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 

Abstract— This paper addresses the problem of sharing 

person-specific genomic sequences without violating the privacy 

of their data subjects to support large-scale biomedical research 

projects. The proposed method builds on the framework 

proposed by Kantarcioglu et al. [1] but extends the results in a 

number of ways.  One improvement is that our scheme is 

deterministic, with zero probability of a wrong answer (as 

opposed to a low probability). We also provide a new operating 

point in the space-time tradeoff, by offering a scheme that is 

twice as fast as theirs but uses twice the storage space.  This point 

is motivated by the fact that storage is cheaper than computation 

in current cloud computing pricing plans. Moreover, our 

encoding of the data makes it possible for us to handle a richer 

set of queries than exact matching between the query and each 

sequence of the database, including: (i) counting the number of 

matches between the query symbols and a sequence; (ii) logical 

OR matches where a query symbol is allowed to match a subset 

of the alphabet thereby making it possible to handle (as a special 

case) a “not equal to” requirement for a query symbol (e.g., “not 

a G”); (iii) support for the extended alphabet of nucleotide base 

codes that encompasses ambiguities in DNA sequences (this 

happens on the DNA sequence side instead of the query side); (iv) 

queries that specify the number of occurrences of each kind of 

symbol in the specified sequence positions (e.g., two ‘A’ and four 

‘C’ and one ‘G’ and three ‘T’, occurring in any order in the 

query-specified sequence positions); (v) a threshold query whose 

answer is ‘yes’ if the number of matches exceeds a query-

specified threshold (e.g., “7 or more matches out of the 15 query-

specified positions”). (vi) For all query types we can hide the 

answers from the decrypting server, so that only the client learns 

the answer. (vii) In all cases, the client deterministically learns 

only the query's answer, except for query type (v) where we 

quantify the (very small) statistical leakage to the client of the 

actual count. 

 
Index Terms— DNA Databases, Cloud Security, Secure 

Outsourcing. 

 

I. INTRODUCTION 

NA or Deoxyribonucleic Acid is the medium of long-

term storage and transmission of genetic information for 
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all modern living organisms. Human DNA data (DNA 

sequences within the 23 chromosome pairs) are private and 

sensitive personal information. However, such data is critical 

for conducting biomedical research and studies, for example, 

diagnosis of pre-disposition to develop a specific disease, drug 

allergy, or prediction of success rate in response to a specific 

treatment. Providing a publicly available DNA database for 

fostering research in this field is mainly confronted by privacy 

concerns. Today, the abundant computation and storage 

capacity of cloud services enables practical hosting and 

sharing of DNA databases and efficient processing of genomic 

sequences, such as performing sequence comparison, exact 

and approximate sequence search and various tests (diagnosis, 

identity, ancestry and paternity). What is missing is an 

efficient security layer that preserves the privacy of 

individuals’ records and assigns the burden of query 

processing to the cloud. Whereas anonymization techniques 

such as de-identification [2], data augmentation [3], or 

database partitioning [4] solve this problem partially, they are 

not sufficient because in many cases, re-identification of 

persons is possible [5]. It follows that the DNA data must be 

protected, not just unlinked from the corresponding persons. 

In this paper, we consider the framework proposed in [1] 

where the DNA records coming from several hospitals are 

encrypted and stored at a data storage site, and biomedical 

researchers are able to submit aggregate counting queries to 

this site. Counting queries are particularly interesting for 

statistical analysis.  

This paper provides a new method that addresses a larger 

set of problems and provides a faster query response time than 

the technique introduced in [1]. Our approach is based on the 

fact that, given current pricing plans at many cloud services 

providers, storage is cheaper than computing. Therefore, we 

favor storage over computing resources to optimize cost. 

Moreover, from a user experience point of view, response time 

is the most tangible indicator of performance; hence it is 

natural to aim at reducing it. Our method enhances the state of 

the art at both the conceptual level and the implementation 

level. More concretely:  

 At the conceptual level, we provide a deterministic 

scheme, with zero probability of a wrong answer (as 

opposed to a low probability). This gives confidence to 

the users that they get exact results to all their queries, 

without impacting security.  

 We also provide a new operating point in the space-time 

tradeoff, by giving a scheme that is twice as fast as theirs 

but uses twice the storage space. A variant of this scheme 

uses only 1.5 their storage space at the expense of 

additional latency. 
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 Moreover, our encoding of the data makes it possible for 

us to handle a richer set of queries than exact matching 

between the query and each sequence of the database, 

including:  

i. Counting the number of matches between the 

query symbols and a sequence;  

ii. Logical OR matches where a query symbol is 

allowed to match a subset of the alphabet thereby 

making it possible to handle (as a special case) a 

“not equal to” requirement for a query symbol 

(e.g., “not a G”);  

iii. Support for the extended alphabet of nucleotide 

base codes that encompasses ambiguities in 

DNA sequences (contrary to the previous item 

this happens on the DNA sequence side instead 

of the query side); 

iv. Queries that specify the number of occurrences 

of each kind of symbol in the specified sequence 

positions (e.g., two ‘A’ and four ‘C’ and one ‘G’ 

and three ‘T’, occurring in any order in the 

query-specified sequence positions);  

v. A threshold query whose answer is ‘yes’ if the 

number of matches exceeds a query-specified 

threshold (e.g., “7 or more matches out of the 15 

query-specified positions”).  

vi. For all query types we can hide the answers from 

the decrypting server, so that only the client 

learns the answer.  

vii. In all cases the client deterministically learns 

only the query's answer, except for query type 

(v) where we quantify the (very small) statistical 

leakage to the client of the actual count. 

 At the implementation level, we take advantage of GMP 

modular arithmetic routines to achieve a much faster 

implementation of the approach in [1], as well as for the 

new approaches proposed in this paper. 

