name: activity

	Field Name
	Type
	Constraint

	 Uid
	bigint auto_increment
	primary Key

	Actv_obj_type
	varchar(60),
	

	Actv_obj_id
	varchar(60),
	

	 person_id
	bigint
	not null,

	 Actv_dtm

	datetime
	not null,

	 Actv_type_cd
	varchar(25)

	not null,

	 Actv_desc
	varchar(200),
	

Table Name: actv_type

	Field Name
	Type
	Constraint

	Actv_type_cd
	varchar(25)
	primary key

	Actv_type_dscr
	varchar(100)
	not null,

	Void_ind
	bit
	not null,

Table Name: address

	Field Name
	Type
	Constraint

	Id
	bigint auto_increment,
	, primary key

	address_1
	varchar(50)
	

	address_2
	varchar(50)
	

	City
	varchar(50)
	

	State
	varchar(50)
	

	Country
	varchar(10)
	

	postal_code
	varchar(15)
	

	Description
	varchar(80)
	

	creat_prsn_id
	bigint
	

	crt_dtm
	datetime
	

	last_mod_id
	bigint
	

	last_mod_dtm
	datetime
	

	void_ind
	bit

	not null

TableName:
audit_log

	Field Name
	Type
	Constraint

	aud_log_id
	bigint auto_increment
	primary key

	aud_log_msg
	varchar(150)
	not null

	aud_ent_id
	bigint
	not null

	aud_ent_class
	varchar(250)
	not null

	aud_prsn_id
	bigint
	not null

	aud_log_date
	datetime
	not null

TableName:
btch_info

	Field Name
	Type
	Constraint

	 btch_id
	bigint

	not null

	 btch_typ_cd
	varchar(20)
	not null

	 btch_dsc
	varchar(80)
	not null

	 btch_sts
	varchar(255)
	not null

	 btch_cls_nm
	varchar(255)
	not null

	 btch_strt_dtm
	datetime
	not null

	 btch_end_dtm
	datetime
	not null

TableName:
btch_log

	Field Name
	Type
	Constraint

	btch_log_id
	bigint auto_increment,
	primary key

	btch_id
	bigint

	not null

	btch_log_msg
	varchar(200)
	not null

	btch_log_dtm
	datetime
	not null

	btch_err
	bit
	not null

TableName:
business_type

	Field Name
	Type
	Constraint

	bus_type_code
	varchar(30)
	primary key

	bus_type_desc
	varchar(60)
	not null

	void_ind
	Bit
	not null

TableName:
cand_rjct_rsn

	Field Name
	Type
	Constraint

	code
	varchar(15)
	primary key

	cand_rjct_desc
	varchar(60)
	not null

	cand_rjct_void_ind
	Bit
	not null

TableName:
candidate

	Field Name
	Type
	Constraint

	cand_id
	bigint auto_increment
	, primary key

	person_id
	bigint
	not null unique

	cand_look_full_ind
	bit
	not null

	cand_look_part_ind
	bit
	not null

	cand_look_ctrct_ind
	bit
	not null

	cand_look_perm_ind bit
	bit
	not null

	cand_cntct_ok_ind
	bit
	not null

	cand_has_job_ind
	bit
	not null

	bad_cntct_info_ind
	bit
	not null

	cand_actv_ind
	bit
	not null

	cand_trvl_pct
	Integer
	not null

	cand_slry_min_amt
	numeric(12,2)
	

	cand_slry_typ_code
	varchar(20)
	

	last_actv_dtm
	datetime
	not null

	void_ind
	bit
	not null

TableName:
candidate_loc

	Field Name
	Type
	Constraint

	cand_loc_id
	bigint auto_increment
	primary key

	cand_id
	bigint

	not null

	location_id
	bigint

	not null

	void_ind
	Bit
	not null

TableName:
cmn_first_name

	Field Name
	Type
	Constraint

	 name
	
varchar(40)
	
 primary key

TableName:
cmn_last_name

	Field Name
	Type
	Constraint

	 name
	
varchar(40)
	
 primary key

 TableName:
cmpy_addr

	Field Name
	Type
	Constraint

	cmpy_addr_id
	bigint auto_increment
	
 primary key

	company_id
	Bigint
	

	address_id
	Bigint
	

	cmpy_addr_type_code
	varchar(30),
	

TableName:
cmpy_addr_type

	Field Name
	Type
	Constraint

	cmpy_addr_type_code
	varchar(30)
	primary key

	cmpy_addr_type_desc
	varchar(80)
	not null

	cmpy_addr_excl_ind
	Bit
	not null

	void_ind
	Bit
	not null

TableName:
company

	Field Name
	Type
	Constraint

	company_id
	bigint auto_increment
	

	cmpy_parent_id
	Bigint
	

	cmpy_addr_id
	Bigint
	not null

	cmpy_name
	varchar(60)
	

	cmpy_code
	varchar(15)
	

	cmpy_phone
	varchar(15)
	

	cmpy_phone_2
	varchar(15)
	

	cmpy_lst_chg_dt
	Datetime
	

	void_ind
	Bit
	

TableName:
company_person

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment
	primary key

	company_id
	bigint

	not null

	person_id
	bigint

	not null

	strt_dt
	Datetime
	not null

	end_dt
	Datetime
	

	strt_schd_dt
	Datetime
	

	end_schd_dt
	Datetime
	

	job_slry_min_amt
	numeric(12,2)
	

	slry_typ_code
	varchar(20)
	

	void_ind
	Bit
	not null

TableName:
company_person_role

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment,
	primary key

	role_type
	varchar(30)
	not null

	cmp_person_id
	Bigint
	not null

	date_start
	Bigint
	not null

	date_end
	Datetime
	not null

	date_end
	Datetime
	

	date_strt_expct
	Datetime
	

	date_end_expct
	Datetime
	

	title
	varchar(60)
	not null

	slry_amt
	numeric(12,2)
	

	bill_rate_amt
	numeric(12,2)
	

	slry_typ_code
	varchar(20)
	

	void_ind
	Bit
	not null

TableName:
company_role_type

	Field Name
	Type
	Constraint

	code
	varchar(30)
	primary key

	role_desc
	varchar(60)
	not null

	pers_ovrlp
	Bit
	not null

	cmp_ovrlp
	Bit
	not null

	void_ind
	Bit
	not null

TableName:
contact_info

	Field Name
	Type
	Constraint

	cntct_info_id
	bigint auto_increment,
	primary key

	person_id
	bigint

	not null unique,

	cntct_info_email
	varchar(35),
	

	cntct_info_html_email
	bit,
	

	cntct_info_email_2
	varchar(35),
	

	cntct_info_html_email_2
	bit,
	

	cntct_info_cell_phn
	varchar(255),
	

	cntct_info_wrk_phn
	varchar(255),
	

	cntct_info_hom_phn
	varchar(255),
	

	cntct_info_alt_phn
	varchar(255),
	

	cntct_info_hom_addr
	bigint,
	

	cntct_info_wrk_addr
	bigint,
	

TableName: country

	Field Name
	Type
	Constraint

	cntry_cd
	varchar(2)
	primary key

	cntry_nm
	varchar(80)
	not null

	cntry_ext_cd
	varchar(15)
	

	cntry_num
	Bigint
	not null

	void_ind
	Bit
	not null

TableName: email_resume

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment,
	primary key

	from_email_addr
	varchar(160)

	not null

	from_email_name
	varchar(90)

