[image: image12.jpg]

1

CHAPTER I

INTRODUCTION
The MySQL GUI is the most powerful MySQL manager and admin tool, combining the features of MySQL Query Browser, Administrator, phpMyAdmin and various other MySQL Front Ends.
Features
· Complete Unicode/UTF8 Support

· MySQL 5.x objects support

· Relationship/Foreign Key Manager

· Table diagnostics

· Creating/dropping database

· Creating/Dropping/Altering tables

· Multi-tab Query Editor and Result-set Editor

· Multiple Query Execution

Advantages
It allows you to manage and browse your databases and tables from an intuitive Windows and Linux interface. One of the most wanted, needed features was a GUI for creating and editing triggers, available in MySQL 5.0.2 and above. Now implemented and hopefully as usable at it can be. Very simple compared to editing tables or procedures. The recently refactored "Table tools" dialog has a new tab now: "Bulk table editor". What is bulk editing? Move all tables of one or more databases to another database.Create and edit stored procedures and functions. The very first dialog which asks for hostname and credentials. The list of wanted databases can be limited and sorted alphabetically.

Administer MySQL accounts as easily as a toy. A pulldown showing assigned database objects reveals everything, details about tables and views. Switchable column headers is used to rename, delete, empty and modify tables. Create, modify databases and visually create and edit tables, create exact copies of an existing table, within the same database or in another one.

Table contents are editable in a grid. Switchable columns and sorting orders. Various filtering mechanisms. SQL query editing: Customizable syntax highlighting, snippet files, completion proposal pulldown and editable results. Pump database structures and data into a single dump file, one file per table or directly to another host. Save the result of any data grid to HTML and XML files. Find text in a table, a database or even on the whole server. Send any list of tables, columns, variables etc. to your printer. Browse through the topics in MySQL's built in help system. Create and edit stored procedures and functions.

CHAPTER II

SYSTEM STUDY

The system study phase includes the study of an existing system, proposing a new system and undergoing feasibility study. Firstly the developer studies how the existing system works, what are the advantages of existing system and what are the drawbacks? Studying the existing system completely the developer prepares a new system ie the proposed system and determines what all enhancements can be made to the existing system to build a better product. He also studies to advantages and disadvantages of proposed system. He then undergoes a detailed feasibility study ie he determines whether the proposed system is technically, socially and economically feasible.

2.1 EXISTING SYSTEM

In the present scenario, for database transactions the queries need to be written manually. Also multiple queries cannot be executed at a time. The creation of triggers, stored procedures are not in an easier way in the existing system. No import or export facility is available in existing system. So this existing system cannot satisfy the customer needs. Most of these sites are mainly focused on limited databases.

2.2 PROPOSED SYSTEM

In our proposed system the creation of databases and data transactions are simpler compared to the existing system. Here the creation of stored procedures, functions and triggers can be done in an easier way.

The advantages of proposed system are:

· GUI for creating and editing triggers

· Create and edit stored procedures and functions
· Create exact copies of an existing table, within the same database or in another one.

· Table contents editable in a grid. Switch able columns and sorting orders. Various filtering mechanisms

· Pump database structures and data into a single dump file, one file per table or directly to another host. Save the result of any data grid to HTML and XML or PDF files

· Send any list of tables, columns, variables etc. to your printer

2.3 FEASIBILITY STUDY
The main aim of feasibility study is to determine whether it would be functionally and technically feasible to develop the product. The feasibility study involves the analysis of the problem and the collection of relevant information relating to the product such as the different data item which would be the input to the system, the processing required to be carried out on these data, the output data required to be produced by the system, as well as various constraints on the behavior of the system. A feasibility study is a rest of the system proposal according to its working, impact on the organization, ability to meet users and effective use of resources. The objective of the feasibility study is acquiring the sense of scope of the system. The collected data are analyzed to arrive following:

 An abstract problem definition: An abstract problem definition is a rough description of the problem, which considers only the important requirements and ignores the rest.

 Formulation of different strategies.

 Analysis of alternative solution strategies to compare their benefits and short comings. This analysis usually requires making estimates of the resources required, cost of development and development time for each of the options. These estimates are used as the basis for comparing the different solution identified; all later phases of development are carried out as per this solution. Thus during the feasibility study, most of the high level architectural design decisions are made. Therefore feasibility study is considered as the important stage. During this study, it may come to light that none of the solutions is feasible due to high cost, resource constraints or some other technical reasons.

The development of a computer-based system is more likely to be projects that are feasible. Three essential factors are involved in the feasibility analysis:

 Operational Feasibility

 Technical Feasibility

 Economical Feasibility

2.3.1 OPERATIONAL FEASIBILITY
Proposed projects are beneficial only if they can be turned into information systems that will meet the organizations operating requirements. Simply stated, the test of feasibility asks if the system will work when it is developed and installed. Are there any major barriers to implementations? Is there sufficient support for the project from the management? Are current business methods acceptable to the users? Have the users been involved in the planning and development of the project? Will the proposed system cause any harm? The purpose of the operational feasibility study is to determine whether the new system will be used if it is developed and installed and whether there will be resistance form the users that will be resistance from users that will undermine the possible application benefit. There was no difficulty implemented that software and proposed system is so effective, user friendly, functionally reliable so that the users in the company will find the new system reduces the hard steps.