II. RELATED WORK 

There is no universal method to create a protocol for secure 

multi-party computation and handling aggregate queries on 

encrypted data is not an exception. Several homomorphic 

systems only support a subset of mathematical operations, like 

addition (Paillier [19], Benaloh [23]), multiplication (ElGamal 

[24], RSA [25]), or exclusive-or (Goldwasser and Micali 

[26]). From a security perspective, only the additive Paillier 

and the multiplicative ElGamal are classified to be IND-CPA 

(stands for indistinguishability under chosen plaintext attack) 

[27]. Partially homomorphic cryptosystems are more desirable 

from a performance point of view than somewhat 

homomorphic cryptosystems, which support a limited 

operation depth. Fully homomorphic systems have a huge cost 

and cannot be deployed in practice.  

Several works focus on protecting biometric computations 

over genomic sequence records in the context of secure multi-

party computations (SMC). Secure outsourcing is a particular 

case of SMC where a client with low resources (energy, 

memory, CPU) requests the service of one or more 

outsourcing agents with abundant resources. Secure 

outsourcing finds a real projection in the current business 

models thanks to the proliferation of cloud-based services. 

Cloud computing and storage security issues have been 

subject to ostensive research in the past years [6]. Areas of 

interest include client authentication, hardware virtualization 

threats, flooding and denial of service attacks as well as issues 

of accountability, storage protection and computation 

protection.  In the context of DNA data protection, related 

works can be divided into five groups depending on the 

function or the query being addressed: forensic databases, 

profile matching, sequence comparison, testing by finite 

automata and aggregate queries.  

A. Forensic databases  

In a forensic database, a suspect record has to be tested 

against an entire database. A record of the database can be 

decrypted only if it matches the suspect record. This protects 

the other records from being unveiled [7]. Similarly, negative 

databases prevent the enumeration of its members by reversely 

saving the non-members, in a compressed form [8].  

B. Profile matching  

In [9] the authors address a multitude of tests such as 

identity, ancestry and paternity tests based on Short Tandem 

Repeat (STR) profiles. The STR profile is composed of a 

number of loci and for each locus the number of repetitions for 

a given repeat structure.  The authors translate each test into 

an algebraic expression and provide a homomorphic 

encryption scheme allowing two semi-honest parties to 

compare their stored profiles in a semantically secure manner. 

The proposed approach allows exact answers or small error 

tolerance as practically required by the tests. 

C. Sequence comparison  

The edit distance is the optimal cost of insertion, deletion 

and substitution of characters to go from a sequence 𝜆 to a 

sequence 𝜇. The edit script is the chart of the steps leading to 

the optimal edit distance. Atallah et al. [10] offers a solution 

for securely outsource a dynamic programming solution for 

finding the edit distance and the edit script for two given 

sequences (particularly genomic sequences with small 

alphabet size). The outsourcing protocol is based on two non-

colluding (honest-but-curious) agents that securely collaborate 

to performing table lookup and minimum finding. The secure 

minimum finding protocol determines the minimum of an 

additively split vector based on Yao’s garbled circuits and a 

blind-and-permute protocol for hiding the index of this 

minimum. In [11] their scheme has been improved for 

performance and requires space only linear in the input size.  

The work in [12] addresses a similar dynamic programming 

solution for finding the longest common subsequence. By 

using the “four Russians” technique in a new way, the authors 

propose a communication-efficient SMC protocol that 

improves over the generic solution based on Yao’s garbled 

circuits. Their results feature an asymmetry in the work 

required by each participant, which makes it more suitable to 
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an outsourcing scenario. In [13] the authors address the 

longest common subsequence as a private search problem.  

Another example of genome sequence comparison is the 

Smith-Waterman algorithm which performs local sequence 

alignment. In [14] the authors transform the formulation of 

this algorithm for crowdsourcing (i.e., outsourcing to 

distributed volunteers).  Their scheme, based on computation 

with obscured data, preserves a reasonable level of accuracy 

but does not provably protect the privacy of the inputs. 

D. Sequence testing by finite automata 

Sometimes the queries on DNA need to take into account 

various errors such as irrelevant mutations, incomplete 

specifications and sequencing errors. Therefore, the pattern of 

the query should be expressed using regular expressions. 

Many works address practical and privacy-preserving 

outsourcing of this regular expression type of queries, 

implemented as oblivious evaluation of finite automata [15]–

[17]. 

E. Aggregate queries  

For biomedical researchers, important queries have often 

the form “How many records contain a diagnosis of Alzheimer 

disease and gene variant X?” Secure outsourcing of the 

database and allowing such type of queries without requiring 

the server to decrypt the data has been addressed in [1]. The 

paper presents very practical results. For example, a count 

query over 40 records in a database of 5000 records takes 30 

minutes. Our paper extends these results by proposing a 

variant storage and computation scheme.   

III. PROBLEM DEFINITION AND FRAMEWORK 

Computer scientists often represent DNA by a large 

sequence of characters from the alphabet 𝛴 = {𝐴, 𝐶, 𝐺, 𝑇}, 

representing the four nucleotide types. This alphabet can be 

augmented with additional characters representing ambiguity 

in the sequence. This extended alphabet is denoted by 

𝛴′ = {𝐴, 𝐶, 𝐺, 𝑇, 𝑁, 𝑀, 𝑅, 𝑊, 𝑆, 𝑌, 𝐾, 𝑉, 𝐻, 𝐷, 𝐵} as defined by 

IUPAC [18], see Table 1. Given a database of 𝑑 sequences 

𝑠1, 𝑠2,  … , 𝑠𝑑 each having 𝑚 characters; the query is 

represented as a list of tuples (𝑗𝑖 , 𝑣𝑖) of characters 𝑣𝑖 and 

positions  𝑗𝑖; for 𝑖 = 1. . 𝑘. The result of the query is the 

number of sequences where 𝑠[𝑗𝑖] == 𝑣𝑖  for all the 

tuples (𝑗𝑖 , 𝑣𝑖). The pseudo (Python-like) code of a query in 

clear is shown in Listing 1. 

  
In our model, hospitals who have DNA sequences do not 

have the computing and processing capabilities to process 

researchers’ requests, so they all store their DNA sequences at 

a server (which is also more convenient to do queries across 

all hospitals). The clients, who are typically researchers, query 

the server to obtain statistics on the occurrence of a given 

subsequence in the pool of DNA sequences stored on the 

server. Due to the sensitivity of DNA, all these operations 

have to be performed securely: the goal of securing queries is 

making both the client and the server ignorant of exactly 

which sequences match the query but only knowing the 

aggregated result of the query (i.e., the count). 