	

	email_subj
	varchar(200)

	not null

	sent_dtm
	Datetime
	not null

	sts_cd
	varchar(20)

	

	first_name
	varchar(40)

	

	last_name
	varchar(40)

	

	phone_number
	varchar(225)

	

TableName:
email_resume_attch

	Field Name
	Type
	Constraint

	id
	bigint auto_increment,
	primary key

	email_rsm_info_id b
	Igint
	not null

	orig_file_nm
	varchar(255)

	not null

	save_file_nm
	varchar(255)

	not null

	attch_cat_cd
	varchar(20)
	

	save_dtm
	Datetime
	not null

TableName:
emplyr_rjct_rsn

	Field Name
	Type
	Constraint

	code
	varchar(15)
	primary key

	emplyr_rjct_desc
	varchar(60)
	not null

	emplyr_rjct_void_ind
	bit

	not null

TableName:
event

	Field Name
	Type
	Constraint

	Id
	bigint auto_increment
	primary key

	event_type_cd
	varchar(30)
	not null

	event_dtm
	Datetime
	not null

	proc_dtm
	Datetime
	

	event_retry_cnt
	Bigint
	not null

	event_dsc
	varchar(120)
	not null

	event_sts
	varchar(30)
	not null

	event_err
	varchar(120)
	

	creat_prsn_id
	Bigint
	

	crt_dtm
	Datetime
	

	last_mod_id
	Bigint
	

	last_mod_dtm
	Datetime
	

TableName:
event_attch

	Field Name
	Type
	Constraint

	id
	bigint auto_increment
	primary key

	event_attch_dsc
	varchar(60)

	not null

	attch_obj_id
	varchar(60)

	not null

	attch_obj_type_cd
	varchar(60)

	not null

	event_id
	bigint

	not null

	attch_seq_id
	Intege
	

TableName:
event_ntf_usr_grp

	Field Name
	Type
	Constraint

	id
	bigint

	primary key

	event_type_cd
	Varchar(30)
	not null

	user_role_type_cd
	Varchar(30)
	not null

TableName:
event_typ

	Field Name
	Type
	Constraint

	Code
	varchar(30)
	primary key

	event_dsc
	varchar(60)
	not null

	event_hdlr_clss
	varchar(200)
	not null

	void_ind
	Bit
	not null

TableName:
industry
	Field Name
	Type
	Constraint

	 Code
	varchar(20)
	primary key

	Description
	varchar(150)
	not null

TableName:
interview

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment,
	primary key

	job_id
	Bigint
	

	intv_cand_id
	Bigint
	not null

	intv_intvwr_id
	Bigint
	

	intv_sts_typ
	varchar(20)
	not null

	intv_rslt_txt
	varchar(100)
	

	intv_ref_id
	varchar(15)
	

	date_start
	Datetime
	

	date_end
	Datetime
	

	intv_desc
	varchar(200)
	

	intv_note
	Text
	

	intv_fllw_up
	varchar(200)
	

	Voided
	Bit
	not null

TableName:
intv_sts_type

	Field Name
	Type
	Constraint

	intv_sts_typ_cd
	varchar(20)
	primary key

	intv_sts_typ_nm
	varchar(40)
	

	intv_sts_typ_strt_dt
	Datetime
	not null

	intv_sts_typ_end_dt
	Datetime
	

TableName:
job_agent

	Field Name
	Type
	Constraint

	job_agt_id
	bigint auto_increment
	primary key

	job_agt_cand_id
	bigint
	not null

	job_agt_nm
	varchar(60
	not null

	job_agt_trvl_pct
	integer
	

	job_agt_snd_fail_cnt
	integer
	not null

	job_agt_days_back
	integer
	not null

	job_agt_srch_phrs
	varchar(150)
	not null

	ob_agt_srch_phr_cndtn
	nteger
	not null

	job_agt_trg_dtm
	datetime
	not null

	job_agt_crt_dt
	datetime
	not null

	job_agt_actv
	bit
	not null

	void_ind
	bit
	not null

TableName:
job_agent_function

	Field Name
	Type
	Constraint

	job_agt_id
	Bigint
	primary key

	function_code
	Bigint
	primary key

TableName:
job_agent_location

	Field Name
	Type
	Constraint

	job_agt_id
	Bigint
	primary key

	job_agnt_loctn_id
	Bigint
	primary key

TableName:
job_agnt_func

	Field Name
	Type
	Constraint

	job_agt_id
	Bigint
	primary key

	job_agnt_loctn_id
	Bigint
	primary key

TableName:
job_agt_loctn

	Field Name
	Type
	Constraint

	job_agnt_loctn_id
	bigint auto_increment
	primary key

	loc_id
	Bigint
	Not null

	job_agnt_id
	Bigint
	Not null

TableName:
job_appl

	Field Name
	Type
	Constraint

	job_app_id
	bigint auto_increment
	primary key

	strt_dt
	datetime
	not null

	end_dt
	datetime
	

	job_appl_cvr_ltr
	text
	

	job_app_rsm_id
	bigint
	not null

	person_id
	bigint
	not null

	job_id

	bigint
	not null

TableName:
job_cand_cmpy_role

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	primary key

	job_cand_id
	bigint

	not null

	cmpy_prsn_role_id
	bigint

	not null

	create_dtm
	Datetime
	not null

	update_dtm
	Datetime
	not null

	void_ind
	Bit
	not null

TableName:
job_cand_offer

	Field Name
	Type
	Constraint

	job_cand_offr_id
	bigint auto_increment
	primary key

	job_cand_id

	Bigint
	not null

	offer_end_dtm

	Datetime
	not null

	start_dtm

	Datetime
	not null

	end_dtm

	Datetime
	

	void_ind

	Bit
	not null

TableName:
job_cand_rslt

	Field Name
	Type
	Constraint

	Uid
	Bigint auto_increment
	primary key

	Person_id
	Bigint
	not null

	job_id

	Bigint
	not null

	calc_dtm

	Datetime
	not null

	score

	Bigint
	not null

TableName:
job_cand_sts

	Field Name
	Type
	Constraint

	job_cand_sts_id
	bigint auto_increment
	primary key

	job_cand_id

	bigint

	not null

	job_cand_sts_typ_cd
	varchar(20)

	not null

	job_cand_sts_prsn_id
	bigint

	not null

	job_cand_sts_strt_dt
	datetime

	not null

	job_cand_sts_end_dt
	datetime

	

	job_cand_sts_void_ind
	bit

	not null

TableName:
job_cand_sts_type

	Field Name
	Type
	Constraint

	job_cand_sts_typ_cd
	varchar(20)
	Primary key

	job_cand_sts_typ_dsc
	varchar(40)
	

	job_cand_sts_typ_strt_dt
	Datetime
	not null

	job_cand_sts_typ_end_dt
	Datetime
	

 TableName:
job_candidate

	Field Name
	Type
	Constraint

	job_cand_id
	bigint auto_increment
	Primary key

	job_id

	bigint

	not null

	cand_info_id
	bigint

	not null

	src_prsn_id
	bigint

	

	resume_id
	bigint

	

	cover_ltr

	varchar(20)
	

