DESIGN OF AN INTRANET MAIL CLIENT

SYSTEM

Table of Content
ACKNOWLEDGEMENT
CERTIFICATE
1
INTRODUCTION
6
1.1
Problem Specification
6

 1.2. Requirement Specification…………………………………………………..6

 1.2.1 Functional Requirements…………………………………………… 6

 1.2.2 Non Functional Requirements………………………………..…………7
 1.3 Software Requirements…………………………………………………………8

 1.3.1. Linux Platform……………………… …………………………...8
 1.3.2. Apache Server……………………………… ……………………8
 1.3.3. MYSQL Server…………………………… ……………………..8
 1.3.4. Sendmail Server…………………………… …………………….8

 1.4 Literature Survey………………………………………… ……………… …….8
 1.4.1The RFC 2060…...…………………………… ………………… ……9

 1.4.2. Message Attributes…...……………… ……………………… …….. 9

 1.4.2.1. Message Numbers……………………… ……… …… ……….9

 1.4.2.2. Flags Message Attribute………………… …………………..10
 1.4.2.3. Internal Date Message Attribute……………… ……………...11
 1.4.2.4. Envelope Structure Message Attribute………… …………….11
 1.4.2.5 Body Structure Message Attribute…………………… ……….11

 1.4.3. Installations survey……………………………………………… …..11

 1.5. Motivation…………………………………………………………… ……….12

2. DESIGN…………………………………………………………………… … ……13

 2.1 Basic Design…………………………………………………………… …….13

 2.2 Database Fields Specification…………………………………………… …...14
 2.3. State and Data Flow of I MAP………………………………………… …….14
 2.3.1. Non-Authenticated State……………………………………… ….15
 2.3.2. Authenticated State………………………………………… …….15
 2.3.3. Selected State………………………………………… …………..16
 2.3.4. Logout State……………………………………………… ………16
3. INSTALLING PACKAGES…………………………………… ………… ……....20

 3.1. Installing the Debian Sid – Linux Platform…………………………………20
 3.2. Configuring the Sendmail…………………………………………………...20

 3.3. Configuring SASL…………………………………………………………..21

 3.4. Configuring Cyrus IMAP…………………………………………………...22

 3.5. Generating Cyrus Certificate………………………………………………..22
 3.6. Restart Services……………………………………………………………..23

4. IMPLEMENTATION ………………………………………………………………. 24
 4.1 Implementing the Administrator Functionalities……………………………24
 4.2 Database for the users……………………………………………………….26

5. IMPLEMENTING THE USERS FUNCTIONALITIES……………………………..27

 5.1. Client Commands…………………………………………………………...27
 5.1.1 CAPABILITY………………………………………………………………27
 5.1.2 LOGOUT……………………………………………………………………27
 5.1.3AUTHENTICATE……………………………………………………27
 5.1.4. SELECT……………………………………………………………..28
 5.1.5 CLOSE……………………………………………………………….28
 5.1.6 EXPUNGE…………………………………………………………...28
 5.1.7 FETCH……………………………………………………………….28
 5.1.8 STORE……………………………………………………………….29
 5.1.9 COPY………………………………………………………………...30
 5.1.10 UID…………………………………………………………………30
6. PSEUDOCODE FOR THE COMPONENTS………………………………………...31
 6.1 Mailbox Display……………………………………………………………..31
 6.2. Message Display…………………………………………………………….31
 6.3 Compose /Forward /Reply:…………………………………………………..32
 6.4 Move message(s)…………………………………………………………….32
 6.5 Delete mail(s)………………………………………………………………...32

7. RESULTS……………………………………………………………………………..35

8. CONCLUSION AND FUTURE WORK……………………………………………36

REFERENCES…………………………………………………………………………..37

APPENDIX A……………………………………………………………………………38

Table of Figures
Figure 1 OVERALL DESIGN OF THE SYSTEM
12

Figure 2 STATE AND DATAFLOW OF IMAP…………………………………….13
Figure 3 ACTIVITY DIAGRAM OF THE ADMINISTRATOR……………………15

Figure 4 ACTIVITY DIAGRAM OF THE USER
…………………….…………….17

Figure 5 DEMONSTRATION OF ADMINISTRATOR COMMANDS…………….24

Figure 6 USERS DATA STORAGE 1……………………………………………….25

Figure 7 USERS DATA STORAGE 2……………………………………………….26

Figure 8:SAMPLE VIEW OF MAILBOX…………………………………………...34

ABSTRACT

The aim of the project was to develop an Intranet web based mail client system connecting to a Linux server running a mail server and with Apache as the web server. The aim was to implement the necessary functionalities to the users such as receiving and organizing mails through IMAP and Sending mails using send mail. All these are provided with the graphical interface so that the users can do their desired work smoothly. Apart from that, the administrator can create and delete user accounts through the Cyrus Server.

The system starts with the welcome page prompting the user to establish his authentication. He is allowed to see his mailboxes, read mails and send mails to the other users only after his/her account is verified.
1. INTRODUCTION
This Chapter outlines the aims of the project and motivation behind its implementation.

1.1. PROBLEM SPECIFICATION
This project aims at developing a web based mail client that serves the users to send and receive mails through Sendmail as the (MTA) message transport agent and IMAP as the message delivery agent.