  
 

To be more precise the security model is as follows:  

 Hospitals want to protect the confidentiality of the DNA 

sequences that they own and no external party has the 

right to access these DNA sequences for privacy reasons. 

Thus, other parties (be it the server or the clients) should 

only work on encrypted sequences and never have access 

to the DNA cleartext. 

 The server is an external repository of DNA sequences 

provided by the various hospitals. The server is 

considered honest-but-curious by hospitals: hospitals trust 

him to perform the queries requested by clients but they 

do not want the server to access the DNA sequences in 

clear. 

 Clients are entities authorized to perform queries on the 

TABLE 1 

NUCLEOTIDE BASE CODES (IUPAC) 
 

Symbol Nucleotide Base 

A Adenine 

C Cytosine 

G Guanine 

T Thymine 

N A or C or G or T 

M A or C 

R A or G 

W A or T 

S C or G 

Y C or T 

K G or T 

V Not T 

H Not G 

D Not C 

B Not A 

 

1. #Example of a query:  
2. q=[(A,0), (A,2), (C,3), (G,6)]  
3. #Example of sequence matching the query: 
4. #AAACAGG 
5. #D is the set of all sequences  
6. count=0 
7. for s in D: 
8.   match=True 
9.   for (v,j) in q: 
10.    if s[j]!=v: 
11.     match=False 
12.     Break 
13.   if(match): 
14.    count+=1 

LISTING 1 

 PSEUDO-CODE OF AN AGGREGATE QUERY 
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database of encrypted DNA sequences. They are only 

allowed to obtain statistics on the database: the number or 

percentage of sequences matching a given query. The 

queries are not confidential and are processed by the 

server, however the server should not know the outcome 

of the queries. 

 We assume that none of these entities collude.  

Additively homomorphic encryption is suitable for the 

purpose of performing count statistics on encrypted data. 

Paillier's homomorphic encryption [19] possesses the 

following properties: (i) It's a public key scheme, which means 

encryption can be performed by anyone who knows the public 

key, whereas decryption can only be done by the matching 

private key, known only to a trusted party. (ii) It is 

probabilistic. In other words, it is impossible for an adversary 

to tell whether two ciphertexts are encryptions of the same 

plaintext or not. (iii) It possesses the homomorphic properties 

for addition, in particular: 

 𝐸𝑝𝑘((𝑚1 + 𝑚2) 𝑚𝑜𝑑 𝑁) = 𝐸𝑝𝑘(𝑚1) ∗ 𝐸𝑝𝑘(𝑚2) 𝑚𝑜𝑑 𝑁2 

 𝐸𝑝𝑘((𝑎 ∗ 𝑚1) 𝑚𝑜𝑑 𝑁) = 𝐸𝑝𝑘(𝑚1)𝑎  𝑚𝑜𝑑 𝑁2 

Where 𝑁 is the modulus of the encryption and a part of the 

public key. Note that the sign " = " above stands for 

equivalence not equality.  

We consider a framework similar to [1] composed of 

several hospitals, several clients representing biomedical 

researchers and two non-colluding servers (can be two 

different cloud providers, or one cloud provider and one 

trusted host). In Fig. 1 we call these two servers Cloud1 and 

Cloud2 to emphasize that the framework can be deployed in a 

cloud environment: 

 Cloud1 represents the data store where all the encrypted 

DNA records are stored and is responsible of processing 

the queries. 

 Cloud2 is a trusted party that generates and holds the 

private and public keys of the homomorphic encryption 

scheme. In step 1 the public key is sent to the other 

parties. Cloud2 is later used as a decyption oracle and it 

also shares security associations with the clients  in order 

to send them the results securely. 

 The hospitals obtain the public key in order to encrypt 

their DNA records and upload them to Cloud1 (step 2). 

 A client representing a biomedical researcher submits a 

query to Cloud1 (step 3). The cloud processes the query 

over the encrypted records and sends the results to Cloud2 

in order to be decrypted (step 4). Cloud1 is required to 

permute the results for individual records before sending 

them out. The permutation protects the records if in any 

case the order of the records can be linked to some 

protected information. Finally the client receives from 

Cloud2 the decrypted count of matches (step 5) through a 

secure channel (built thanks to the security association 

etablished at step 1).  

Cloud2 may assist the data encryption at the data owners 

(the hospitals) through pre-encrypting a large number of 

values for the encoding of each letter in the alphabet and 

transferring them to the data owners.  

IV. STORAGE AND COMPUTATION SCHEMES 

A. Summary of the scheme  in [1] 

The proposed protocol is based on a binary storage scheme. 

Each letter has a binary representation over two bits and each 

bit is encrypted using Paillier encryption. For example the 

letter ‘A’ is coded in binary as two bits 00. Similarly the query 

is translated to binary encoding. For example finding the letter 

‘A’ at position 6 is equivalent to finding the bit 0 at position 

12 in the encoded sequence and the bit 0 at position 13 in the 

encoded sequence. Therefore, the required storage capacity for 

a sequence is 2 ∗ 𝑚 ∗ 2𝑏 where m is the length of the sequence 

and 2b is the size for storing an encrypted value (b is the bit 

length of the key modulus). The query is computed as an 

algebraic expression that evaluates to an encryption of 0 for 

each record matching the query. Two random numbers are 

used in order to limit false positives. Without loss of 

generality, consider an encoded sequence s and a query of the 

form (𝑗𝑖 , 1), for 𝑖 = 1. . 𝑡  and (𝑗𝑖 , 0), for 𝑖 = 𝑡 + 1. .2𝑘 where k 

is the length (i.e., number of letters) of the query; the server 

computes an expression of the form: 

𝑅(𝑞, 𝑠) = ((∏ E(s[ji]) 
t

i=1
) ∗ E(−t))

r1

∗ (∏ E(s[ji])  
2k

i=t+1
)

r0

 

Where r1 and r0 are random numbers. If  s matches the query, 

the result of this expression is an encryption of zero with a 

high probability. The server sends a permutation of the results 

of expressions for all the sequences 𝑠1, … , 𝑠𝑑. The key holder 

decrypts and counts the zeros to obtain the result of the query. 