	job_cand_str
	bigint

	

	skill_scr

	bigint

	

	inact_rsn_cd
	varchar(20)
	

	add_dtm

	Datetime
	

	auto_add_dt
	Datetime
	

	elgb_dtm

	Datetime
	

	rjct_dtm

	Datetime
	

	dcln_dtm

	Datetime
	

	hire_dtm

	Datetime
	

	void_ind

	bit

	not null

TableName:
job_close_rsn

	Field Name
	Type
	Constraint

	Code
	varchar(15)
	primary key

	job_close_rsn_desc
	varchar(60)
	not null

	void_ind
	Bit

	not null

TableName:
job_function

	Field Name
	Type
	Constraint

	Code
	varchar(20)
	primary key

	Description
	varchar(230)
	not null

TableName:
job_pay_type

	Field Name
	Type
	Constraint

	job_pay_typ_cd
	varchar(20)
	primary key

	job_pay_typ_nm
	varchar(50)
	not null

	void_ind

	bit

	not null

TableName:
job_post

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	primary key

	job_prnt_id
	Bigint
	

	job_pay_typ_code
	varchar(20)
	not null

	job_title

	varchar(120)
	not null

	job_smry

	Text
	

	job_ref_id

	varchar(30)
	

	job_term_cd

	varchar(20)
	not null

	job_shft_cd

	varchar(20)
	not null

	job_cnt

	bigint

	not null

	job_dur_amt

	Integer
	

	job_wrk_schd_cd
	varchar(30)
	

	job_srch_wrds

	varchar(200)
	

	job_slry_min_amt
	numeric(12,2)
	not null

	job_slry_typ_code
	varchar(20)

	

	job_slry_max_amt
	numeric(12,2)
	not null

	job_post_dtm

	datetime

	

	job_lst_chng_dtm
	datetime

	

	job_filled_dtm

	datetime

	

	job_lst_skll_dtm

	datetime

	not null

	job_trvl_pct

	bigint,
	not null

	company_id

	bigint,
	not null

	job_hrg_mgr_id

	bigint,
	

	job_prim_recr_id

	bigint,
	

	job_scnd_recr_id
	bigint,
	

	job_src_id

	bigint,
	

	job_src_cmpy_id
	bigint,
	

	job_fncn_code

	varchar(20)
	

	job_dsc

	Text
	

	job_edu

	Text
	

	job_rqd_sklls

	Text
	

	job_cmpy_info

	varchar(200)
	

	job_ftrd_ind

	bit

	not null

	job_telcmt_ind

	bit

	not null

	location_code
	Bigint
	

	creat_prsn_id
	Bigint
	

	crt_dtm

	Datetime
	

	last_mod_id
	Bigint
	

	last_mod_dtm
	Datetime
	

	void_ind

	bit

	not null

TableName:
job_role

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	primary key

	job_id
	Bigint
	not null

	Person_id
	Bigint
	not null

	role

	varchar(30)

	not null

	note

	Text
	

TableName:
job_skill

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment,
	Primary key

	skill_code
	varchar(50)
	

	job_id

	Bigint
	not null

	Parent_id

	Bigint
	

	level

	Integer
	

	Description
	varchar(240)
	not null

	add_decay
	Bigint
	not null

	chld_cjct_typ
	Integer
	

	view_children
	Bit
	

TableName:
job_status

	Field Name
	Type
	Constraint

	job_sts_id
	bigint auto_increment
	primary key

	job_id

	Bigint
	not null

	job_sts_typ_cd
	varchar(20)
	not null

	job_sts_rsn_typ_cd
	varchar(20)
	not null

	job_sts_prsn_id

	Bigint
	not null

	job_sts_strt_dt

	Datetime
	not null

	job_sts_end_dt

	Datetime
	

	job_sts_pnd_pst_dt
	Datetime
	

	job_sts_dsc
	varchar(180)
	

	void_ind

	bit
	not null

TableName:
job_sts_rsn_type

	Field Name
	Type
	Constraint

	job_sts_rsn_typ_cd
	varchar(20)
	Primary key

	job_sts_rsn_typ_nm
	varchar(60)
	not null

	void_ind

	bit

	not null

TableName:
job_sts_rsn_type_xref

	Field Name
	Type
	Constraint

	sts_rsn_xref_id
	Bigint
	primary key

	sts_typ_frm_cd
	varchar(20)
	

	sts_typ_to_cd
	varchar(20)
	not null

	sts_rsn_typ_to_cd
	varchar(20)
	not null

	dflt_ind

	Bit
	not null

	void_ind

	Bit
	not null

TableName:
job_sts_type

	Field Name
	Type
	Constraint

	job_sts_typ_cd
	varchar(20)
	Primary key

	job_sts_typ_dsc
	varchar(60)
	not null

	job_sts_typ_strt_dt
	Datetime
	not null

	job_sts_typ_end_dt
	Datetime
	

	job_sts_typ_actv

	Bit
	not null

	void_ind

	Bit
	not null

TableName:
job_task

	Field Name
	Type
	Constraint

	job_task_id
	bigint auto_increment
	primary key

	job_id

	Bigint
	not null

	task_id

	Bigint
	not null

TableName:
locale

	Field Name
	Type
	Constraint

	lcl_cd

	varchar(5)
	Primary key

	lcl_desc

	varchar(120)
	not null

	void_ind

	Bit
	not null

TableName:
location

	Field Name
	Type
	Constraint

	loc_id
	Bigint
	primary key

	loc_prnt_id
	Bigint
	

	name

	varchar(120)
	not null

	Description
	varchar(120)
	

	void_ind

	Bit
	not null

 TableName:
object_history

	Field Name
	Type
	Constraint

	uid

	bigint auto_increment
	Primary key

	obj_type

	varchar(255)
	

	obj_id

	Bigint
	

	person_id

	Bigint
	not null

	date

	Datetime
	

	action_code
	varchar(50)
	

	Description
	varchar(200)
	

TableName:
page_priv

	Field Name
	Type
	Constraint

	Uid
	Bigint
	primary key

	pg_name
	varchar(200)
	not null

	pg_desc
	varchar(200)
	not null

TableName:
page_priv_role

	Field Name
	Type
	Constraint

	Uid
	Bigint
	Primary key

	pg_priv_id
	Bigint
	not null

	pg_usr_role
	varchar(30)
	not null

TableName:
person

	Field Name
	Type
	Constraint

	person_id
	bigint auto_increment
	primary key

	first_name
	varchar(30)
	

	middle_name
	varchar(30)
	

	last_name
	varchar(30)
	

	title

	varchar(90)
	

	known_as
	varchar(30)
	

	dob

	Datetime
	

	prefix

	varchar(10)
	

	gender

	varchar(10)
	

	marital_status
	varchar(10)
	

	locale_cd

	varchar(5)
	not null

	creat_prsn_id
	Bigint
	

	crt_dtm

	Datetime
	

	last_mod_id
	Bigint
	

	last_mod_dtm
	Datetime
	

	void_ind

	bit

	not null

 TableName:
post_code_loc

	Field Name
	Type
	Constraint

	post_cd
	varchar(20)
	primary key

	post_cntry_id
	varchar(2)
	not null

	post_loc_cd
	bigint

	not null

TableName:
protect_res

	Field Name
	Type
	Constraint

	prot_res_cd
	varchar(30)
	primary key

	prot_res_desc
	varchar(30)
	not null

TableName:
protect_res_role

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment,
	primary key

	prot_res_cd
	varchar(30)
	not null

	usr_role_typ_cd
	varchar(30)
	not null

TableName:
prsn_addr

	Field Name
	Type
	Constraint

	prsn_addr_id
	bigint auto_increment
	primary key

	person_id
	bigint
	

	addr_id
	bigint
	

	addr_type_code
	varchar(30)
	