The existing users are needed to authenticate their identity and then they are permitted to check their mails in their mailbox. Also they can send mails, organize mails across the folders and can delete the unnecessary mails form their mailboxes. A good user interface has been provided for performing all these tasks easily.

1.2. REQUIREMENTS SPECIFICATION

1.2.1. FUNCTIONAL REQUIREMENTS

Login Page:

There should be a login page for the existing user where the username and password are verified and then if he is a valid user, he is allowed for further advancements.

Inbox:
The logged in users should be able to see the lists of new mails as well as the existing ones.

Compose Mail:
User should be able to compose mails and send them to the other users.

Reply/Forward/Delete:
The user should be able to reply to mails, forward mails and also delete mails from his mailboxes. The deleted mails should be moved to the Thrash mailbox.

Organize Mails:
The user should be able to organize his mails into the existing folders.

Attach files:
The user should be able to attach files to the mails and send them to the desired users.
 Save as Draft:
The user should be able to save the incomplete mails in the Draft mailbox and these can be completed later and can be sent to others.

Record Sent mails:

There should be a provision for keeping a record of the mails that have been sent by the user in a separate mailbox called Sent mailbox.
 Trash mailbox:

This mailbox keeps a record of the deleted mails from the other mailboxes such as Inbox, Sent, and Draft. If further mails are deleted from this, the mails should be permanently deleted from the users’ accounts.
1.2.2 NON FUNCTIONAL REQUIREMENTS
Security:

Only the administrator should be able to maintain the users’ accounts such as creating new users and deleting the existing users’ accounts.

Database:

Integrity should be maintained and all the constraints should be satisfied.
Portability:

The web client system should work in both the windows and the Linux platform.

1.3 SOFTWARE REQUIREMENTS

The following softwares are to be used for the project.
1.3.1. Linux Platform

The Debian Linux should be used as the platform for coding.
1.3.2. Apache Server
Apache Server should be installed which serves as the web server.
1.3.3. MYSQL Server

MYSQL Server should be installed that stores the users details.

1.3.4. Sendmail Server

Sendmail server is a MTA agent. It should be installed for transferring the mails.

The protocol to be used is IMAP which serves as the Message Delivery Agent.
1.4 LITERATURE SURVEY

A study on the topics related to the project has been done prior to the implementation.

1.4.1The RFC 2060

This document [1] specifies an Internet standards track protocol for the Internet community. The Internet Message Access Protocol, Version 4rev1 (IMAP4rev1) allows a client to access and manipulate electronic mail messages on a server. It permits manipulation of remote message folders, called "mailboxes", in a way that is functionally equivalent to local mailboxes. IMAP4rev1 also provides the capability for an offline client to resynchronize with the server.

 IMAP4rev1 includes operations for creating, deleting, and renaming mailboxes; checking for new messages; permanently removing messages; setting and clearing flags, searching and selective fetching of message attributes, texts, and portions thereof. Messages in IMAP4rev1 are accessed by the use of numbers. These numbers are either message sequence numbers or unique identifiers. Thus accessing mails from the mailboxes area way easy and efficient when compared to POP3 protocol where the mails are to be downloaded into the host machines before reading them. This is not the case in IMAP protocol where the messages can be viewed from the server without being downloaded.

 IMAP4rev1 does not specify a means of posting mail; this function is handled by a mail transfer protocol such as [SMTP].

1.4.2. Message Attributes

 This topic gives the details of Message Attributes of the mail provided by the IMAP4rev1 In addition to message text, each message has several attributes associated with it. These attributes may be retrieved individually or in conjunction with other attributes or message texts.

1.4.2.1 Message Numbers:
 Messages in IMAP4rev1 are accessed by one of two numbers; the unique identifier and the message sequence number.

 Unique Identifier (UID) Message Attribute:
 A 32-bit value assigned to each message, which when used with the unique identifier validity value (see below) forms a 64-bit value that is permanently guaranteed not to refer to any other message in the mailbox. Unique identifiers are assigned in strictly ascending fashion in the mailbox; as each message is added to the mailbox it is assigned a higher UID than the message(s) which were added previously.

 Unlike message sequence numbers, unique identifiers are not necessarily contiguous. Unique identifiers also persist across sessions. This permits a client to resynchronize its state from a previous session with the server Associated with every mailbox is a unique identifier validity value, which is sent in an UIDVALIDITY response code in an OK untagged response at mailbox selection time. If unique identifiers from an earlier session fail to persist to this session, the unique identifier validity value must be greater than the one used in the earlier session.

1.4.2.2. Flags Message Attribute

 A list of zero or more named tokens associated with the message. A flag is set by its addition to this list, and is cleared by its removal. There are two types of flags in IMAP4rev1. A flag of either type may be permanent or session-only.

 A system flag is a flag name that is pre-defined in this specification. All system flags begin with "\". The currently-defined system flags are:

 \Seen Message has been read

 \Answered Message has been answered

 \Flagged Message is "flagged" for urgent/special attention

 \Deleted Message is "deleted" for removal by later EXPUNGE

 \Draft Message has not completed composition (marked as a draft).

\Recent Message is "recently" arrived in this mailbox. This session is the first session to have been notified about this message; subsequent sessions will not see

 \Recent set for this message. This flag can not be altered by the client.

 A flag may be permanent or session-only on a per-flag basis. Permanent flags are those which the client can add or remove from the message flags permanently; that is, subsequent sessions will see any change in permanent flags. Changes to session flags are valid only in that session.