2.3.2 TECHNICAL FEASIBILITY
Technical feasibility centers on the existing computer and to what extend it can support the proposed addition. For example: the current computer operating system at 80% capacity, then running another application could overload the system and require additional hardware. This system requires a multiple user environment. It needs powerful database, oracle to the purpose. So this system is technically feasible.

2.3.3 ECONOMICAL FEASIBILITY

The cost evaluation is weighted against ultimate income or benefit derived from the developed system or project. Economic justification is generally the “button line” consideration that includes cost benefit analysis, long term corporate income strategies, impact on other profit centers or products, cost of resources needed for development and potential market growth. When compared to the advantage obtained from implementing the system its cost is affordable. Also the system is designed to meet the modification required in the future. Therefore most of the modifications can be done without much re-work.

CHAPTER III

REQUIREMENT ANALYSIS

On the requirement analysis the analyst begins to begin to learn about the settings of the existing system and the physical process related to the revised system. After obtaining the knowledge, software engineer begins to collect data on the existing system outputs, inputs and costs .In this phase a key question is, what are the user’s needs and how does a candidate system meet them?

In systems engineering and the software engineering, requirements analysis encompasses those tasks that go into determining the requirement of a new or altered system, taking account of the possibly conflicting requirements of the various stakeholders, such as users. Requirements analysis is critical to the success of a project. Systematic requirements are also known as requirements engineering. It sometimes referred to loosely by names such as requirements gathering, requirements capture ,or requirements specification .The term “requirements analysis” can also be applied specifically to the analysis proper (as opposed to elicitation or documentation of the requirements, for instance).Requirements must be measurable ,testable , related to identified business needs or opportunities ,and defined to a level of detail sufficient for system design .Conceptually ,requirements analysis includes three types of activity:

· Eliciting requirements: The task of communicating with customers and users to determine what their requirements are.

· Analyzing requirements: Determining whether the stated requirements are unclear, incomplete, ambiguous, or contradictory, and then resolving these issues.
· Recording requirements: Requirements may be documented in various forms, such as natural-language documents, use cases, user stories, or process specifications.
 Requirements analysis can be a long and arduous process during which many delicate psychological skills are involved. New systems change the environment and relationships between people, so it is important to identify all the stakeholders, take into account all their needs and ensure they understand the implications of the new systems. Analysts can employ several techniques to elicit the requirements from the customer. Historically, this has included such things has holding interviews, or holding focus groups (more aptly named in this context as requirements workshops-see below) and creating requirements lists. More modern techniques include phototyping, and use cases. Where necessary, the analyst will employ a combination of these methods to establish the exact requirements of the stake holders, so that a system that meets the business needs is produced.

 Various tools are essential for system analysis. They improve the manner in which the development occurs and influence the quality of the final results. Tools extend the capability of the system analysis in three ways namely Improve productivity, Improve Effectiveness and Improve information system quality.

 One of the issues that companies are facing in their operations is database migration to new hardware, or a different operating system platform, or even a new database vendor. There are many steps and factors involved in this process. The source and target systems are analyzed for the amount of data to be transferred, the time it takes, available system down time to perform the migration, security, system availability and roll back options. Cross platform or database vendor is even more limited and usually means exporting data to a file and then importing it or using replication or gateway technology. Database migration is a complex project and has to be thoroughly analyzed. Determine the migration type and the necessary tools and resource to complete it.

 3.1 HARDWARE REQUIREMENTS

Processor
: Pentium IV

Memory

: 128RAM&20 GB HDD

Monitor

: 14’’VGA color monitor

Mouse

: 2/3button

Keyboard

: 104 keys

3.2 SOFTWARE REQUIREMENTS

Operating system

: Windows XP or above

Execution environment
: .NET platform

Database

: MYSQL 4 or above

Language

: Visual C# 2005.NET

Tool

 : Microsoft Visual Studio 2005.NET

CHAPTER IV

SYSTEM ANALYSIS

The requirements elicited in the requirement phase are analyzed to give a foundation for the software to be built. It describes the function, behavior, interfacing and performance of a computer based system and the constraints that will govern its development. Requirements Analysis is a software engineering task that bridges the gap between system level requirements engineering and software design. Requirements engineering activities result in the specification of software’s operational characteristics (function, data and behavior), indicates software’s interface with other system elements and establish constraints that software must meet. Requirements analysis allows the software engineer to refine the software allocation and build models of data, functional and behavioral domains that will be treated by software. Requirements analysis provides the software designer with a representation of information, function and behavior that can be translated to data, architectural, interface and component-level designs. Finally, the requirements specification provides the developed and the customer with the means to assess quality by once software is built.

4.1 PROBLEM DEFINITION

The advent of the internet has resulted in many new opportunities for the creation and delivery of content in digital form. Now a day’s computer literature concentrated on knowing about web applications. As we use mostly web based applications, for developing a successful web application it needs databases and its related operations.