TableName:
prsn_addr_type

	Field Name
	Type
	Constraint

	prsn_addr_type_code
	varchar(30)
	primary key

	prsn_addr_type_desc
	varchar(80)
	not null

	prsn_addr_excl_ind
	Bit
	not null

	void_ind
	Bit
	not null

TableName:
prsn_skll_scr

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment,
	primary key

	skill_code
	varchar(50)

	not null

	person_id
	bigint

	not null

	score
	bigint

	not null

TableName:
pwd_hint_quest

	Field Name
	Type
	Constraint

	pwd_hint_quest_cd
	varchar(20)

	primary key

	pwd_hint_quest_txt
	varchar(80)

	not null

	void_ind
	Bit
	not null

TableName:
recr_cmpy_info

	Field Name
	Type
	Constraint

	recr_cmpy_id
	bigint auto_increment,
	primary key

	recr_cmpy_job_info
	varchar(255)
	

	recr_cmpy_cmpy_id
	bigint
	not null

	recr_cmpy_lst_chg_dtm
	datetime
	not null

	void_ind
	Bit
	not null

 TableName:
rsm_scn_btch

	Field Name
	Type
	Constraint

	rsm_scn_btch_id
	bigint auto_increment
	primary key

	person_id
	Bigint
	not null

	job_id
	Bigint
	

	rsm_scn_btch_dt
	Datetime
	not null

	rsm_scn_btch_dt
	Datetime
	

	sm_scn_btch_shrd_ind
	Bit
	not null

	rsm_scn_btch_exp_dt
	Datetime
	

	rsm_scn_btch_sts
	Integer
	not null

	rsm_scn_btch_dsc
	varchar(255)
	not null

	Rsm_scn_btch_max_age
	Integer
	not null

	rsm_scn_btch_incl_inact
	Bit
	

	rsm_scn_btch_min_pct
	Bigint
	

	rsm_scn_btch_min_cntt
	Bigint
	

	rsm_scn_btch_max_cntt
	Bigint
	

TableName:
rsm_scn_crit

	Field Name
	Type
	Constraint

	rsm_scn_crit_id
	bigint auto_increment
	primary key

	rsm_scn_btch_id
	Bigint
	not null

	rsm_scn_crit_phr
	varchar(255)
	not null

	rsm_scn_crit_typ_cd
	varchar(255)
	not null

	rsm_scn_crit_case
	
Bit
	not null

	rsm_scn_crit_wgt
	Integer
	not null

TableName:
rsm_scn_rslt

	Field Name
	Type
	Constraint

	rsm_scn_rslt_id
	bigint auto_increment
	primary key

	person_id
	bigint
	not null

	rsm_scn_btch_id
	bigint
	not null

	resume_id
	bigint
	not null

	run_dt
	datetime

	not null

	rsm_scn_rslt_scr
	integer
	not null

TableName:
search_word

	Field Name
	Type
	Constraint

	id
	bigint auto_increment
	primary key

	job_id
	
bigint

	not null

	phrase
	varchar(255)

	not null

	weight
	Integer
	not null

	in_title
	bit
	not null

TableName:
sect_cont

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment
	, primary key

	title
	varchar(200)

	not null

	content
	text
	not null

TableName:
sect_info

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	, primary key

	Title
	varchar(200)

	not null

 TableName:
service_request

	Field Name
	Type
	Constraint

	uid
	bigint auto_increment,
	primary key

	person_id
	bit,
	

	svc_req
	varchar(150)

	not null

	svc_dtm
	Datetime
	not null

	svc_sesn_id
	varchar(50)
	not null

	svc_clnt_ip
	varchar(30)
	

	svc_clnt_cntry_cd
	varchar(20)
	

	svc_clnt_lang_cd
	varchar(20)
	

	svc_clnt_param
	varchar(150)
	

TableName:
skill

	Field Name
	Type
	Constraint

	Code
	varchar(50)
	not null

	parent_code
	varchar(50)
	

	score_method
	varchar(15)
	not null

	Description
	varchar(200)
	not null

	Section
	Bit
	not null

	needs_rating
	Bit
	not null

	add_decay
	Bigint
	not null

	Weight
	Bigint
	

	conj_type
	integer
	not null

	Voided
	bit
	not null

TableName:
skll_scr_mth_lvl

	Field Name
	Type
	Constraint

	id
	bigint auto_increment
	primary key

	skill_id
	varchar(50)
	not null

	skill_scr_meth_id
	varchar(15)
	not null

	lvl_caption
	varchar(60)
	not null

	lvl_val
	varchar(40)
	not null

	score
	integer
	not null

	void_ind
	Bit
	not null

TableName:
skll_scr_mthd

	Field Name
	Type
	Constraint

	Code
	varchar(15)
	Primary key

	skll_scr_mthd_desc
	varchar(60)
	not null

	 void_ind
	Bit
	not null

TableName
slry_type

	Field Name
	Type
	Constraint

	slry_typ_cd
	varchar(20)
	primary key

	slry_typ_nm
	varchar(50)
	not null

	 void_ind

	Bit

	not null

TableName
srgt_key

	Field Name
	Type
	Constraint

	srgt_ky_cd

	varchar(30)
	primary key

	srgt_ky_desc

	varchar(80)
	not null

	srgt_ky_id

	bigint

	not null

	srgt_ky_strt_id
	bigint

	not null

TableName:
sys_const

	Field Name
	Type
	Constraint

	 sys_cnst_cd
	varchar(50)
	primary key

	sys_cnst_val
	varchar(200)
	not null

	sys_cnst_typ
	varchar(20)
	not null

	sys_cnst_dsc
	varchar(200)
	not null

TableName:
task

	Field Name
	Type
	Constraint

	Id
	bigint auto_increment
	
primary key

	task_parent_id
	Bigint
	

	task_typ_cd
	varchar(20)
	
not null

	task_dsc

	varchar(180)
	
not null

	task_est_secs
	Bigint
	
not null

	task_compl_prcnt
	Bigint
	
not null

	task_ref_code

	varchar(20)
	

	creat_prsn_id

	Bigint
	

	crt_dtm

	Datetime
	

	last_mod_id

	Bigint
	

	last_mod_dtm

	Datetime
	

	task_due_dtm

	Datetime
	

	task_start_dtm

	Datetime
	

	task_end_dtm

	Datetime
	

	task_act_strt_dtm
	Datetime
	

	task_act_end_dtm
	Datetime
	

	task_cat_cd

	varchar(255)
	
not null

	task_cmpny

	bigint

	
not null

	usr_task_ind

	bit

	
not null

	void_ind

	bit

	
not null

TableName:
task_attch

	Field Name
	Type
	Constraint

	Id
	bigint auto_increment
	
Primary key

	event_attch_dsc
	varchar(60)
	
not null

	attch_obj_id

	varchar(60)
	
not null

	attch_obj_type_cd
	varchar(60)
	
not null

	task_id

	Bigint
	
not null

	attch_seq_id
	Integer
	

TableName
task_cat

	Field Name
	Type
	Constraint

	Code
	varchar(255)
	