.

1.4.2.3. Internal Date Message Attribute

 The internal date and time of the message on the server. This is not the date and time in the [RFC-822] header, but rather a date and time which reflect when the message was received. In the case of messages delivered via [SMTP], this SHOULD be the date and time of final delivery of the message as defined by [SMTP]. In the case of messages delivered by the IMAP4rev1 COPY command, this SHOULD be the internal date and time of the source message.

1.4.2.4. Envelope Structure Message Attribute

 A parsed representation of the [RFC-822] envelope information of the message.

1.4.2.5 Body Structure Message Attribute

 A parsed representation of the [MIME-IMB] body structure information of the message.

1.4.3. Installations survey

The users will attempt to access their emails via insecure networks,

Compromise their password, and thus give malicious users a point of entry to the system. As the number of users grows, the risk increases, as there are now more potential access points to the system. So IMAP server that allows creating email-only users who are totally separate from the local system ("UNIX") account database seems to be a more secure answer to the problem mentioned above.
 The Cyrus IMAP presents a decent solution to this. It is a higher performance IMAP server that could handle very large mailboxes, or mailboxes with a large number of messages. It uses a pseudo-database format. User authentication for Cyrus can be managed through SASL version 2, which will integrate with Sendmail to use SMTP authentication to allow relaying for remote users.

SMTP- the protocol used to transfer messages from one host to another. First the users interact with the mail reader when they compose file, search and their mails. There is a mail daemon running on each host, the daemon uses SMTP running over TCP to transmit the message to a daemon running on another machine and daemon puts incoming messages into the Users mailbox. The Sendmail program on the senders machine establishes an SMTP/TCP connection to the Sendmail program on the recipients machine, the mail traverses one or more gateways on its route from the senders host to the receivers host. Like the end hosts, these gateways also run a Sendmail process. Independent of how many mail gateways are in the path, an independent SMTP connection is used between each host to move the message closer to the recipient. Each SMTP session involves a dialogue between two mail daemons, with one acting as a client and the other as a server. Multiple messages might be transferred between two hosts during a single session.
1.5. MOTIVATION

Communication brings people closer. The advent of internet and electronic mails replaced the traditional postal mails. The virtual gap between people is brought to the minimum. Internet and emails are now part and parcel of every ones life. This has a great potential in the real world as most of the organizations and institutions have their dedicated mail services. And during this course of project, an effort has been made to mimic the existing mail systems with a purpose of understanding and implementing one such service.

.

2. DESIGN

This chapter describes the design decisions made to meet the aims that are specified in the specifications required. This chapter will also bring in some of the ideas and research outlined in the previous chapter.

2.1 Basic Design

[image: image1.png]

 Figure 1

 Overview of the System

· Here the browser clients have an email account. The authentication of the users is verified by the Cyrus IMAP server and the valid users are allowed to read their mailboxes.

· They can send mails with the Sendmail as the MTA. Thus the job of Sendmail is to transport mails and is not concerned about the messages inside the body.

· The incoming mails are sent into the respective mailbox of the users.

· Users can read mails from their mailboxes. They can send mails and can delete the unnecessary ones.

· The user details are stored in the MYSQL Database which can retrieve them as needed.

Sendmail: It is one of the most popular UNIX based implementation of SMTP (Sendmail Transfer Protocol).

Cyrus IMAP: Cyrus IMAP (Internet Message Access Protocol) server provides access to personal mail through the IMAP protocol. It uses a pseudo database format. This provides email only users who are totally separate from the local UNIX account database. The mailbox database is stored in parts of the file system that are private to the Cyrus IMAP.

2.2 Database Fields Specification

 This is the format of the table and the required fields used for maintaining the personal data of the users and thus enable the users search for the required mail ids.
Table Name: View_details
Fields:

Name varchar(15) not null

Code varchar(8) primary key

Designation varchar(8) not null

Department varchar(8) not null

Mailid varchar(10) not null, unique

 2.3. State and Data Flow of I MAP

[image: image2.png]
 fig 2:State And Dataflow of Imap
 (1) Connection without pre-authentication (OK greeting)

 (2) pre-authenticated connection (PREAUTH greeting)

 (3) rejected connection (BYE greeting)

 (4) Successful LOGIN or AUTHENTICATE command

 (5) Successful SELECT or EXAMINE command

 (6) CLOSE command, or failed SELECT or EXAMINE command

 (7) LOGOUT command, server shutdown, or connection closed.
 An IMAP4rev1 server is in one of four states. Most commands are valid in only certain states. It is a protocol error for the client to attempt a command while the command is in an inappropriate state. In this case, a server will respond with a BAD or NO (depending upon server implementation) command completion result.

2.3.1. Non-Authenticated State

 In non-authenticated state, the client must supply authentication credentials before most commands will be permitted. This state is entered when a connection starts unless the connection has been pre-authenticated.

2.3.2. Authenticated State

 In authenticated state, the client is authenticated and must select a mailbox to access before commands that affect messages will be permitted. This state is entered when a pre-authenticated connection starts, when acceptable authentication credentials have been provided, or after an error in selecting a mailbox.

2.3.3. Selected State

 In selected state, a mailbox has been selected to access. This state is entered when a mailbox has been successfully selected.