Note that the number of modular exponentiation required is 

equal to 2, in addition to 2k modular multiplications.  

B. Our Schemes 

We present two different schemes; the first one requires 

more storage capacity but provides better query response time 

Fig. 1.  Framework of secure aggregate queries over encrypted DNA 

database 
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than the second one. 

1) Quaternary storage, quaternary query 

We encode a sequence 𝑠 = [𝐿𝑖],  𝑖 = 1. . 𝑚, using four vectors: 

 𝑠𝐴 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐴′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

 𝑠𝐶 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐶′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

 𝑠𝐺 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐺′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

 𝑠𝑇 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝑇′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

For example, sequence “CCGATAT” is encoded as:  

 𝑠𝐴 = [0, 0, 0, 1, 0, 1, 0] 

 𝑠𝐶 = [1, 1, 0, 0, 0, 0, 0] 

 𝑠𝐺 = [0, 0, 1, 0, 0, 0, 0] 

 𝑠𝑇 = [0, 0, 1, 0, 1, 0, 1] 
The four vectors representing each sequence are encrypted 

and uploaded to cloud1. Therefore, the required storage 

capacity for a sequence is 4 ∗ 𝑚 ∗ 2𝑏 where m is the length of 

the sequence and 2b is the size for storing an encrypted value. 

Note that this encoding enables us to support the extended 

alphabet contrary to the scheme of  [1]. Indeed if there is 

ambiguity at a given position, say position i0 and the letter at 

this position is M which stands for A or C, we can simply 

define 𝑠𝐴[𝑖0] = 𝑠𝐶[𝑖0] = 1. 

A query q=(𝑗𝑖 , 𝑣𝑖), 𝑖 = 1. . 𝑘 is decomposed into four 

queries, and represented by four vectors as follows: 

 Initialize 𝑞𝐴 to a vector of 𝑚 zeroes; then assign  𝑞𝐴[𝑗𝑖] =
1 𝑖𝑓 𝐿𝑖 == ′𝐴′ in the query, 𝑖 = 1. . 𝑘 

 qC is a vector of 𝑚 zeroes;  𝑞𝐶[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐶′, 𝑖 =
1. . 𝑘 

 qG is a vector of 𝑚 zeroes;  𝑞𝐺[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐺′, 𝑖 =
1. . 𝑘 

 qT is a vector of 𝑚 zeroes;  𝑞𝑇[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝑇′, 𝑖 =
1. . 𝑘 

Note that although we used m as the size of the query to 

ease the presentation and understanding, the knowledge of m 

is not required at the client side (moreover m may vary from 

one sequence to another). The query simply needs to be as 

long as the position of the last element in the subsequence of 

the query (𝑣𝑘). The positions after that will all be 

automatically assumed as containing 0. The query is then 

computed over an encrypted sequence using the following 

equation: 

𝑅(𝑞, 𝑠) = 𝐸(𝑞𝐴𝑠𝐴 + 𝑞𝐶𝑠𝐶 + 𝑞𝐺𝑠𝐺 + 𝑞𝑇𝑠𝑇) = 

𝐸 ( ∑ 𝑠𝐴,𝑗𝑖

𝑖,𝑞𝐴[𝑗𝑖]=1

+ ∑ 𝑠𝐶,𝑗𝑖

𝑖,𝑞𝐶[𝑗𝑖]=1

+ ∑ 𝑠𝐺,𝑗𝑖

𝑖,𝑞𝐺[𝑗𝑖]=1

+ ∑ 𝑠𝑇,𝑗𝑖

𝑖,𝑞𝑇[𝑗𝑖]=1

) 

= ∏ 𝐸(𝑠𝐿𝑖,𝑗𝑖
)

𝑞𝐿𝑖,𝑗𝑖

𝑖=1..𝑘

 

Note that since 𝑞𝐿,𝑗𝑖
 is either 0 or 1, no modular 

exponentiation is needed during the computation of 𝑅 but only 

k modular multiplications. The result of the equation decrypts 

to exactly 𝑘 if the sequence matches the query. 

2) Ternary storage, quaternary query 

Since the presence of a letter in a given position of a 

sequence can be directly inferred by the absence of the three 

other letters, we can reduce the encoding to only three vectors: 

 𝑠𝐴 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐴′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

 𝑠𝐶 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐶′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

 𝑠𝐺 = [1 𝑖𝑓  𝐿𝑖 ==′ 𝐺′,  0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑖 = 1. . 𝑚] 

If we retake the same example, sequence “CCGATAT” is 

encoded as:  

 𝑠𝐴 = [0, 0, 0, 1, 0, 1, 0] 

 𝑠𝐶 = [1, 1, 0, 0, 0, 0, 0] 

 𝑠𝐺 = [0, 0, 1, 0, 0, 0, 0] 
In other words, the letter ‘A’ is encrypted by the column 

vector [1,0,0], the letter ‘C’ by [0,1,0], the letter ‘G’ by 

[0,0,1] and the letter ‘T’ by [0,0,0]. The encoding can be 

changed to use column vector [0,0,0] to encode the least 

frequent letter. This would improve the query performance as 

demonstrated later by the query computation formula. In this 

scheme, the required storage capacity for a sequence is 

3 ∗ 𝑚 ∗ 2𝑏. This scheme does not support the extended 

alphabet though. 