Primary key

	task_dsc
	varchar(100)
	
not null

	void_ind
	bit

	
not null

TableName:
task_pre_req

	Field Name
	Type
	Constraint

	id

	bigint auto_increment
	primary key

	task_id
	Bigint
	not null

	pre_task_id
	Bigint
	not null

	creat_prsn_id
	Bigint
	not null

	crt_dtm

	Datetime
	not null

	last_mod_prsn_id
	Bigint
	not null

	last_mod_dtm

	Datetime
	not null

TableName:
task_res

	Field Name
	Type
	Constraint

	Id
	bigint auto_increment
	Primary key

	task_id
	Bigint
	not null

	person_id
	Bigint
	not null

	res_dsc

	varchar(120)
	not null

	res_start_dtm
	Datetime
	

	res_end_dtm
	Datetime
	

TableName:
task_sts

	Field Name
	Type
	Constraint

	id

	Bigint auto_increment
	primary key

	task_id

	Bigint
	not null

	task_sts_chg_prsn_id
	Bigint
	not null

	task_sts_type_cd

	varchar(25)
	not null

	task_strt_dtm

	datetime

	not null

	task_end_dtm

	datetime

	

TableName:
task_sts_type

	Field Name
	Type
	Constraint

	Code
	varchar(25)
	Primary key

	task_phrs_cd
	varchar(200)
	not null

	void_ind

	Bit
	not null

TableName:
user

	Field Name
	Type
	Constraint

	user_id
	bigint auto_increment
	Primary key

	person_id
	Bigint
	not null unique

	active

	Bit
	not null

	user_name
	varchar(35)
	unique

	user_pass
	varchar(15)
	

	creat_prsn_id
	Bigint
	

	crt_dtm

	Datetime
	

	last_mod_id
	Bigint
	

	last_mod_dtm
	Datetime
	

	user_pass_hint_qwst_cd
	varchar(20)
	

	user_pass_hint_ansr
	varchar(40)
	

TableName:
user_eval

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	primary key

	person_id
	Bigint
	not null

	evaluator_id
	Bigint
	not null

	Description
	Text
	

	notes

	varchar(255)
	

	date_created
	Datetime
	

	date_performed
	Datetime
	

TableName:
user_resume

	Field Name
	Type
	Constraint

	resume_id
	bigint auto_increment
	Primary key

	cand_info_id
	Bigint
	not null

	rsm_name
	varchar(50)
	

	rsm_file_nm
	varchar(250)
	

	rsm_file_attch_ind
	Bit
	

	last_chg_dtm

	Datetime
	

	last_indx_dtm

	Datetime
	not null

	rsm_indx_err_ind
	bit
	not null

	rsm_txt

	Text
	

	active bit

	bit

	not null

TableName:
user_role_type

	Field Name
	Type
	Constraint

	user_role_type_cd
	varchar(30)
	primary key

	user_role_type_nm
	varchar(80)
	not null

	user_role_priv_ind
	bit

	not null

	user_role_grp_ind
	bit

	not null

	user_role_type_strt_dtm
	Datetime
	not null

	user_role_type_end_dtm
	Datetime
	

TableName:
user_role_user_role_xref

	Field Name
	Type
	Constraint

	uid

	bigint auto_increment
	primary key

	auth_usr_role_typ_cd
	varchar(30)

	not null

	 trgt_usr_role_typ_cd
	varchar(30)

	not null

	prot_res_cd

	varchar(30)

	not null

TableName:
user_roles

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	Primary key

	role_name
	varchar(30)
	not null

	role_group
	varchar(35)
	

	role_usr_prvlg_ind
	Bit
	not null

	role_membr_ind

	Bit
	not null

	person_id

	Bigint
	not null

TableName:

user_skill

	Field Name
	Type
	Constraint

	Uid
	bigint auto_increment
	primary key

	skill_code
	varchar(50)
	not null

	eval_id

	Bigint
	not null

	person_id

	Bigint
	not null

	score_meth_cd
	varchar(15)
	not null

	level

	varchar(20)
	not null

	view_children

	Bit
	

ER Diagram

ER Diagram
An E-R diagram can express the overall logical structure of a database graphically. The relative simplicity and pictorial clarity of this diagramming technique may well account in the large part for the wide spread use of the E-R model. Such a diagram consists of the following major components:

· Rectangles
: Which represent entity sets.

· Ellipse
: Which represents attributes.

· Diamond
:Which represent relationship sets.

· Lines
: Which link attributes to entity sets to relationships sets.

ENTITY RELATION DIAGRAM
[image: image69.emf]

Company

Details

[image: image70.emf]

 Create

joborder

[image: image71.emf]

company

7

UNIFIED MODELLING LANGUAGE

An Overview of UML

The UML is a language for

· Visualizing

· Specifying

· Constructing

· Documenting

These are the artifacts of a software-intensive system.

A conceptual model of UML

The three major elements of UML are

· The UML’s basic building blocks

· The rules that dictate how those building blocks may be put together.

· Some common mechanisms that apply throughout the UML.

Basic building blocks of the UML

The vocabulary of UML encompasses three kinds of building blocks:

· Things

· Relationships

· Diagrams

Things are the abstractions that are first-class citizens in a model;

Relationships tie these things together;

Diagrams group the interesting collection of things.

Things in UML

 There are four kind of things in the UML

1. Structural things

2. Behavioral things.

3. Grouping things

4. Annotational things

These things are the basic object oriented building blocks of the UML.They are used to write well-formed models.

STRUCTURAL THINGS

Structural things are the nouns of the UML models. These are mostly static parts of the model, representing elements that are either conceptual or physical. In all, there are seven kinds of Structural things.

Class

A class is a description of a set of objects that share the same attributes, operations, relationships, and semantics. A class implements one or more interfaces.

Graphically a class is rendered as a rectangle, usually including its name, attributes and operations, as shown below.

[image: image3.wmf]Window

origin

Size

Open()

Close()

Display()

Interface

An interface is a collection of operations that specify a service of a class or component. An interface describes the externally visible behaviour of that element.

Graphically the interface is rendered as a circle together with its name.

[image: image4.wmf]ISpelling

Collaboration

Collaboration defines an interaction and is a society of roles and other elements that work together to provide some cooperative behavior that’s bigger than the sum of all the elements.

Graphically , a collavoration is rendered as an ellipse with dashed lines, usually including only its name as shown below.

 Chain

Use Case

Use case is a description of a set of sequence of actions that a system performs that yields an observable result of value to a particular things in a model.

Graphically, Use Case is rendered as an ellipse with dashed lines, usually including only its name as shown below.

Active Class

An active class is a class whose objects own one or more processes or threads and therefore can initiate control activity.

Graphically, an active class is rendered just like a class, but with heavy lines usually including its name, attributes and operations as shown below.

Component

Component is a physical and replaceable part of a system that conforms to and provides the realization of a set of interfaces.

Graphically, a component is rendered as a rectangle with tabs, usually including only its name, as shown below.