2.3.4. Logout State

 In logout state, the connection is being terminated, and the server

 will close the connection. This state can be entered as a result of a client request or by unilateral server decision.
2.4. Activity Diagram of the Administrator
[image: image3.png]
 figure 3: Activity Diagram of the Administrator

The administrator has all the privilege of accessing all the mailboxes. He is also authorized to create new accounts for the users, delete the existing users and can also delete the mails from the user accounts. First the administrator should know the password of the server host (i.e. he should be the root user) and should know the password of the Cyrus server.
The above figure is the activity diagram of the administrator and explains all the specified functionalities in a pictographic view. To establish as an administrator, he should prove his authentication and then is allowed to perform the administration activities.
2.3 Activity Diagram of the Users:

[image: image4.png]

 Figure 4

 Activity Diagram of the User

It is an activity diagram of the general user. First of all, the user encounters a welcome page that prompts him to enter the valid user name (or valid user- id) and the corresponding password. After a successful user login, he is allowed to read his mails from the Inbox mailbox. He then can read the mails from the other mailboxes - Sent, Draft and Trash. He can also organize mails between the existing folders (or mailboxes).
Apart from composing mails, he is also allowed to save the incomplete mails in the Draft mailbox and can any time resume them and compose later on. The sent folder contains all the records of the mails that are sent to the other users.

He then can logout from the mail service after the successful transactions. Once the user is logged out, he is only allowed through the login page.
3. INSTALLING PACKAGES
This chapter reveals about the required packages and how they are installed.
3.1. Installing the Debian Sid – Linux Platform
The operating system Debian is chosen as a platform. Other Linux distributions or any other platform that supports Cyrus IMAP, Cyrus SASL, and Sendmail can also be chosen. But the Debian's packages require the least post-install setup for the configuration and thus relatively very easy to install and configure the required softwares. The Debian packages will be preconfigured such that email users will have a local user account, and may have SSH access or more. The mails are no longer stored in "mbox" format in the home directory and the “mail” command is not used to check the new messages.
3.2. Configuring the Sendmail

By default, the Debian uses Exim as its SMTP. So after installing Sendmail [with MIMEDefang], Debian's package management system, APT, will automatically remove Exim when Sendmail is installed.

Before installing packages, make sure your APT sources are up to date:

root@server~# apt-get update
Install the required packages as follows:

root@server~# apt-get install cyrus21-admin cyrus21-imapd libsasl2 libsasl2-modules sasl2-bin ca-certificates openssl sendmail sendmail-cf m4
Run the sendmailconfig command and set the defalt options.

Sendmail's configuration is managed through the file /etc/mail/sendmail.mc.

root@server~# nano -w /etc/mail/sendmail.mc
Configure Sendmail to listen to the localhost environment " Addr=127.0.0.1".

Enable encrypted connections using SSL and TLS by adding support for the STARTTLS SMTP command. Append this line to the end of /etc/mail/sendmail.mc:

dnl # Enable STARTTLS
include(`/etc/mail/tls/starttls.m4')dnl

Enable secure SMTP (port 465).
dnl # Enable SMTPS for backwards compatibility
DAEMON_OPTIONS(`Family=inet, Name=TLSMTA, Port=smtps, M=s')dnl

Sendmail is configured to use the Cyrus delivery agent, required for mail delivery to a Cyrus mailbox:

dnl # Enable the Cyrus mailer
define(`confLOCAL_MAILER', `cyrusv2')dnl
dnl # Path to Cyrus LMTP socket
dnl define(`CYRUSV2_MAILER_ARGS',`FILE /var/run/cyrus/socket/lmtp')dnl
MAILER(`cyrusv2')dnl

The changes are saved in /etc/mail/sendmail.mc.
 Sendmail is configured to use the SASL authetication daemon, by editing /etc/mail/sasl/Sendmail.conf.2:

root@server~# nano -w /etc/mail/sasl/Sendmail.conf.2
The following changes are made, adding the appropriate entries where necessary:

pwcheck_method: saslauthd
auto_transition: false

The changes are saved in /etc/mail/sasl/Sendmail.conf.2.
3.3. Configuring SASL
The SASL authentication daemon is enabled and configured to use the SASL user database by editing /etc/default/saslauthd.

root@server~# nano -w /etc/default/saslauthd
To make the saslauthd to start at the time of booting, the comments are removed from

START=yes
MECHANISMS="sasldb"

3.4. Configuring Cyrus IMAP
 In the Cyrus IMAP configurationf file /etc/imapd.conf ,
root@server~# nano -w /etc/imapd.conf
admins: cyrus

sasl_mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

Check passwords with the SASL authentication daemon:

sasl_pwcheck_method: saslauthd

Note that when an account is created, SASL will save the secure passwords.

sasl_auto_transition: no

tls_cert_file: /etc/ssl/certs/cyrus-global.pem
tls_key_file: /etc/ssl/certs/cyrus-global.pem

Save the changes to /etc/imapd.conf.

Edit the global Cyrus configuration file /etc/cyrus.conf:

root@server~# nano -w /etc/cyrus.conf
Enable secure IMAP by uncommenting the line starting with "imaps" under the "SERVICES" section (remove the preceding #). Disable the POP services, and the regular IMAP service "imap". Depending on the server load, you may need to increase the -U and prefork= options.