These database operation can be done through software such as Microsoft SQL Server 2000,2005 etc. For a well trained developer, has the ability to do these database operations by using the Microsoft SQL Server 2005, through executing the sql queries. In the case of a developer who doesn’t have much knowledge about the sql queries and function of each queries, it is difficult to complete a web application effortless. Here he needs a client which acts as a mediator between him and the Microsoft SQL Server 2005.
4.2 PROJECT OVERVIEW

The system is viewed as whole and the input to the system are identified. The output form of the system are traced through the various data are collected on available files, decision points and transaction handled by present system. Based on analysis, a cost/ benefit analysis is considered. The cost for the system is calculated on the basis of analysis made. The solutions are given as a proposal. The proposal is then weighted with the existing system analytically and the best one is selected. The proposal is presented to the user request and suitable change is made. This is a loop that ends as soon as the user is satisfied with the proposal. After all this proposal becomes a format agreements that paves way for the design implementation.

CHAPTER V

SYSTEM DESIGN

The system design translates the system requirements into ways of operationalising them. The design is a solution, a “how to” approach, compared to analysis, a “what is” orientation .The emphasis is on translating performance specifications into design specifications. The design phase is a translation from a user oriented document (system proposal) to a document oriented to the programmers or database personnel.
5.1 INPUT DESIGN

Input design is the process of converting a user – oriented description of the inputs to a computer based business system into a programmer – oriented specification. The goal of designing input data is to make data entry as easy, logical and free from errors as possible. Input design is a part of the overall system design, which requires carefully attention. If the data going into the system is incorrect, then the processing and output will magnify these errors. The proposed system satisfies the following input design objectives

· A cost effective method of input
· The highest possible level of accuracy

Controlling the amount of input: Wherever user input is required, the number of key strokes is reduced by giving possible input values as default in that area. The viewer can select the answer in single click. The amount of information entered by the viewer using the keyboard is reduced to the maximum and the software is made very user friendly.Avoid Delay: A processing delay resulting from data preparation or data entry operations is called a bottleneck. Such bottlenecks are avoided to the maximum. The only time the viewer has to wait is when the file is uploaded or downloaded. Progress bar or progress meters are displayed to keep the user waiting and also to show the speed and amount of download.

Avoid Errors in Data: The rate at which errors occur depends on the quantity of data. Here the quantity of data is reduced to the lowest, and a text file is easily manageable.

· Keep the process Simple: This implies that the system has all the measure to keep the errors out even if the user is giving wrong data. It handles the situation with grace and doesn’t create much hype about the situation to the user. Several activities done in the input stages are:

· Data recording → collection of data at its source

· Data transcription → transcription of data to an input form.

· Data conversion → conversion of the input data to a computer acceptable medium.

· Data verification → checking the conversion.

· Data control → checking the accuracy and controlling the flow of the data to the computer.

· Data transmission → transmitting or transporting, the data to the computer.

· Data validation & correction → checking & correcting the errors the input data by program when it enters the computer system.

 5.2 OUTPUT DESIGN
The output from an information system should accomplish one or more of the following objectives:
· Convey information about past activities, current status or projections in future.

· Signal important events, opportunities, problems or warnings.

· Trigger an action.

· Confirm the action.

· The output design of this project is made with these objectives in mind

· Output Types

· External Outputs, whose destination is outside the organization and is the main image of the organization,

· Internal Outputs, whose destination is within the organization and which

· Require careful design because it is user’s main interface with the computer.

· Operational Outputs, whose use is purely within the computer departments,

· Interactive outputs, which involve the user in communicating directly with the computer.

· Turn round Outputs, i.e.; re – entrant documents, to which data will be added before they are returned to the computer for further processing.

5.3 DATABASE DESIGN

5.3.1 Microsoft access 2008

 Microsoft Office Access, previously known as Microsoft Access, is a relational database management system from Microsoft that combines the relational Microsoft Jet Database Engine with a graph and software development tools. It is a member of the Microsoft Office suite of applications, included in the Professional and higher editions or sold separately. Microsoft Access is used to create simple database solutions. Access tables support a variety of standard field types, indices, and referential integrity. Access also includes a query interface, forms to display and enter data, and reports for printing. The underlying Jet database, which contains these objects, is multiuser-aware and handles record-locking and referential integrity including cascading updates and deletes. Microsoft Access also offers the ability for programmers to create solutions using the programming language Visual Basic for Applications (VBA), which is similar to Visual Basic 6.0 (VB6) and used throughout the Microsoft Office programs such as Excel, Word, Outlook and PowerPoint. Most VB6 code including the use of Windows API calls can be used in VBA. Power users and developers can extend basic end-user solutions to a professional solution with advanced automation, data validation, error trapping, and multi-user support.

 Database solutions created entirely in Microsoft Access are well suited for individual and workgroup use across a network. The number of simultaneous users that can be supported depends on the amount of data, the tasks being performed, level of use, and application design. Generally accepted limits are solutions with 1 GB or less of data (Access supports up to 2 GB) and 50 or fewer simultaneous users. This is appropriate for workgroup and department solutions where the total number of users number a few hundred.

5.3.2 KEY FEATURES

 Users can create tables, queries, forms and reports, and connect them together with macros. Advanced users can use VBA to write rich solutions with advanced data manipulation and user control. The original concept of Access was for end users to be able to “access” data from any source. Other uses include: the import and export of data to many formats including Excel, Outlook, ASCII, dBase, SQLServer, Oracle, ODBC, etc. It also has the ability to link to data in its existing location and use it for viewing, querying, editing, and reporting. This allows the existing data to change and the Access platform to always use the latest data. It can perform heterogeneous joins between data sets stored across different platforms. Access is often used by people downloading data from enterprise level databases for manipulation, analysis, and reporting locally.