[image: image5.wmf]orderform.java

Node

A Node is a physical element that exists at run time and represents a computational resource, generally having at least some memory and often, processing capability.

Graphically, a node is rendered as a cube, usually including only its name, as shown below.

[image: image6.wmf]server

BEHAVIORAL THINGS

 Behavioral Things are the dynamic parts of UML models. These are the verbs of a model, representing behavior over time and space.

Interaction

An interaction is a behavior that comprises a set of messages exchanged among a set of objects within a particular context to accomplish a specific purpose.

Graphically, a message is rendered as a direct line, almost always including the name if its operation, as shown below.

Display

State Machine

A state machine is a behavior that specifies the sequence of states an object or an interaction goes through during its lifetime on response to events, together with its responses to those events.

Graphically, a state is rendered as rounded rectangle usually including its name and its sub-states, if any, as shown below.

GROUPING THINGS
Grouping things are the organizational parts of the UML models. These are the boxes into which a model can be decomposed.

Package
A package is a general-purpose mechanism for organizing elements into groups.

[image: image7.wmf]Business Rules

ANNOTATIONAL THINGS

Annotational things are the explanatory parts of the UML models.

Note

A note is simply a symbol for rendering constraints and comments attached to an element or a collection of elements.

Graphically a note is rendered as a rectangle with dog-eared corner together, with a textual or graphical comment, as shown below.

[image: image8.wmf]Business Rules

RELATIONSHIPS IN THE UML

There are four kinds of relationships in the UML:

1. Dependency

2. Association

3. Generalization

4. Realization

CLASS DIAGRAMS

Class diagrams are the most common diagrams found in modeling object-oriented systems. A class diagram shows a set of classes, interfaces, and collaborations and their relationships. Graphically, a class diagram is a collection of vertices and arcs.

Contents

Class Diagrams commonly contain the following things:

· Classes

· Interfaces

· Collaborations

· Dependency, generalization and association relationships

USE CASES

Use Case diagrams are one of the five diagrams in the UML for modeling the dynamic aspects of systems (activity diagrams, sequence diagrams, state chart diagrams and collaboration diagrams are the four other kinds of diagrams in the UML for modeling the dynamic aspects of systems). Use Case diagrams are central to modeling the behavior of the system, a sub-system, or a class. Each one shows a set of use cases and actors and relationships.

Common Properties

A Use Case diagram is just a special kind of diagram and shares the same common properties, as do all other diagrams- a name and graphical contents that are a projection into the model. What distinguishes a use case diagram from all other kinds of diagrams is its particular content.

Contents

Use Case diagrams commonly contain:

· Use Cases

· Actors

· Dependency, generalization, and association relationships

Like all other diagrams, use case diagrams may contain notes and constraints.

Use Case diagrams may also contain packages, which are used to group elements of your model into larger chunks. Occasionally, you will want to place instances of use cases in your diagrams, as well, especially when you want to visualize a specific executing system.

INTERACTION DIAGRAMS

An Interaction diagram shows an interaction, consisting of a set of objects and their relationships, including the messages that may be dispatched among them. Interaction diagrams are used for modeling the dynamic aspects of the system.

A sequence diagram is an interaction diagram that emphasizes the time ordering of the messages. Graphically, a sequence diagram is a table that shows objects arranged along the X-axis and messages, ordered in increasing time, along the Y-axis and messages, ordered in increasing time, along the Y-axis.

Contents

Interaction diagrams commonly contains:

· Objects

· Links

· Messages

Like all other diagrams, interaction diagrams may contain notes and constraints.

SEQUENCE DIAGRAMS

A sequence diagram is an interaction diagram that emphasizes the time ordering of the messages. Graphically, a sequence diagram is a table that shows objects arranged along the X-axis and messages, ordered in increasing time, along the Y-axis.

Typically you place the object that initiates the interaction at the left, and increasingly more sub-routine objects to the right. Next, you place the messages that these objects send and receive along the Y-axis, in order of increasing time from top to the bottom. This gives the reader a clear visual cue to the flow of control over time.

Sequence diagrams have two interesting features:

1. There is the object lifeline. An object lifeline is the vertical dashed line that represents the existence of an object over a period of time. Most objects that appear in the interaction diagrams will be in existence for the duration of the interaction, so these objects are all aligned at the top of the diagram, with their lifelines drawn from the top of the diagram to the bottom.

2. There is a focus of the control. The focus of control is tall, thin rectangle that shows the period of time during which an object is performing an action, either directly or through the subordinate procedure. The top of the rectangle is aligns with the action; the bottom is aligned with its completion.

ACTIVITY DIAGRAM

An Activity Diagram is essentially a flow chart showing flow of control from activity to activity. They are used to model the dynamic aspects of as system. They can also be used to model the flow of an object as it moves from state to state at different points in the flow of control.

An activity is an ongoing non-atomic execution with in a state machine. Activities ultimately result in some action, which is made up of executable atomic computations that result in a change of state of distinguishes a use case diagram from all other kinds of diagrams is its particular content.

Contents

Use case diagrams commonly contain:

· Use cases

· Actors

· Dependency, generalizations, and association relationships

Like all other diagrams use case diagrams may contain notes and constraints

Use case diagrams may also contain packages, which are used to group elements of your model into larger chunks. Occasionally you will want to place instances of use cases of your diagrams, as well especially when you want to visualize a specific executing system.

INTERACTION DIAGRAMS

An interaction diagram shows an interaction, consisting of a set of objects and their relationships, including the messages that may be dispatched among them.

A sequence diagram is an interaction diagram that emphasizes the time ordering of messages. Graphically, a sequence diagram is a table that shows objects along the X-Axis and messages along the Y-Axis.

Contents

Interaction diagrams commonly contains:

· Objects

· Links

· Messages

Like all other diagrams, interaction diagrams may contain notes and constraints.

STATE CHART DIAGRAMS

A state chart diagram shows a state machine. State chart diagrams are used to model the dynamic aspects of the system. For the most part this involves modeling the behavior of the reactive objects. A reactive object is one whose behavior is best characterized by its response to events dispatched from outside its context. A reactive object has a clear lifeline whose current behavior is affected by its past.

A state chart diagram show a state machine emphasizing the flow of control from state to state. A state machine is a behavior that specifies the sequence of states an object goes through during its life time in response to events together with its response to those events. A state is a condition in the life of the object during which it satisfies some conditions, performs some activity or wait for some events. An event is a specification of a significant occurrence that has a location in time and space.

Graphically a state chart diagram is a collection of vertices and arcs. State chart diagram commonly contain:

Simple states and Composite states.