#imap cmd="imapd -U 30" listen="imap" prefork=0 maxchild=100
imaps cmd="imapd -s -U 30" listen="imaps" prefork=0 maxchild=100
#pop3 cmd="pop3d -U 30" listen="pop3" prefork=0 maxchild=50
#pop3s cmd="pop3d -s -U 30" listen="pop3s" prefork=0 maxchild=50

Save the changes to /etc/cyrus.conf.

3.5. Generating Cyrus Certificate

.For added security, it is best to restrict file permissions on your certificates. At the very least, change the file owner to "cyrus" and tighten security permissions:

root@server~# chown cyrus /etc/ssl/certs/cyrus-global.pem
root@server~# chmod o-rw /etc/ssl/certs/cyrus-global.pem
3.6. Restart Services

Rebuild the Sendmail configuration files, answering 'Y' to any questions:

root@server~# sendmailconfig
root@server~# make -C /etc/mail
root@server~# /etc/init.d/sendmail restart
Restart Cyrus:

root@server~# /etc/init.d/cyrus21 restart
Start the SASL service:

root@server~# /etc/init.d/saslauthd start
 Thus the above packages are installed. After the installations are over, the Cyrus administrator’s password should be set through executing the following command.
root@server~# saslpasswd2 -c cyrus
Once the password is set, the administrator can create the users accounts, delete the existing ones and so on. The following chapter describes the administrators functionalities.
4. IMPLEMENTATION
4.1 Implementing the Administrator Functionalities
· Create Accounts
New User accounts can be created by the Cyrus administrator

The general Syntax for creating accounts is as follows.

Cm user.account_id;

“Cm stands for create mailbox;” #for creating new users
Here account_id is the name of the new user that a mailbox has been created.The Cyrus on default provides four mailboxes INBOX, INBOX.Sent, INBOX.Draft and INBOX.Trash.

After creating the mailbox for the new user, the password is setup as follows.

“Saslpasswd2 -c account_id;” #for setting password to the new users.
· Delete Accounts
The user accounts can be deleted by the administrator through executing the following command.

“dm user.account_id;” #for deleting user accounts.

· Viewing mailboxes
The administrator can keep track of the available users and can view his mailboxes and nails residing in the mailboxes. He should execute the following command.

“lm “ # stands for list mailboxes.
The above commands are demonstrated in the following figure.

[image: image5.png]
figure 5: Demonstration of administrator commands
4.2 Database for the users
The users accounts are stored in var/spool/cyrus/mail/. This contains the files of the users alphabetically. For example, the users Praveen and paladugu are stored in the file “p/user/”.
[image: image6.png]
Figure 6: Users data storage 1

[image: image7.png]
Figure 7: Users’ data storage 2

5. IMPLEMENTING THE USER FUNCTIONALITIES

The IMAP4rev provides various client commands for retrieving mails, and organizing mails such as deleting mails, copying them into other mailboxes, and so on. This chapter provides the following details of the commands.
5.1. Client Commands
5.1.1 CAPABILITY
The CAPABILITY command requests a listing of capabilities that the server supports. The server MUST send a single untagged CAPABILITY response with "IMAP4rev1" as one of the listed capabilities before the (tagged) OK response. This listing of capabilities is not dependent upon connection state or user. It is therefore not necessary to issue a CAPABILITY command more than once in a connection.
5.2 LOGOUT

The LOGOUT command informs the server that the client is done with the connection. The server MUST send a BYE untagged response before the (tagged) OK response, and then close the network connection.
5.3 AUTHENTICATE
The AUTHENTICATE command indicates an authentication mechanism, such as described in [IMAP-AUTH], to the server. If the server supports the requested authentication mechanism, it performs an authentication protocol exchange to authenticate and identify the client. It may also negotiate an OPTIONAL protection mechanism for subsequent protocol interactions. If the requested authentication mechanism is not supported, the server should reject the AUTHENTICATE command by sending a tagged NO response.

 The authentication protocol exchange consists of a series of server challenges and client answers that are specific to the authentication mechanism. A server challenge consists of a command continuation request response with the "+" token followed by a BASE64 encoded string. The client answer consists of a line consisting of a BASE64 encoded string. If the client wishes to cancel an authentication exchange, it issues a line with a single "*". If the server receives such an answer, it must reject the AUTHENTICATE command by sending a tagged BAD response.

 A protection mechanism provides integrity and privacy protection to the connection. If a protection mechanism is negotiated, it is applied to all subsequent data sent over the connection. The protection mechanism takes effect immediately following the CRLF that concludes the authentication exchange for the client, and the CRLF of the tagged OK response for the server.
5.4. SELECT
The SELECT command selects a mailbox so that messages in the mailbox can be acessed. Before returning an OK to the client, the server MUST send the following untagged data to the client:

FLAGS Defined flags in the mailbox. See the description of the FLAGS response for more detail.

 <n> EXISTS - The number of messages in the mailbox.

 <n> RECENT - The number of messages with the \Recent flag set.

 OK [UIDVALIDITY <n>] - The unique identifier validity value.

Only one mailbox can be selected at a time in a connection; simultaneous access to multiple mailboxes requires multiple connections. The SELECT command automatically deselects any currently selected mailbox before attempting the new selection.

If the client is permitted to modify the mailbox, the server should prefix the text of the tagged OK response with the "[READ-WRITE]" response code.
5.5 CLOSE
The CLOSE command permanently removes from the currently selected mailbox all messages that have the \Deleted flag set, and returns to authenticated state from selected state. No untagged EXPUNGE responses are sent.