Similar to the previous scheme, a query q=(𝑗𝑖 , 𝐿𝑖), 𝑖 = 1. . 𝑘 

is decomposed into four queries, and represented by four 

vectors: 

 𝑞𝐴 is a vector of 𝑚 zeroes; 𝑞𝐴[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐴′  𝑖 =
1. . 𝑘 

 𝑞𝐶  is a vector of 𝑚 zeroes;  𝑞𝐶[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐶′, 𝑖 =
1. . 𝑘 

 𝑞𝐺 is a vector of 𝑚 zeroes;  𝑞𝐺[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐺′, 𝑖 =
1. . 𝑘 

 𝑞𝑇 is a vector of 𝑚 zeroes;  𝑞𝑇[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝑇′, 𝑖 =
1. . 𝑘 

The query is then computed over an encrypted sequence 

using the following equation: 

𝑅(𝑞, 𝑠) = 𝐸(𝑞𝐴𝑠𝐴 + 𝑞𝐶𝑠𝐶 + 𝑞𝐺𝑠𝐺 + 𝑞𝑇𝑠𝑇) = 

𝐸 ( ∑ 𝑠𝐴,𝑗𝑖

𝑖,𝑞𝐴[𝑗𝑖]=1

+ ∑ 𝑠𝐶,𝑗𝑖

𝑖,𝑞𝐶[𝑗𝑖]=1

+ ∑ 𝑠𝐺,𝑗𝑖

𝑖,𝑞𝐺[𝑗𝑖]=1

+ ∑ (1 − (𝑠𝐴,𝑗𝑖
+ 𝑠𝐶,𝑗𝑖

+ 𝑠𝐺,𝑗𝑖
))

𝑖,𝑞𝑇[𝑗𝑖]=1

) 

= ∏ 𝐸(𝑠𝐿𝑖,𝑗𝑖
)

𝑞𝐿𝑖,𝑗𝑖

𝑖=1..𝑘

 

Where 𝑠𝑇,𝑗𝑖
= 1 − (𝑠𝐴,𝑗𝑖

+ 𝑠𝐶,𝑗𝑖
+ 𝑠𝐺,𝑗𝑖

) ⇒  𝐸(𝑠𝑇,𝑗𝑖
) =

(𝐸(𝑠𝐴,𝑗𝑖
)𝐸(𝑠𝐶,𝑗𝑖

)𝐸(𝑠𝐺,𝑗𝑖
))−1𝐸(1). In case all the letters have 

the same frequency in the query (i.e., the number of ‘T’ letters 

in the query is 𝑘/4), the computation of 𝑅 requires 1.75𝑘 

modular multiplications and 0.25𝑘 modular multiplicative 

inversions. The resulting value decrypts to exactly 𝑘 if the 

sequence matches the query.  

The two proposed schemes accounts for approximate 

matches which is very useful in practice because of many 

sources of error such as genome synthesis error. For example 

if 𝐷(𝑅(𝑞, 𝑠)) = 𝑘 − 1 then the query matches the sequence 

with only one error at one of the query positions. 
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3) Match/No-Match answer 

Nevertheless the scheme can output a binary result of the 

query: 𝑅′(𝑞, 𝑠) = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘))𝑟 where r is a random 

non-zero number. Note that one modular exponentiation is 

needed in this case. 𝑅′ decrypts to 0 if a match is found and to 

a random number if not. Modular multiplication by a random 

perfectly hides the answer (except for 0) and has been widely 

used in blind signature protocols [20].  

4) Space-time comparison  

We consider one sequence as a comparison unit and show 

in Table 2 the space and time costs. We consider only queries 

and sequences over 𝛴 to be able to compare our scheme 

against [1], as [1] does not support queries over 𝛴′. In terms of 

storage we assume all the sequences have the same length m. 

2b is the size of an encrypted value using Paillier encryption 

and given modulus N of bit length b. Our schemes require 

three or four encrypted words per letter compared to two 

encrypted words for [1].  

For the computation cost, k is the size of the query, MM is 

the time for modular multiplication, MI is the time for modular 

multiplicative inversion, ME is the time for modular 

exponentiation and AC is the time for adding a constant to a 

ciphertext. MM, MI, ME and AC are the major computation 

factors.  

The AC time represents the time to add −𝑡 (in binary mode) 

and – 𝑘 (in both quaternary modes) under encryption. Since t 

and k are constant for a given query, 𝐸(−𝑡) and 𝐸(−𝑘) can be 

pre-computed once for all the sequences. In practice k and t 

are small (less than m) and an encryption of all their possible 

values can be pre-computed
1
. The value required by a given 

query can be fetched and used in computing R for all the 

sequences. 

The gain ratio of the quaternary storage scheme compared 

to the binary mode is equal to 2. For the ternary storage 

scheme, MM is much smaller than ME and can be ignored 

(especially when the exponent parameter in ME has the same 

bit length of the modulus). MI is also smaller than ME but 

cannot be ignored. The gain ratio is on the average 2 ∗
𝑀𝐸/(0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸).  

In conclusion, we have presented two new operating points 

in the space-time tradeoff of the private query problem, by 

giving two schemes that are up to twice as fast as [1] but uses 

1.5 to 2 times their storage space. 

 
1 Precomputation is widely used in cryptography, for example to 

speed up fixed-base modular exponentiation [22]. 

Note that aside from performance aspects, our proposed 

schemes have other advantages such as the support of 

ambiguity in the queries for both our schemes (see paragraphs 

7 and 8 below) and the quaternary storage solution supports 

the full extended alphabet of nucleotides 𝛴′ at server side as 

well. Our schemes are also deterministic because we compute 

the exact number of matches as we have one different array 

for each symbol of 𝛴, while the scheme of [1] gives only 

probabilistic answer as they use binary mode to save space. As 

a result, it might happen that an incorrect match at a given 

position is cancelled out by another incorrect match at another 

position, although the probability is very small because 

different random numbers are used each time. The probability 

of a wrong answer is of 
1

𝑛−1
 for a single query, which is 

negligible for large n, while the probability of having at least 

one false query result is  1 − (
𝑛−2

𝑛−1
)

𝑞

  for 𝑞 queries. 

 

5) Security evaluation 

From a security perspective the framework that we use is 

similar to [1]. Both schemes are based on well-known security 

building blocks like Paillier’s encryption, public key 

encryption and symmetric key encryption. This is why our 

security evaluation focuses on the interconnection of these 

building blocks and what can go wrong in our settings. To be 

more precise: 

 The DNA sequences are always encrypted at Cloud1, so 
Cloud1 cannot access these sequences in clear. The only 
entity which could decrypt them is Cloud2 which is a 
trusted entity by the hospital (again with named Cloud2 to 
emphasize that it can be deployed in the cloud but it is 
very different from cloud1 in that it performs minimal 
operations (decryption oracle) and does not have to store 
huge data, so it is a specific trusted platform in the cloud. 
The confidentiality of DNA sequences is thus correctly 
preserved. 