Transitions, including events and actions.
UML Diagrams

Class Diagram

Use Case Diagram for Administrator

 (
 Admin

Use Case Diagram for Candidate

 (
 User

Use Case Diagram for employee

 (

Sequence Diagram for candidate applying for a job

(

Sequence Diagram for to select a candidate

(

Sequence Diagram for managing companies
(
(

[image: image9.wmf]

Log

-

in

 Administration

Log

-

Out

 Companies

 Candidates

 Jobs

Authetication

Valid User

Invalid User

Activity diagram for Different stages of Job Order

[image: image10.wmf]

Log

-

Out

AddDivision

Authentication

Log

-

in

Add Job

Invalid Employee

AddCompany

 Modify Job

Activity diagram for Different stages of Interview

[image: image11.wmf]

User Form

Log

-

Out

 interview

 Arrange

 Select

 Reject

SCREENS

Home Page

[image: image12.png]
Sign Page

[image: image13.png]
Admin Page

[image: image14.png]
Job Orders Page

[image: image15.png]
Managing Job Orders Page

[image: image16.png]
Modify Job Order Page

[image: image17.png]
Managing all users Page

[image: image18.png]
Manage Candidates

[image: image19.png]
Manage Candidates

[image: image20.png]
Candidate Information Page

[image: image21.png]
Manage Candidates Page

[image: image22.png]
Person Information

[image: image23.png]
Modify Person Information

[image: image24.png]
Manage Candidates

[image: image25.png]
Manage Candidates

[image: image26.png]
Manage Candidates

[image: image27.png]
Search for person

[image: image28.png]
Search Results

[image: image29.png]
Person Information

[image: image30.png]
Manage Companies

[image: image31.png]
Modify company

[image: image32.png]
View Company

[image: image33.png]
View Company

[image: image34.png]
Modify job order

[image: image35.png]
Modify job order

[image: image36.png]
Resume

[image: image37.png]
Resume

[image: image38.png]
View job order

[image: image39.png]
Job positioning information

[image: image40.png]
User Reports

[image: image41.png]
Reports

[image: image42.png]
All job orders

[image: image43.png]
[image: image44.png]
[image: image45.png]
[image: image46.png]
Index Page

[image: image47.png]
View Job Order

[image: image48.png]
User login page

[image: image49.png]
User Login page

[image: image50.png]
Selecting Resume Page

[image: image51.png]
Entering text resume for application

[image: image52.png]
Cover letter for application

[image: image53.png]
View job order

[image: image54.png]
New user

[image: image55.png]
[image: image56.png]
Profile Summary

[image: image57.png]
[image: image58.png]
Modify Profile

[image: image59.png]
Upload Resume

[image: image60.png]
[image: image61.png]
Search for job orders

[image: image62.png]
Search Results

[image: image63.png]
View Job Order

[image: image64.png]
Select Resume for application

[image: image65.png]
Cover letter for application

[image: image66.png]
View job order

[image: image67.png]
Perform self evaluation

[image: image68.png]
TESTING
Test cases
	Tes

C.No.
	Input
	Expected Behavior
	 Observed

behavior
	Status

P = Passed

F = Failed

	 1
	Enter Wrong user name and password for Administrator
	Error should be displayed in the same page
	-do-

	P

	2

	Enter Correct user name and password for Administrator
	Home page should be displayed.
	-do-

	P

	 3
	Create a company with the company details using create company option

	Company with the following details will be created
	-do-
	P

	 4

	Create a division for a company

	Division will be created
	 -do-
	F

	 5
	Check the Client side validations like mandatory fields emailid etc
	Error message should be displayed if anything entered wrong

	 -do-
	P

	 6
	Create a job any company
	Job will be created in that company

	-do-
	 P

	 7
	View the company list
	Display company list with newly added company details
	-do-
	P

	 8

	Approve and post the job in a company
	Job will be posted in the site and available to the public

	-do-

	P

	 9
	Enter in to the site and sign up as new candidate

	New candidate will be added
	-do-
	P

	 10
	Login as candidate by entering wrong user name and password
	Error should be displayed
	-do-
	P

	11
	Login as candidate by entering correct user name and password
	Home page should be displayed
	-do-
	P

	12
	Check the posted job
	Newly posted job has to be displayed
	-do-
	P

	13
	Apply for a job
	It has to take candidate skill set and other details
	-do-
	P

	14
	Create a Resume for a candidate
	It has to take candidate Resume details in text format or attached file
	-do-
	P

	15
	Check the applicant details for a job in a company
	Applicant who has applied for this job will be displayed
	-do-
	P

	16
	Conduct a interview for a applicant
	Interview schedule will be added
	-do-
	P

	17
	Change the status of the applicant after the interview
	Option for selecting or rejecting the candidate will be done
	-do-
	p

Testing is the major quality measure employed during the software engineering development. Its basic function is to detect error in the software. Testing is necessary for the proper functioning of the system. Testing has to be done at four levels

· Unit Testing
Unit testing focuses verification effort on the smallest unit of the software ,design the module. Here ,using the detail design as a guide ,important control paths are tested to uncover errors within the boundary of the module. Unit testing is always white-box oriented, and the step can be conducted in parallel for multiple modules.

· Integration Testing
Integration testing is a systematic technique for constructing the program structure while at the same time conducting tests to uncover errors , associated with interfacing .The objective is to take the unit tested modules and build program structure that has been directed by the design.

· Validation Testing
Validation testing demonstrates the traces the requirements of the software .This can be achieved through a series of black box tests.

· System Testing
System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system . Although each test has a different purpose, all works should verify that all system elements have been properly integrated and perform allocated functions. The various tests include recovery testing , stress testing , perform testing.

Maintenance and Implementation

· Corrective maintenance
This acts to correct errors that are uncovered after the software is in use.

· Adaptive Maintenance
This is applied when changes is the external environment precipitate modifications to software.
· Preventive maintenance
This improves future maintainability and reliability and provides basis or future enhancements.

CONCLUSION

 The fundamental problem in managing and maintaining the work by the administrator is hence overcome. Prior to this it was a bit cumbersome for maintaining the library and also keeping track of the users who were using it. But by developing this web-based application the administrator can enjoy the task, doing it ease and also by saving the valuable time. The amount of time consumption is reduced and also the manual calculations are omitted, the reports and bills can be obtained regularly and also whenever on demand by the user. The effective utilization of the work, by proper sharing it and by providing the accurate results. The storage facility will ease the job of the operator. Thus the system developed will be helpful to the administrator by easing his/her task.

USER MANUAL

The revolutionary trends of computerization have reached the peaks achieving global goals in all fields and sectors. The IRecruit systems getting computerized are leading to a new and innovative way to approach to above said. With the major organizations hosting services of HRMS our project specifically aims to the total computerization of the IRecruit.

i-Recruit is a software that provides efficient way of handling recruitment process of an applicant into a prospective company . When a candidate opts for a job he needs to search for the job suitable to his/her profile. Then he can apply for the job online . Once applying for job is over, the application is scrutinized by a recruitment board and finalized. The candidate will get intimation for an interview . Once the candidate is selected in the interview , he will be given an offer letter . Here the process ends All these activities are handled by i-Recruit.

I-Recruit is a very helpful software both for companies seeking right candidates and for candidates who look for a suitable job. This software provides listing of available jobs in the format: Name of the job, function (category), location of job, reference id, hiring manager name, Recruiting company or person’s name. This makes it easy for any candidate to view and respond immediately. He can create his own login in i-Recruit and then start applying for a job through i-Recruit. His profile is kept in the database managed by the Recruit-Administrator.

This software has 5 users . Each user will have a different login.

1) The Recruit-Admin is a person who does the following activities:

· Creating new jobs according to the company requirements.

· Searching for jobs depending on location and time span.

· Classifying the resumes and sending them to various companies.

· Scheduling interviews.

· Maintaining the job profile like creating , editing and deleting.

· Maintaining the information of employees, applicants and jobs.

· Adding company information along with available jobs in that company.