No messages are removed, and no error is given, if the mailbox is selected by an EXAMINE command or is otherwise selected read-only. Even if a mailbox is selected, a SELECT, EXAMINE, or LOGOUT command MAY be issued without previously issuing a CLOSE command. The SELECT, EXAMINE, and LOGOUT commands explicitly close the currently selected mailbox without doing an expunge.
5.6 EXPUNGE
The EXPUNGE command permanently removes from the currently selected mailbox all messages that have the \Deleted flag set. Before returning an OK to the client, an untagged EXPUNGE response is sent for each message that is removed.

5.7 FETCH
 Arguments: message sets, message data item names

 Responses: untagged responses: FETCH

 The FETCH command retrieves data associated with a message in the mailbox. The data items to be fetched can be either a single atom or a parenthesized list.

 The currently defined data items that can be fetched are:

 ALL Macro equivalent to: (FLAGS INTERNALDATE

 RFC822.SIZE ENVELOPE)

 BODY Non-extensible form of BODYSTRUCTURE.

 BODY[<section>]<<partial>>

The text of a particular body section. The section specification is a set of zero or more part specifiers delimited by periods. A part specifier is either a part number or one of the following:

 HEADER, HEADER.FIELDS, HEADER.FIELDS.NOT, MIME, and TEXT. An empty section specification refers to the entire message, including the header.

 Every message has at least one part number. Non-[MIME-IMB] messages, and non- multipart [MIME-IMB] messages with no encapsulated message, only have a part 1.

Multipart messages are assigned consecutive part numbers, as they occur in the message. If a particular part is of type message or multipart, its parts MUST be indicated by a period followed by the part number within that nested multipart part.

5.8 STORE
Arguments: message set, message data item name value for message data item

 Responses: untagged responses: FETCH

The STORE command alters data associated with a message in the mailbox. Normally, STORE will return the updated value of the data with an untagged FETCH response. A suffix of ".SILENT" in the data item name prevents the untagged FETCH, and the server should assume that the client has determined the updated value itself or does not care about the updated value.

 The currently defined data items that can be stored are:

 FLAGS <flag list>

 Replace the flags for the message with the argument. The new value of the flags is returned as if a FETCH of those flags was done.

 FLAGS.SILENT <flag list>

 Equivalent to FLAGS, but without returning a new value.

 +FLAGS <flag list>

 Add the argument to the flags for the message. The new value of the flags are returned as if a FETCH of those flags was done.
+FLAGS.SILENT <flag list>

 Equivalent to +FLAGS, but without returning a new value.

 -FLAGS <flag list>

 Remove the argument from the flags for the message. The new values of the flags are returned as if a FETCH of those flags was done.

 -FLAGS.SILENT <flag list>

 Equivalent to -FLAGS, but without returning a new value.
5.9 COPY
Arguments: message set, mailbox name

Responses: no specific responses for this command

The COPY command copies the specified message(s) to the end of the specified destination mailbox. The flags and internal date of the message(s) should be preserved in the copy.

5.10 UID
Arguments: command name, command arguments

 Responses: untagged responses: FETCH, SEARCH

The UID command has two forms. In the first form, it takes as its arguments a COPY, FETCH, or STORE command with arguments appropriate for the associated command. However, the numbers in the message set argument are unique identifiers instead of message sequence numbers.
The number after the "*" in an untagged FETCH response is always a message sequence number, not a unique identifier, even for a UID command response. However, server implementations must implicitly include the UID message data item as part of any FETCH response caused by a UID command, regardless of whether a UID was specified

as a message data item to the FETCH.

6. PSEUDOCODE FOR THE COMPONENTS
6.1 Mailbox Display
Aim:

The aim of this component is to display the mails that are present in the mailbox.

Pseudo code:

Get the urladdress of the $mailbox;

if the $mailbox is INBOX or INBOX.Trash
the format of display should be From field followed by Date, Size and Subject fields.

else if the $mailbox is INBOX.Sent of INBOX.Draft,

the format should be To field followed by the fields Date, Size and Subject fields respectively.
Get the start message of the message. Print the messages in the order of their uid.
If any mail is deleted from the mailbox, rearrange them.

If any mail is selected for display, call the function message_display.

6.2. Message Display

Aim:

The aim of this component is to display the selected message.

Pseudocode:

Get the $uid of the message and $mailbox.

Create a imapconnection with the username, key and session values and then fetch the message $uid from $mailbox .

Assign the header fields to the local variables and use the html tags to display the message.

Logout imapconnection
6.3 Compose /Forward /Reply:

Aim:

The aim of this component is to compose new mails, forward or reply the mails.

Pseudocode:

Create a new login session with the imapconnection, key and other session values.

If not a fresh mail

{

If it is replying to a message
{

 get the uid of the message

To address is the from address of the old message.

 Append to the body the original body through FETCH command

Now add the replying text to the text body }

Elseif it is forwarding to some user

{

append to the body of the address field through the fetch command.

Add the to address field

Add the cc and bcc fields if wanted

} }

else if it is a fresh mail

{

add the to address fields, subject and other fields and write the text message.

}

Upon finish

If save as draft button is pressed, store the mail in the INBOX.Draft mailbox

Else if send button is pressed, send the mail through the Sendmail server.