 Cloud1 also does not get any leakage from the queries of 
clients because he processes the queries in an encrypted 
(he cannot decrypt the outcome). The result is decrypted 
by Cloud2 which sends the result directly to the client who 
made the query through a secure channel thanks to the 
security associations between Cloud2 and the clients. This 
also means that Cloud1 cannot act as a Client and get the 
result of his own queries, unless he colludes with a real 
Client, which is out of scope of our model. 

 Clients only obtain statistics on the number of DNA 
sequences across all hospitals which match their query but 
they don’t get the DNA sequences themselves. Learning 

TABLE 2 
SPACE-TIME COMPARISON 

 Binary Mode [1] 
Ternary Storage 

Quaternary Query 

Quaternary Storage 

Quaternary Query 

Storage 4𝑚𝑏 6𝑚𝑏 8𝑚𝑏 

Query Time 2𝑘 ∗ 𝑀𝑀 + 2 ∗ 𝑀𝐸 + 𝐴𝐶 1.75𝑘 ∗ 𝑀𝑀 + 0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸 + 𝐴𝐶  𝑘 ∗ 𝑀𝑀 + 𝑀𝐸 + 𝐴𝐶 

Query Time with pre-

computation 
2𝑘 ∗ 𝑀𝑀 + 2 ∗ 𝑀𝐸 1.75𝑘 ∗ 𝑀𝑀 + 0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸  𝑘 ∗ 𝑀𝑀 + 𝑀𝐸 

Query Answer  Match/No-Match Match/No-Match except for query (iv) 
Match/No-Match 

except for query (iv) 

Approximate  Matches No Yes Yes 

Extended alphabet (ambiguity) No No Yes 

Probability of error Small Deterministic (Zero) Deterministic (Zero) 
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the number of sequences is a leakage that is acceptable in 
our model as this leakage would happen even with the 
ideal model of a trusted entity doing all the processing 
between hospitals and clients. 

 The only entity which really has an edge in our framework 
is Cloud2 as it owns the private key. We argue however 
that: 

o Cloud2 is a trusted entity 
o Cloud2 does not have access to encrypted DNA 

sequences unless he colludes with Cloud1 or a 
Hospital 

o Cloud2 sees the queries and the outcome of the 
queries on each DNA sequence individually so 
potentially he has a higher leakage than the 
clients. However to avoid this situation, the 
Clients can collude with Cloud1 to prevent 
Cloud2 from getting the outcomes on each 
sequence individually, as explained in the next 
paragraph. 

6) Hiding from the decrypting server 

The client and Cloud1 can collaborate to hide the answer 

from the decrypting server Cloud2. The client and Cloud1 

exchange a seed for a pseudo-random generator. For each 

(query, sequence) tuple the client and Cloud1 synchronize to 

independently generate the same random number r1 

(distinguishing it from r in the previous section). Cloud1 adds 

r1 to the answer for the query under encryption: 𝑅′′ = 𝑅′ ∗
𝐸(𝑟1). Cloud1 decrypts 𝑅′′ but cannot discover the answer 

since it doesn’t know r1. The client receives the decryption of 

𝑅’’ which is equivalent to 𝐷(𝑅′) + 𝑟1, and subtracts r1 to 

obtain the result.  

Table 3 presents an analysis of the information exchanged 

between the different entities and their impact on security.  

   
TABLE 3: PER-ELEMENT SECURITY ANALYSIS 

Element  Description  Analysis  

N 

Part of the public key. 

It reveals the length of 

plaintext and the space 

of ciphertext. 

As this is part of the public key, 

anybody should be able to see N. 

Revealing the ciphertext space is 

not considered a major issue in 

the literature. 

E(M) 
Paillier’s encryption of 

a message M. 

This encryption is malleable. An 

adversary intercepting a message 

can change it. But since we 

typically assume that all 

communications between entities 

are secured in a classical sense, 

for example they are performed 

over TLS, a message modification 

attack is not possible. Otherwise 

Paillier’s scheme is IND-CPA.   

Seed_C 

This seed is shared 

between cloud 1 and a 

client C. It has for goal 

to hide the results from 

the decryption oracle 

(cloud 2). 

We choose the seed as a secret 

key (randomly and with length 

128 bits at least), and we use a 

secure PRNG (for example one 

which is derived from a 

symmetric block cipher). 

Obtaining the seed is as difficult 

as obtaining the secret key of an 

encrypted message which is 

computationally infeasible with 

appropriately long seed (or key) 

size. Hence there is no leakage at 

Cloud2. 

 

Finally, our scheme takes benefit of existing security 

infrastructure which is normally available at a cloud service 

provider such as authentication, confidentiality and integrity. 

7) Set match query 

This helps supporting ambiguity from the query side 

 Example: q=[((A|C),0), (G,1), (T,2), (G,3), ((C|T),4) 

(T,5)] 

 Solution: Put 1 at position 1 in 𝑞𝐴 and 1 at position 1 in 

𝑞𝐶 . Put 1 at position 5 in 𝑞𝐶  and 1 at position 5 in 𝑞𝑇. 

Encode the remaining letters of the query as in the initial 

scheme.   

8) Negation query 

 Example: q=[((!A),0), (C,1), ((!A^!T),2), (T,3)] 

 Solution: Put 1s in qC, qG and qT at position 1. Put 1 in 

𝑞𝐶  𝑎𝑛𝑑 𝑞𝐺 at position 3, because (!A^!T) = (C|G)  

9) Exactly  (k’<k) matches 

  In this case we compute 𝑅′ = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘′))𝑟 where r 

is a random number. 𝐷(𝑅’) == 0 if exactly k’ matches are 

found.    