BIBLIOGRAPHY AND REFERENCES

Bibliography
· J2SDK1.4.2 Documentation

- Sun Microsystems

· Servlet API Documentation

- Sun Microsystems

· Java Server Programming, J2EE Edition, Volume 1

 - WROX publications

· The complete Reference HTML, second edition

- Thomas A. Powell

- Tata McGraw Hill Publications

· Software Engineering, A Practitioners Approach ,

fifth edition

- Roger S. Pressman

- Tata McGraw Hill Publications

References
1. Deitel ,Deitel and Nieto ,Internet and World Wide Web – how to program.

2. Ian Somerville, Principles of Software Engineering ,4 Edition .

3. Roger S. Pressman ,Software Engineering – A Practitioner’s Approach .

4. IEEE, IEEE Software Standards , IEEE Press ,1989 .

5. Patrick Naughton and Herbert Schildt , Complete Reference –Java 2 , 3 Edition ,Tata McGraw – Hill ,1999.

6. Er. V.K.Jain , Program

7. ming Java Server Pages & Servlets.

APPENDIX

I Appendix-A: Sorted acronyms

ACRONYMS

A

Ad------Advertisement

API-----Aplication Programmin Interface

AWT----Abstract Window Toolkit

C

CGI------Character Graphical Interface

CORBA--Common Object Request Broken Architecture

CPU------Central Processing Unit

D

DBMS----DataBase Management System

DCOM----Distributed Common Object Model

DHTML----Dynamic HyperText Markup Language.

F

FTP---File Transfer Protocol

G

GUI----Graphical User Interface
H

HTML-----HyperText Markup Language

HTTP------HyperText Transfer Protocal

I

IETF--- Internet Engineering Task Force

J

J2EE----
Java 2 Enterprise Edition.

JDBC----Java DataBase Connectivity

JDK1.1--Java Development Kit1.1

JIT-------just-in-time

JSP----Java Server Pages.

L

LAN----Local Area Network

O

ODBC-----Open DataBase Connectivity

R

RMI------Remote Method Invocation

S

SQL-----Structured Querry Language

STL-----standard template library

U

URL----Uniform Resource Locator

W

WWW-----World Wide Web

X
XML----
Extensible Markup Language.

II Appendix-B: Sorted list of table names with page no’s.

 TABLE PAGE NO

action code

33

activity

33

actv_type

33

address

33

audit_log

34

btch_info

34

btch_log

34

business_type

34

cand_rjct_rsn

35

candidate

35

candidate_loc

35

cmn_first_name

36

cmn_last_name

36

cmpy_addr

36

cmpy_addr_type

37

company

37

company_person

37

company_person_role

37

company_role_type

38

contact_info

38

country

38

email_resume

39

email_resume_attch

39

emplyr_rjct_rsn

39

event

39

event_attch

39

event_ntf_usr_grp

40

event_typ

40

industry

40

interview

40

intv_sts_type

41

job_agent

41

job_agent_function

41

job_agent_location

41

job_agnt_func

42

job_agt_loctn

42

job_appl

42

job_cand_cmpy_role

43

job_cand_offer

43

job_cand_rslt

43

job_cand_sts

43

job_cand_sts_type

43

job_candidate

43

job_close_rsn

43

job_function

43

job_pay_type

44

job_post

44

job_role

44

job_skill

44

job_status

45

job_sts_rsn_type

45

job_sts_rsn_type_xref

45

job_sts_type

45

job_task

45

locale

46

location

46

object_history

46

page_priv

47

page_priv_role

47

person

47

post_code_loc

47

protect_res

48

protect_res_role

48

prsn_addr

48

prsn_addr_type

48

prsn_skll_scr

48

pwd_hint_quest

48

recr_cmpy_info

49

rsm_scn_btch

49

rsm_scn_crit

49

rsm_scn_rslt

49

search_word

49

sect_cont

50

sect_info

50

service_request

50

skill

50

skll_scr_mth_lvl

50

skll_scr_mthd

50

slry_type

51

srgt_key

51

sys_const

51

task

51

task_attch

51

task_cat

52

task_pre_req

52

task_res

52

task_sts

52

task_sts_type

52

user

53

user_eval

53

user_resume

53

user_role_type

54

user_role_user_role_xref

54

III Appendix-C: Sorted list of diagrams with page no’s.

DIAGRAMS

Page NO

ENTITY RELATION DIAGRAM :

53

1. Activity diagram for Different stages of Interview.

Class Diagram:

69

Use Case Diagram for Adminstrator

70

Use Case Diagram for Candidate:

71

Use Case Diagram for employee:

72

Sequence Diagram for candidate applying for a job:

73

Sequence Diagram for to select a candidate:

74

Sequence Diagram for managing companies:

75

2. Activity diagram for Different stages of Job Order

78

3. Activity diagram for Different stages of Interview.

79

Posted

Division

belongs

Employee

has

 Interview

has

has

Company

Applicant

Candidate

Chain of Responsibility

Place Order

Event Management

Suspend()

Flush()

Waiting

Candidate()

Cand-id

Person-id

Cand-look-full

Cand-look-part

Cand-look-ctrct

Cand—look-perm

Cand-has-job

Cand-actv

Cand-trvt-ct

Cand-slry-min-amt

location

Company()

Company-id

Company-add

Company-name

Company-phone

Company-phone2

Reference-id

Interview()

Uid

Job-id

Int-can-id

Int-intvwr-id

Int-sts-typ

Int-rslt-txt

Int-ref-id

Job-post()

Uid

Job-title

Job-ref-id

Job-dur-amt

Job-wrk-send

Job-smry

Company-id

Job-skill()

Uid

Skill-code

Job-id

Description

View-children

Resume()

Resume-id

Cand-id

Rsm-name

Rsm-file-attach

Rsm-txt

Job

Postings

Job

Search

Create

Job

Manage

People

Manage

Candidates

Manage

Employees

Person

Search

Company

Management

Reports

Register

Login

View

Jobs

Apply

Job

Create

Resume

Job

Postings

Manage

Candidates

Manage

Applicants

Person

Search

Create

Person

Manage

Companies

Reports

User

Register

Candidate

Details

Login

View

jobs

Appay

Enter

Details

 Resume

Signup()

Enterdet()

User created()

Login

View

Apply()

Enter det

Resume()

Compo

 nent

jobs

applicants

interview

Change status

employee

 List

Companies

 List

Applicants()

 List

 Jobs()

Conduct()

Status()

Add()

Company

Jobs

Applicants

Interview

Change

Status

 Employee

Admin

Company

maintenance

Create

company

Company

Details

Create

Division �

Division

Details

Modify

Details

Select

Createnew()

Created()

Createnew()

Enterdet()

Added

Modify()

 Create

joborder

�

�

Division

 location

Skill set

posting

Create

Enter

select

Add

Enter

Skills()

post

Posted

PAGE
8

_1202418092.doc

Log-in

 Administration

Log-Out

 Companies

 Candidates

 Jobs

Authetication

Valid User

Invalid User

_1202418129.doc

Log-Out

AddDivision

Authentication

Log-in

 Add Job

Invalid Employee

AddCompany

 Modify Job

_1202418268.doc

User Form

 interview

 Select

 Arrange

 Reject

Log-Out

_1110284464.bin