 There is also the Jet Database format (MDB or ACCDB in Access 2007) which can contain the application and data in one file. This makes it very convenient to distribute the entire application to another user, who can run it in disconnected environments.

 One of the benefits of Access from a programmer's perspective is its relative compatibility with SQL (structured query language) — queries can be viewed graphically or edited as SQL statements, and SQL statements can be used directly in Macros and VBA Modules to manipulate Access tables. Users can mix and use both VBA and "Macros" for programming forms and logic and offers object-oriented possibilities. VBA can also be included in queries. Microsoft Access offers parameterized queries. These queries and Access tables can be referenced from other programs like VB6 and NET through DAO or ADO. From Microsoft Access, VBA can reference parameterized stored procedures via ADO. The desktop editions of Microsoft SQL Server can be used with Access as an alternative to the Jet Database Engine. This support started with MSDE (Microsoft SQL Server Desktop Engine), a scaled down version of Microsoft SQL Server 2000, and continues with the SQL Server Express versions of SQL Server 2005 and 2008.

 Microsoft Access is a file server-based database. Unlike client-server relational database management systems (RDBMS), Microsoft Access does not implement database triggers, stored procedures, or transaction logging. Access 2010 (not released) does have table level triggers and stored procedures built into the ACE data engine. Some of the most advantages of Microsoft Access are listed below

· Get better results faster with the Office Fluent user interface.

· Get started quickly using prebuilt solutions.

· Create multiple reports with different views of the same information.

· Create tables quickly without worrying about database complexity.

· Enjoy new field types for even richer scenarios.

· Collect and update your information directly from the source.

· Share your information with Microsoft Windows SharePoint Services.

· Track Windows SharePoint Services lists with the rich client capabilities of Office Access 2007.

· Move data to Windows SharePoint Services for better manageability.

· Access and use information from multiple sources.

5.3.3 Normalization

 Normalization is the process of decomposing the attributes in an application, which results in a set of tables with very simple structure. The purpose of normalization is to make tables as simple as possible.
 Primary Key is assigned for this purpose. The primary key fields in almost all the tables help to ease the search and improve efficiency. The proposed system is using second normal form as it is found most suitable. In second normal form each row must contain associated field that describes

an attribute of the entry that the table describes. The database designs of the proposed system are given in table 5.1

	FIELD NAME
	
	DATA TYPE
	
	DESCRIPTION

	Administrator Name
	
	Text
	
	Authorized Administrator Name

	Administrator Password
	
	Text
	
	Authorized Administrator Password

	User id
	
	Text
	
	User Login id

(primary key)

	password
	
	Text
	
	Password

Table 5.1: Register to store the Registration details of users.
5.4 logical design

 In Logical Design, the focus changes to design. The extended team may be changed to take advantage of specific design expertise, and should include both business representatives (management and staff), and technical expertise (data administration, networking, documentation, etc.).

 The team reviews the materials from earlier phases and begins the system design, identifying any additional system objects, determining operations and data structures for all objects, validating relationships and interactions between objects, and prototyping user interface objects.

5.5 LANGUAGE FEATURES
5.5.1 ABOUT C#
The proposed system is user-friendly with C#/ASP.NET as front end and SQL SERVER 2005 as back end.
USES OF C#/ASP.NET AS FRONT END
· Rich functionality out of the box

· Easy development of web applications

· OOPs support

· Multilanguage support

· Automatic memory management

· Ease of deployment and configuration

· Security

· Very flexible IDEs like Visual studio is available for DOTNET frame work

· DOT NET frame work will be automatically installed while installing Visual studio

· Compatible for configuring uS with SMTP server.

USES OF SQL SERVER 2005 AS BACK END:

· Provides data security

· Provides data integrity

· Data base connectivity is easy with C#IASP.NET as front end

· Installation is easy with Visual studio

· Database tables can be created and accessed through Visual studio IDE also.

5.5.2 ABOUT .NET
.NET is a “software platform”. It is a language-neutral environment for writing programs that can easily and securely interoperate. Rather than targeting a particular hardware/operating system combination, programs will instead target “.NET”, and will run wherever .NET is implemented.
.NET is also the collective name given to the various bits of software built upon the .NET platform. The components that make up .NET-the platform are called the .NET frame.

The .NET framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet. The .NET framework is designed to fulfill the following objectives.

· To provide a consistent object-oriented programming environment whether object code is stored and executed locally, but Internet- distributed or executed remotely.

· To provide a code execution environment that minimizes software deployment and versioning conflicts.

· To provide a code-execution environment that guarantees safe execution of code including code created by an unknown or semi- trusted third party.

· To provide a code-execution environment that eliminates the performance of scripted or interpreted environments.

· To make the developer experience consistent across widely varying types of applications, such as Windows-based application and web- based application

· To build all communication on industry standards to ensure that code based on the .Net framework can integrate with any other code The .NET framework has two main components: The Common Language Runtime and Hierarchical set of Class Libraries

5.5.3 COMMON LANGUAGE RUNTIME (CLR)
CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are: Conversion from a low-level assembler style language called Intermediate Language (IL), into code native to the platform being executed on.
• Memory Management, notably including garbage collection.