Logout the imapconnection.
6.4 Move message(s)
Create a new imapconnnectin through username, key and other sessional variables
Copy the messages to another mailboxes specified through executing the Command COPY.

Delete the messages from the currentmalbox.

Close the imapconneciotn.
6.5 Delete mail(s)

create a new imapconnection

Set the /delete flag of the mails

Once the delete button is pressed

Call the function that executes the EXPUNGE command

Close the imapconnection.

Upon closing the imapconnection,

Rearrange the mails in the new order.

[image: image8.png]
Figure 8: Sample view of mailbox
7. RESULTS

The results were tested and observed to be successful for the test data. The testing of the implemented functionalities was satisfying and were according to the design.

It is a well organized intranet system at the end and also a good graphical interface is established. There are no flaws in the implementation of our code and the results were as expected.

The project ensures that the user will have no problem in performing the basic functions like deleting messages, arranging folders, composing mails etc.

8. CONCLUSION AND FUTURE WORK

We conclude that the functionalities done were well implemented successfully. We implemented a web based mail client which ensures the basic functionalities for the users. The user can successfully send and receive mails, compose, delete and organize mails with ease.

More features can also be added for the user. More functionality like searching the email ids of the existing users, creating and deleting folders, etc can also be implemented.

REFERENCES

1. For RFC2060, http://www.rfc-archieve.org.

2. for PHP, http://phpbuilder.com/
3. About IMAP, http://www..4d.com.

4. PHP tutorial:http//www.php.net

5. Ashok Appu: PHP-A Beginner’s Guide, First edition, Wiley publishing Inc, 2002.

6. http://campusconnect.infosys.com
7. W. R. Stevens :TCP/IP illustrated, 7th Edition, volume 1 ,2003

.

8. for IMAP, http://www.4d.com/docs/cmu/
APPENDIX-A
//Here the code of the mostly called functions is provided
// Copy a set of messages ($id) to another mailbox ($mailbox)

function sqimap_msgs_list_copy($imap_stream, $id, $mailbox) {

 global $uid_support;

 $msgs_id = sqimap_message_list_squisher($id);

 $read = sqimap_run_command ($imap_stream, "COPY $msgs_id \"$mailbox\"", true, $response, $message, $uid_support);

 $read = sqimap_run_command ($imap_stream, "STORE $msgs_id +FLAGS (\\Deleted)", true, $response, $message, $uid_support);

}

// Deletes specified messages and moves them to trash if possible

function sqimap_messages_delete($imap_stream, $start, $end, $mailbox) {

 global $move_to_trash, $trash_folder, $auto_expunge, $uid_support;

 if (($move_to_trash == true) && (sqimap_mailbox_exists($imap_stream, $trash_folder) && ($mailbox != $trash_folder))) {

 sqimap_messages_copy ($imap_stream, $start, $end, $trash_folder);

 }

 sqimap_messages_flag ($imap_stream, $start, $end, "Deleted", true);

}

// Sets the specified messages with specified flag

function sqimap_messages_flag($imap_stream, $start, $end, $flag, $handle_errors) {

 global $uid_support;

 $read = sqimap_run_command ($imap_stream, "STORE $start:$end +FLAGS (\\$flag)", $handle_errors, $response, $message, $uid_support);

}

// Remove specified flag from specified messages
function sqimap_messages_remove_flag($imap_stream, $start, $end, $flag, $handle_errors) {

 global $uid_support;

 $read = sqimap_run_command ($imap_stream, "STORE $start:$end -FLAGS (\\$flag)", $handle_errors, $response, $message, $uid_support);

}

function sqimap_toggle_flag($imap_stream, $id, $flag, $set, $handle_errors) {

 global $uid_support;

 $msgs_id = sqimap_message_list_squisher($id);

 $set_string = ($set ? '+' : '-');

 $read = sqimap_run_command ($imap_stream, "STORE $msgs_id ".$set_string."FLAGS ($flag)", $handle_errors, $response, $message, $uid_support);

}

// Returns the references header lines

 function get_reference_header($imap_stream, $message) {

 global $uid_support;

 $responses = array ();

 $results = array();

 $references = "";

 $responses = sqimap_run_command_list ($imap_stream, "FETCH $message BODY[HEADER.FIELDS (References)]", true, $response, $message, $uid_support);

 if (!eregi("^* ([0-9]+) FETCH", $responses[0][0], $regs)) {

 $responses = array ();

 }

 return $responses;

}

// Retrieves a list with headers, flags, size or internaldate from the imap server

function sqimap_get_small_header_list($imap_stream, $msg_list, $show_num=false) {

 global $data_dir, $username, $imap_server_type;

 global $uid_support, $allow_server_sort;

 // Get the small headers for each message in $msg_list
 $maxmsg = sizeof($msg_list);

 if ($show_num != '999999') {

 $msgs_str = sqimap_message_list_squisher($msg_list);

 } else {

 $msgs_str = '1:*';

 }

 $messages = array();

 $read_list = array();

 /*

 * We need to return the data in the same order as the caller supplied

 * in $msg_list, but IMAP servers are free to return responses in

 * whatever order they wish... So we need to re-sort manually

 */

 for ($i = 0; $i < sizeof($msg_list); $i++) {

 $messages["$msg_list[$i]"] = array();

 }

 $query = "FETCH $msgs_str (FLAGS UID RFC822.SIZE BODY.PEEK[HEADER.FIELDS (Date To Cc From Subject Content-Type)])";