10) Exactly (a As , c Cs , g Gs and t Ts) 

This query can be computed as follows:  𝑅′ =

(𝐸(𝑞𝐴𝑠𝐴)𝐸(−𝑎))
𝑟1

(𝐸(𝑞𝐶𝑠𝐶)𝐸(−𝑐))
𝑟2(𝐸(𝑞𝐺𝑠𝐺)𝐸(−𝑔))𝑟3 

(𝐸(𝑞𝑇𝑠𝑇)𝐸(−𝑡))𝑟4  

Where 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are random number. R’ decrypts to 0 

if the query is matched. Four modular exponentiations are 

needed in this case. 

11) At least k’ matches out of k 

We compute 𝑅′ = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘′))𝑟where r is a positive 

random number. If R’ decrypts to 0 we have exact match of 

k’. if D(R’) < N/2 we have more than k’ matches, if D(R’) > 

N/2 we have less than k’ matches, assuming r is chosen within 

a sufficiently small margin (𝑟 ∗ ∆<< 𝑁/2), where ∆ is the 

estimated maximum difference 𝐷(𝑅) − 𝑘’ for all the records.  

V. EXPERIMENTAL EVALUATION 

We have implemented a prototype for evaluating the two 

outsourcing schemes: binary mode [1] and quaternary mode. 

By quaternary mode we refer to quaternary query encoding. In 

our experiments we use ternary storage. However, our 

discussion includes comments on the expected results for 

quaternary storage. The implementation uses the Python 

language and the Gmpy2 library
2
 for supporting arithmetic 

operations in Paillier’s cryptosystem. To simplify the 

implementation, we used the special case of Paillier’s 

cryptosystem where p and q are two primes of equivalent 

bitlength, 𝑁 = 𝑝𝑞;  𝑔 =  𝑁 + 1, 𝜆 = 𝜑(𝑁) and 𝜇 =
𝜑(𝑁)−1 𝑚𝑜𝑑 𝑁, where 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1). Table 4 

describes the different parameters of our experiments. These 

experiments are run on one processor Intel Xeon CPU 

2.90GHz on a Linux server machine.  

 
2 Gmpy2 is C-coded Python extension modules that support fast 

multiple-precision arithmetic (https://pypi.python.org/pypi/gmpy2).  
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A. Response time 

We first evaluate our implementation by running 1000 

operations on randomly generated numbers for each type of 

the basic operations of the cryptosystem. The results are 

shown in Fig. 2. Note that adding and inverting ciphertexts 

(MM and MI) are small compared to ME and AC. In fact 

modular exponentiation have 𝑂(𝑏. 𝑀(𝑏)) complexity, where 

𝑀(𝑏) is the complexity of modular multiplication and depends 

on the used multiplication algorithm (textbook multiplication 

is 𝑂(𝑏2)) [21]. We show the results of 10,000 operations for 

MM and MI in the histogram instead of 1000 operations to 

show that MI is relatively more significant than MM. Key 

generation is done once at setup and has recourse to the 

primality test in Gmpy2 (taking much less than 1s for 

b=1024).  

We second evaluate the query response time. In these 

experiments we ignore the input/output time and only account 

for the time of computational operations (this situation is 

legitimate for scenarios where access time is constant). In Fig. 

3, the query response time for the two modes and different 

database sizes is depicted (k=[10, 20, 30, 40], d=[5000, 10000, 

15000, 20000], m=300, b=1024). 

 

 
As expected, Quaternary mode (ternary storage) is faster 

with a speed up of approximately 2 for small query sizes. The 

gain ratio decreases when the query size increases because the 

number of MI increases proportionally. For this set of 

experiments the gain ratio ranges between 1.87 and 1.98. Note 

that if quaternary storage has been used, this ratio would be 

constantly 2. In both modes, the query response time increases 

linearly with the database size. In binary mode the query size 

affects marginally the response time because it only increases 

the number of MM operations having relatively small cost.  

In the third experiment we study the effect of the key size 

on the execution time of the queries (k=20, d=10000, m=300, 

b=[64, 128, 512, 1024, 2048]). Theoretically the query 

execution time is 𝑂(𝑏. 𝑀(𝑏)) where b is the size of the key. 

Fig. 4 shows that an approximate speed up of 2 is maintained 

as the key size varies.  For the choice of the key, a size of 

1024 bits is fairly considered as semantically secure.  

Fig. 5 (log scale) shows the database encryption time, which 

is also 𝑂(𝑏. 𝑀(𝑏)). The quaternary mode (ternary storage) 

time is 1.5 the time of the binary mode since it requires three 

encryptions per letter, compared to only two for the binary 

mode (in quaternary storage this ratio becomes 2). Note that 

database encryption is done only once at setup time.  

For decryption (Fig. 6), the binary mode requires exactly 

two decryptions per letter while the quaternary mode (both 

ternary and quaternary storage) takes 2.25 decryptions on 

average if the letters are uniformly distributed (it stops if the 

decrypted value is one or continues till the three decryptions 

are done: 0.25 ∗ 1 + 0.25 ∗ 2 + 0.5 ∗ 3). The order of decryption 

can be changed according to the frequency distribution of the 

values in the database if known to be non-uniform.   

The experiments show that encryption/decryption is roughly 

twice longer in the quaternary mode compared to the binary 

mode (although decryption is less than twice the time), but 

query time is twice faster. Query is the operation which has to 

be performed many times as opposed to encryption which is 

performed only once at set up time. 
 

 

TABLE 4 

PARAMETERS OF THE EXPERIMENTS 

Parameter Description  

𝑑 Number of records in the database 

𝑚 Length of a record 

𝑏 Public key modulus size in bits  

𝑘 Query size 
Mode (B) for binary, (Q) for quaternary 

 

Fig. 2.  Performance evaluation of implemented Paillier's basic 

operations (b=1024): cost of 1000 operations on randomly chosen 

operands   

Fig. 3.  Comparison of query response time for Binary (B) mode and 

Quaternary (Q) mode 

Fig. 4.  Comparison of query response time for different key bit length 
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Note that all our experiments are reproducible by 

downloading the source code of the tool “private_dna” and the 

Paillier library at the following checkout URL: 

https://github.com/mnassar/private-dna-queries.  