• Checking and enforcing security restrictions on the running code.

• Loading and executing programs with version control and other such features.
5.5.4 CLASS LIBRARIES
Class Libraries, the other main component of the .NET framework, is a comprehensive, object-oriented collection of reusable type that you can use to develop applications ranging from traditional command-line or Graphical User Interface (GUI) application to applications based on the latest innovations provided by ASP.NET such as Web Forms and XML Web Services. The .NET framework can be hosted by unmanaged components that load the common language runtime into their processes and initiate the execution of managed code, thereby creating a software environment that can exploit both managed and unmanaged features. The .NET framework not only provides several runtime hosts, but also supports the development of third-party.runtime hosts. We can use the .NET framework to develop the following types of applications and services.

• Console applications.

• Scripted or hosted applications Windows GUI applications (Windows form)

ASP.NET applications

• XML Web Services

• Windows Services

5.5.5 MICROSOFT SQL SERVER
Microsoft SQL Server is a relational database management system (RDBMS) produced by Microsoft. Its primary query language is Transact-SQL, an implementation of the ANSI/ISO standard Structured Query Language (SQL) used by both Microsoft and Sybase.

5.5.6 ARCHITECTURE
The architecture of Microsoft SQL Server is broadly divided into three components: SQLOS which implements the basic services required by SQL Server, including thread scheduling, memory management and 110 management; the Relational Engine, which implements the relational database components including support for databases, tables, queries and stored procedures as well as implementing the type system; and the Protocol Layer which exposes the SQL Server functionality.

5.5.7 RELATIONAL ENGINE
The relational engine implements the relational data store using the capabilities provided by SQLOS, which is exposed to this layer via the private SQLOS API. It implements the type system, to define the types of the data that can which is the component that retrieves data. SQL queries specify what data to retneve ,and the query processors optimizes and translates the query into the sequences of operations needed to retrieve the data .The operation are then performed by worker threads, which are scheduled for execution by SQLOS.

5.5.8 DATA STORAGE
The main units of data storage is a database , which is a collection of tables with typed columns .SQL Server supports different data types, including primary types such as Integer, Float, Decmal, Char (including character strings), Varchar (variable length character strings), binary (for instructed blobs of data),Text(for textual data) among others. It also allows user-defined composite types (UDTs) to be defined and used. SQL Server also makes server statistics available as virtual tables and views (called Dynamic Management Views or DMVs). A database can also contain other objects including views, stored procedures, indexes and constraints, in addition to tables, along with a transaction log. An SQL Server database can contain a maximum of 2A3 I objects, and can span multiple OS-level files with a maximum filesize of 2A2OTB .The data in the database are stored in primary data files with an extension .mdf .Secondary data files ,identified with an .ndf extension, are used to store optional met a data. Log files are identified with the .ldf extension.
Storage space allocated to a database is divided in to sequentially numbered pages, each 8KB in size. A page is the basic unit of 1/0 for SQL Server operations. A page is marked with a 96 byte header which stores metadata about the page including the page including the page number, page type, free space on the page and the ID of the object that owns it. Page type defines the data contained in types page —data stored in the database, index allocation map which holds information about how pages are allocated to tables and indexes change map which holds information about the changes made to other pages since last backup or logging, or contain large data types such as image or text. While page is the basic unit of an 110 operation space is actually managed in terms of an extent which consists of 8 pages. A database object can either span all 8 pages in an extent (“uniform extent”)or share an extent with up to 7 more objects (“mixed extent”).A row in a database table cannot span more than one page, so is limited to 8KB in size However if the data exceeds 8KB and the row contains varchar or varbinary data, the data in those columns are moved to a new page (or possible a sequence of pages, called Allocation unit) and replaced with a pointer to the data.For physical storage of a table, its rows are divided in to a series of partitions (numbered 1 ton). The partition size is user defined, by default all rows are in a single partition A table is split into multiple partitions in order to spread a database over a cluster. Rows in each partition are stored in either B-tree or heap structure If the table has an associated index to allow fast retrieval of rows, the rows are stored in-order according to their index values, with a B-tree providing the index The data is in the leaf node of the leaves and other nodes storing the index values for the leaf data reachable from the respective nodes If the index is non-clustered, the rows are not sorted according to the index keys An indexed view has the same storage structure as an indexed table A table without an index is stored in an unordered heap structure Both heaps and B-trees can span multiple allocation units.
5.5.9 DATA RETRIEVAL
The main mode of retrieving data from an SQL Server database is querying for it. The query is expressed using a variant of SQL called T-SQL, a dialect Microsoft SQL Server shares with Sybase SQL Server due to its legacy. The query declaratively specifies what is to be retrieved. It is processed by the query processor, which figures out the sequence of steps that will be necessary to retrieve the requested data. The sequence of actions necessary to execute a query is called a query plan. There might be multiple ways to process the same query. For example, for a query that contains a join statement and a select statement, executing join on both the tables and then executing select on the results would give the same result as selecting from each table and then executing the join, but result in different execution plans. In such case, SQL Server chooses the plan that is supposed to yield result in the shortest possible time. This is called query optimization and is performed by the query processor itself.