 $read_list = sqimap_run_command_list ($imap_stream, $query, true, $response, $message, $uid_support);

 $i = 0;

 foreach ($read_list as $r) {

 /* initialize/reset vars */

 $subject = _("(no subject)");

 $from = _("Unknown Sender");

 $priority = 0;

 $messageid = '<>';

 $type = array('','');

 $cc = $to = $inrepto = '';

 // use unset because we do isset below

 unset($date);

 $flag_seen = $flag_answered = $flag_deleted = $flag_flagged = false;

 $read = implode('',$r);

 /* extract the message id */

 $i_space = strpos($read,' ',2);

 $id = substr($read,2,$i_space-2);

 $fetch = substr($read,$i_space+1,5);

 if (!is_numeric($id) && $fetch !== 'FETCH') {

 echo “Unknown response from IMAP server";

 break;

 }

 $i = strpos($read,'(',$i_space+5);

 $read = substr($read,$i+1);

 $i_len = strlen($read);

 $i = 0;

 while ($i < $i_len && $i !== false) {

 /* get argument */

 $read = trim(substr($read,$i));

 $i_len = strlen($read);

 $i = strpos($read,' ');

 $arg = substr($read,0,$i);

 ++$i;

 switch ($arg)

 {

 case 'UID':

 $i_pos = strpos($read,' ',$i);

 if (!$i_pos) {

 $i_pos = strpos($read,')',$i);

 }

 if ($i_pos) {

 $unique_id = substr($read,$i,$i_pos-$i);

 $i = $i_pos+1;

 } else {

 break 3;

 }

 break;

 case 'FLAGS':

 $flags = parseArray($read,$i);

 if (!$flags) break 3;

 foreach ($flags as $flag) {

 $flag = strtolower($flag);

 switch ($flag)

 {

 case '\\seen': $flag_seen = true; break;

 case '\\answered': $flag_answered = true; break;

 case '\\deleted': $flag_deleted = true; break;

 case '\\flagged': $flag_flagged = true; break;

 default: break;

 }

 }

 break;

 case 'RFC822.SIZE':

 $i_pos = strpos($read,' ',$i);

 if (!$i_pos) {

 $i_pos = strpos($read,')',$i);

 }

 if ($i_pos) {

 $size = substr($read,$i,$i_pos-$i);

 $i = $i_pos+1;

 } else {

 break 3;

 }

 break;

 case 'INTERNALDATE':

 $date = parseString($read,$i);

 break;

 case 'BODY.PEEK[HEADER.FIELDS':

 case 'BODY[HEADER.FIELDS':

 $i = strpos($read,'{',$i);

 $header = parseString($read,$i);

 if ($header === false) break 2;

 /* First we replace all \r\n by \n, and unfold the header */

 $hdr = trim(str_replace(array("\r\n", "\n\t", "\n "),array("\n", ' ', ' '), $header));

 /* Now we can make a new header array with */

 /* each element representing a headerline */

 $hdr = explode("\n" , $hdr);

 foreach ($hdr as $line) {

 $pos = strpos($line, ':');

 if ($pos > 0) {

 $field = strtolower(substr($line, 0, $pos));

 if (!strstr($field,' ')) { /* valid field */

 $value = trim(substr($line, $pos+1));

 switch($field)

 {

 case 'to': $to = $value; break;

 case 'cc': $cc = $value; break;

 case 'from': $from = $value; break;

 case 'date': $date = $value; break;

 case 'subject':

 $subject = $value;

 if ($subject == "") {

 $subject = "no subject";

 }

 break;

 case 'content-type':

 $type = $value;

 if ($pos = strpos($type, ";")) {

 $type = substr($type, 0, $pos);

 }

 $type = explode("/", $type);

 if(!is_array($type)) {

 $type[0] = 'text';

 }

 break;

 default: break;

 }

 }

 }

 }

 break;

 default:

 ++$i;

 break;

 }

 }

 if (isset($date)) {

 $date = str_replace(' ', ' ', $date);

 $tmpdate = explode(' ', trim($date));

 } else {

 $tmpdate = $date = array();

 }

 if ($uid_support) {

 $msgi ="$unique_id";

 $messages[$msgi]['ID'] = $unique_id;

 } else {

 $msgi = "$id";

 $messages[$msgi]['ID'] = $id;

 }

 $messages[$msgi]['TIME_STAMP'] = getTimeStamp($tmpdate);

 $messages[$msgi]['DATE_STRING'] = getDateString($messages[$msgi]['TIME_STAMP']);

 $messages[$msgi]['FROM'] = $from; //parseAddress($from);

 $messages[$msgi]['SUBJECT'] = $subject;

;

 $messages[$msgi]['CC'] = $cc;
 $messages[$msgi]['SIZE'] = $size;

 $messages[$msgi]['TYPE0'] = $type[0];

 $messages[$msgi]['FLAG_DELETED'] = $flag_deleted;

 $messages[$msgi]['FLAG_ANSWERED'] = $flag_answered;

 $messages[$msgi]['FLAG_SEEN'] = $flag_seen;

 $messages[$msgi]['FLAG_FLAGGED'] = $flag_flagged;

 ++$msgi;

 }

 array_reverse($messages);

 $new_messages = array();

 foreach ($messages as $i =>$message) {

 $new_messages[] = $message;

 }

 return $new_messages;

}

?>