SQL Server includes a cost-based query optimizer which tries to optimize on the cost, in terms of the resources it will take to execute the query. Given a query, the query optimizer looks at the database schema, the database statistics and the system load at that time. It then decides which sequence to access the tables referred in the query, which sequence to execute the operations and what access method to be used to access the tables. For example, if the table has an associated index, whether the index should be used or not-if the index is on a column which is not unique for most of the columns (low “selectivity”), it might not be worth while to use the index to access the data. Finally, it decides whether to execute the query concurrently or not. While a concurrent execution is more costly in terms of total processor time, because the execution is actually split to different processors might mean it will execute faster. Once a query plan is generated for a query, it is temporarily cached. For further invocations of the same query, the cached plan is used. Unused plans are discarded after some time.

SQL Server also allows stored procedure to be defined, stored procedures are parameterized T-SQL queries, that are stored in the server itself (and not issued by the client application as is the case with general queries). Stored procedures can accept values sent by the client as input parameters, and sent back results as output parameters. They can also call other stored procedures, and can be selectively provided access to. Unlike other queries, stored procedures have an associated name, which is used at runtime to resolve into the actual queries. Execution plans for stored procedures are also cached as necessary.

CHAPTER VI

SYSTEM IMPLEMENTATION

 Implementation is the stage of projects when the theoretical design is turned into a working system. At this stage the main workload, the greatest upheaval and the major impact on existing practices shifts to the user department .If the implementation stage is not carefully planned and controlled, it can cause chaos. The implementation stage in a system projects is its own right. It involves careful planning, investigation of the current system and its constraints on implementation, design of methods to achieve the changeover, training of staff in the changeover procedure and evaluation of changeover methods. The task involved in the normal implementation process is Implementation planning.
 The implementation of a system involves people from different departments and system analysts are confronted with the practical problem of controlling the activities of people outside their own data processing department .Prior to this point in the project ,system analyst has interviewed department staff with the permission of their respective manager .The implementation co-ordination committee is important .There should be at least one representative of each department affected by the changes and other members should be co-opted for discussion of specific topics.

6.1 MAINTENANCE AND REVIEW
 Provision must be made for environmental changes, which may affect either the computer, or other parts of computer based system .Such activity is normally called maintenance .It includes both the improvement of system functions and corrections of faults that arise during the operation of the system .Maintenance activity may require the continuing involvement of a large proportion of computer department resources .Most changes arise in two ways:

· As part of the normal running of the system when errors are found .User asks for improvement or external requirements change.
· As a result of specific investigation and review of the system’s performance.

6.2 SOFTWARE TESTING

Testing is one of the most important stages in software development .Any software apart from being small or large needs too be tested .Testing is usually carried out during the implementation phase to verify that software behaves as intended by its designer .It is important to note that the system should be tested at each stages of software development .testing usually involves checks to conform that program meet its specification and checks to ensure that program implemented meets the expectation of the software customer .Running the program using real data testing .The existence of program defects or inadequacies is inferred from the unexpected system outputs .When defects are identified they need to be removed. The process is termed as debugging .After debugging testing is repeated to ensure that the changes have been made correctly.

In addition, the data collected for testing provides a good indication of software reliability and some indication of software quality as a whole. However testing cannot show the absence of defects, it can show that software errors are presents .All these should be traceable to customer requirements.

Testing is a process of executing a program with the intention of finding an error .A good test case is one that has high probability of finding a yet undiscovered error. A successful test is one that uncovers a yet undiscovered error. Large systems are built of sub systems ,which are built out of modules that are composed of procedures and functions .The testing processes should therefore proceed in stages where testing is carried out incrementally in conjunction with system implementation.

For every software project there is an inherent conflict of interest that occurs as testing begins. The people who have developed the software are now asked to test the software. Unfortunately these same developers have a vested interest in demonstrating that the program is error free, that it works according to the customer requirements, that it will be completed in schedule and within budget. From a psychological point of view software analysis and design are constructive tasks .The software engineer creates a computer program, its documentation and data structures. When testing commences, there is a subtle, yet definite attempt, to break the thing the software engineer developed. From the point of view of the developer, the testing can be psychologically destructive .This software has undergone the following tests.

6.2.1 UNIT TESTING
This is the first level of testing .Here; the different modules of software were tested against the specification produced during the design of the module. Code produced during the coding phase of the software development process and the internal logic of the modules was tested here. Each module receive inputs and generate output, different test cases are applied to test the range of values expected, including both valid and invalid data. After coding, each dialogue was tested and run individually. All unnecessary coded statements were removed and it was ensured that all functionalities worked as expected .The logical errors found were corrected.

6.2.2 INTEGRATION TESTING
This is a systematic testing for constructing the structure while conducting tests to uncover errors in the interfacing. Here the different modules of the software are combined in to subsystem, which are again tested. Verification of the interfaces among system part is tested. The various unit-tested modules of the software were integrated and rigorous integration testing was conducted to make the application free of any interface errors that may occur during transaction between applications.

6.2.3 VALIDATION TESTING
Validation testing provides the final assurance that the software meets all functional, behavioral and performance requirements .During the course of validating the software system, to some extent failure occurred and software is changed for the better performance. When the application was made free of all logical and interface errors, validation testing was done by inputting dummy data to ensure that the software developed satisfied all the requirements of the user.

6.2.4 TEST CASE DESIGN METHOD
The primary objectives of the test case design method are to derive a set of test that has a highest likelihood of uncovering defects in the software. To accomplish this objective to categories of test case design technique are used: black box testing and white box testing.
CHAPTER VII

FUTURE ENHANCEMENT

We would like to add some more features, some enhancements to our project. Some of them are as follows MySQL 5.x objects support, complete unicode/UTF8 support, table diagnostics, creating/dropping database, multi-tab query editor and multiple query execution.

The application developed can be done with ease. The system has the capability for easy integration with other system. We had done our best to include all possible functions in the GUI, even there are some limitations. In our project we cannot identify minimum, maximum value and neither select values in ascending or descending order. We wish we could change this drawback in future.
CHAPTER VIII

CONCLUSION

The project was completed within the time span allotted. Every effort has been made to present in the system in more user friendly manner. All the activities provide a feeling like an easy walk over to the user who is interfacing with the system. A trial run of the system has been made and is giving good results.

The software has been developed in .NET and a very user friendly GUI is designed using C#. All the modules are tested separately and put together to form the main system in an attractive fashion. So users with minimum knowledge abut the computers operates easily.

CHAPTER IX

APPENDIX
A: SCREEN SHOTS

[image: image1]
A.1: Connect Form

[image: image2]
A.2: Main Form

[image: image3]
A.3: Create Database Form

[image: image4]
A.4: Create Table Form

[image: image5]
A.5: Table Data Editor

[image: image6]
A.6: Table Data Selector

[image: image7]
A.7: Query Builder

[image: image8]
A.8: Table Copy

[image: image9]
A.9: Bulk Copy

[image: image10]
A.10: Backup Form

[image: image11]
A.11: Import Form

B SOURCE CODE
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

namespace MYSQLGUI

{

 public partial class Form1 : Form

 {

 public static String default_db="MYSQL";

 public static Form1 me;

 Database database;

 public static TreeView tree;

 public static String sel_db;

 public Form1()

 {

 me = this;

 sel_db = default_db;

 database = new Database();

 InitializeComponent();

 tree=tree_db;

 MTreeNode mt= new MTreeNode(0, "", null);

 mt.Nodes[0].ContextMenuStrip = db_head_context;

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 LoadTree();

 }

 void ShowAllForms()

 {

 foreach (Form childForm in MdiChildren)

 {

 if (tree.Visible)

 childForm.Left = tree.Width;

 else

 {

 childForm.Left = Left ;

 }

 }

 }

 public void LoadTree()

 {

 tree_db.Nodes[0].Nodes[0].Nodes.Clear();

 DataSet ds = database .GetDataset(default_db, "show databases");

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String dc = ""+ds.Tables[0].Rows[i][0];

 MTreeNode mt= new MTreeNode(2, dc,(MTreeNode) tree_db.Nodes[0].Nodes[0]);

 mt.ContextMenuStrip = db_contextmenu;

 mt.Nodes[0].ContextMenuStrip = table_head_context;

 mt.Nodes[1].ContextMenuStrip = sp_head_menustrip;

 }

 if(tree_db.Nodes[0].Nodes.Count>1)

 tree_db.Nodes[0].Nodes[1].ContextMenuStrip = context_user_head;

 }

 void CreateDb()

 {

 CreateDBForm cdb = new CreateDBForm();

 cdb.ShowDialog();

 }

 void DropDB()

 {

 if (tree_db.SelectedNode != null)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 2)

 {

 try

 {

 String dbn = mt.Text;

 Database db = new Database();

 db.ModifyDatabase(default_db, "drop database " + dbn);

 LoadTree();

 }

 catch (Exception ee)

 {

 String str = Database.GetExceptionString(ee);

 MessageBox.Show(str);

 }

 }

 }

 }

 private void tree_db_DoubleClick(object sender, EventArgs e)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 1)

 {

 LoadTree();

 }

 else if (mt.type == 2)

 {

 sel_db = mt.Text;

 }

 else if (mt.type == 3)

 {

 ShowTables();

 }

 else if (mt.type == 4)

 {

 ShowTableData();

 }

 else if (mt.type == 6)

 {

 ShowStoredProcedures(mt);

 }

 else if (mt.type == -2)

 {

 Showusers();

 }

 }

 void Showusers()

 {

 if (tree_db.SelectedNode != null)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == -2)

 {

 mt.Nodes.Clear();

 if (Database.userid.CompareTo("root")==0)

 {

 Database db = new Database();

 DataSet ds = db.GetDataset("mysql", "select user from user");

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String tt=""+ds.Tables[0].Rows[i][0];

 if(tt.CompareTo("root")!=0)

 {

 MTreeNode mm = new MTreeNode(-3, tt, mt);

 mm.ContextMenuStrip = context_user_tab;

 }

 }

 }

 }

 }

 }

 void ShowTables()

 {

 if (tree_db.SelectedNode != null)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 3)

 {

 mt.Nodes.Clear();

 String pa = mt.Parent.Text;

 DataSet ds = database.GetDataset(pa, "show tables");

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String ta = ds.Tables[0].Rows[i][0] + "";

 MTreeNode mm = new MTreeNode(4, ta, mt);

 mm.ContextMenuStrip = tableMenuStrip1;

 TableData(pa, mm);

 }

 }

 else if (mt.type > 2)

 {

 while (mt != null && mt.type != 2)

 {

 mt = (MTreeNode)mt.Parent;

 }

 if (mt != null)

 {

 mt.Nodes.Clear();

 String pa = mt.Text;

 DataSet ds = database.GetDataset(pa, "show tables");

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String ta = ds.Tables[0].Rows[i][0] + "";

 MTreeNode mm = new MTreeNode(4, ta, mt);

 mm.ContextMenuStrip = tableMenuStrip1;

 TableData(pa, mm);

 }

 }

 }

 }

 }

 void ShowStoredProcedures(MTreeNode mt)

 {

 mt.Nodes.Clear();

 String pa = mt.Parent.Text;

 DataSet ds = database.GetDataset("MYSQL", "select name from MYSQL.proc where db='"+pa+"' and type='PROCEDURE'");

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String ta = ds.Tables[0].Rows[i][0] + "";

 MTreeNode mm = new MTreeNode(7, ta, mt);

 mm.ContextMenuStrip = sp_menustrip ;

 }

 }

 void TableData(String db,MTreeNode mt)

 {

 String pa = mt.Text;

 DataSet ds = database.GetDataset(db,"desc " + pa);

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 String ta = ds.Tables[0].Rows[i][0] + "";

 new MTreeNode(5, ta, mt);

 }

 }

 private void newDatabaseToolStripMenuItem_Click(object sender, EventArgs e)

 {

 CreateDb();

 }

 private void newDatabaseToolStripMenuItem1_Click(object sender, EventArgs e)

 {

 CreateDb();

 }

 private void dropDatabaseToolStripMenuItem_Click(object sender, EventArgs e)

 {

 DropDB();

 }

 private void newTableToolStripMenuItem1_Click(object sender, EventArgs e)

 {

 NewTable();

 }

 void NewTable()

 {

 if (tree_db.SelectedNode != null)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 3)

 {

 String db = mt.Parent .Text;

 TableCreator_Form tcf = new TableCreator_Form(db);

 tcf.MdiParent = this;

 tcf.Show();

 ShowAllForms();

 }

 else if (mt.type >2)

 {

 while (mt != null && mt.type != 2)

 {

 mt = (MTreeNode)mt.Parent;

 }

 if (mt != null)

 {

 String db = mt.Text;

 TableCreator_Form tcf = new TableCreator_Form(db);

 tcf.MdiParent = this;

 tcf.Show();

 ShowAllForms();

 }

 }

 }

 }

 private void newTableToolStripMenuItem_Click(object sender, EventArgs e)

 {

 NewTable();

 }

 private void openSchemaToolStripMenuItem_Click(object sender, EventArgs e)

 {

 ViewTableSchema();

 }

 void ViewTableSchema()

 {

 if (tree_db.SelectedNode != null)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 4)

 {

 String db=mt.Parent.Parent.Text;

 String ta = mt.Text;

 TableProcessor_DB tpd = new TableProcessor_DB(db, ta);

 tpd.MdiParent = this;

 tpd.Show();

 ShowAllForms();

 }

 }

 }

 private void tree_db_Click(object sender, EventArgs e)

 {

 MTreeNode mt = (MTreeNode)tree_db.SelectedNode;

 if (mt.type == 2)

 {

 sel_db = mt.Text;

 }

 }

 private void querynToolStripMenuItem_Click(object sender, EventArgs e)

 {

 ShowQueryEditorForm();

 }

 void ShowQueryEditor(String db)

 {

 QueryEditorForm qf = new QueryEditorForm(db);

 qf.Show();

 }

 private void button1_Click(object sender, EventArgs e)

 {

 new Bulky_Copy_DB().Show();

 }

CHAPTER X

9.2 BIBLIOGRAPHY
[01-00]
System Analysis and Design by Elias M Awad,

TataMcgrawHill 2000

[02-04]
Software Engineering by Roger S Presman,

TataMcgrawHill 2004

[03-06]
C# by C.Xavier

Wrox Publication 2006

[04-07]
SQL Tips & Techniques by Kohrad King Contributing Editor

Kris James, ph.D:MBA

Microsoft Publications 2007
[05-07]
Pro C# 2008 and the .NET 3.5 Platform, by Andrew W, Tyrolese,
Works Publications 2007
[06-07]
Microsoft Visual C# 2008 Step by Step by John Sharp,

Wrox Publications 2007

 [07-08]
Illustrated C# 2008 by Daniel M. Solis ,

Wrox Publications 2008
[08-08]
C# 2008 Fundamentals I and II by P.J. Deitel ,
Wrox Publications 2008
[09-08]
Learning C# 3.0 by Jesse Liberty and Brian MacDonald,

Wrox Publications 2008
[10-08]
Sams Teach Yourself Visual C# 2008 in 24 Hours: Complete Starter Kit by James D. Foxall ,

Sams Publications 2008

[image: image13.jpg][image: image14.jpg][image: image15.jpg][image: image16.jpg][image: image17.jpg][image: image18.jpg][image: image19.jpg][image: image20.jpg][image: image21.jpg][image: image22.jpg]