B. Experiments with real DNA data on the cloud 

We have also performed experiments on real DNA data. We 

use a genomic data set from the UCSC Genome Browser
3
. We 

have used a prepackaged download of 1000 base pairs (bp) 

upstream sequences of annotated transcription starts of RefSeq 

genes with annotated 5' UTRs. The upstream sequences 

typically have the control elements for gene transcription. 

Therefore, finding the same upstream pattern in multiple 

sequences is important because it could imply that the 

corresponding genes are co-regulated. 

The dataset contains the starts of 41,782 sequences up to 

lengths of 300 letters in one subset and 500 letters in another.  

The dataset has a 5 letters alphabet:  A, C, G, T and N. Table 5 

shows the distribution of these letters in the data set. 

 
TABLE 5 

FREQUENCIES OF LETTERS IN UPSTREAM1000 DATA 

Length A C G T N 

300 20.5% 29.7% 29.4% 20.4% 0.02% 

500 21.8% 28.4% 28.1% 21.6% 0.02% 

  

Notice the presence of the N indicating an unknown base in 

the DNA sequence. The encoding of N can be incorporated 

easily in our quaternary scheme by putting 1s in the four 

encoding vectors, whereas it is impossible in the binary mode 

without increasing the number of encoding bits.  

We have experimented with this data set using Amazon web 

services. The experiments are run on a m3.xlarge instance (4 

vCPU 15 GiB 2 x 40 GB SSD storage) with high frequency 

Intel Xeon E5-2670 v2 (Ivy Bridge) processors (25M Cache, 

2.50 GHz). The DNA dataset is stored in-memory using a 

REDIS4 database.  

 
3 https://genome.ucsc.edu/ 
4 Redis is an open source, in-memory data structure store, used as database, 

cache and message broker (http://redis.io/) 

Fig. 7 shows the response time for a match/no-match query 

of 40 loci with different key sizes comparing our approach 

with the binary scheme in [1] (In the binary scheme we ignore 

the letter ‘N’). We show the total cumulative CPU time of the 

different cryptographic functions: e_add (which is a modular 

multiplication MM), e_add_const (AC) and e_mult_const 

(which is a modular exponentiation ME). By cumulative time 

we mean the time spent in a function and all sub functions 

invoked from that function. By total time we mean the time 

for all the calls to a function during a query computation. We 

also measure the overall cryptography functions wall clock 

time and the overall query response wall clock time. The wall 

clock time is governed by the crypto time and the Redis server 

access time. We reduce the number of accesses to the Redis 

in-memory server to only one access per record. Redis Mget 

allows obtaining values for multiple keys in one access.  So 

the number of Redis accesses is equal to the size of the 

database in terms of records. The timing of individual crypto 

functions is obtained using the Python CProfile module.  For 

keys of size 64, 128 and 256 we fit the whole encrypted 

dataset in memory. For keys of higher size, we only cache the 

sub-dataset based on the query indices.  

The results in Fig. 7 follow the theoretical analysis and the 

simulation based performance shown in Fig. 4. For this set of 

experiments the gain ratio is 1.7 in average. It is also worth 

mentioning that approximate queries take less time than 

match/no-match queries in our approach. 

C. Storage vs. computation cost discussion  

In current cloud pricing plans, storage is much cheaper than 

computational power. For example, current Amazon prices for 

S3 storage starts with 0.03$ per GB / Month and decreases to 

0.0275$ per GB / Month if more than 5000 TB are reserved
5
.  

Using Amazon Elastic Map Reduce to take benefit of 

parallelism in query processing, we pay an hourly rate for 

every instance hour of usage (so a 10-node cluster running for 

10 hours costs the same as a 100-node cluster running for 1 

hour). Hourly prices range from $0.011/hour to $0.27/hour. 

 
5 Checked on 9/28/2016 

Fig. 5.  Comparison of database encryption time for different key bit 

length Fig. 6.  Comparison of database decryption time for different key bit 
length 

 

https://genome.ucsc.edu/
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In our scenario, processing a query nearly requires half the 

time at the expense of doubling storage. For example, our 

relatively small dataset having 41,782 records of 300 letters 

each, encrypted using a 1024 bits key, requires about 31 GB of 

storage. It means that storage costs only about 1 dollar per 

month. On the other hand, the cost of renting an m3.xlarge 

instance is $0.266 per Hour. A query of 40 loci requires 

roughly 4.5 minutes in our setting but requires about 6.5 

minutes in [1]. Therefore, for a batch of more than 25 queries, 

our approach has lower cost than [1]. The same analysis 

applies for larger databases since both the query cost and the 

storage cost vary linearly in the database size, under the same 

key size. The storage cost is paid once at setup time, and is 

amortized through subsequent queries. Moreover, from the 

user perspective, we are gaining a faster response. This 

scenario assumes that data is stored in S3 and transferred 

intermittently to computing node or cluster. The data transfer 

time in our scenario is quite tolerable and comparable to 

cluster allocation time. For our transfer size of 31 GB, we 

record a transfer time of around 29 seconds between our EC2 

instance and S3; for either download or upload. Note that most 

cloud providers have specialized transfer services for big data 

(peta-byte scale).  

For cost effectiveness, we suggest two deployment 

schemes:  

1. Rent one or a cluster of Redis machines, and cache 

encrypted DNA sequences of importance (or just the segments 

of importance) prior to starting a batch of queries.  

2. Rent a Spark/Hadoop map-reduce cluster and distribute 

data in a load balanced manner prior to executing batches of 

queries, therefore each node would process its part of the data.   

In case a cache is used, additional network transfer 

overhead is required intermittently. The authors in [1] suggest 

estimating the result of a query for the whole database based 

on the result of the query for a random sample of the database, 

mainly to improve performance. We suggest using the same 

approach but for handling limited available cache and 

optimizing the cache replacement policy. An estimation of the 

query for the whole database can be determined within a given 

error margin, solely based on the cached sequences.  

VI. CONCLUSION 

 In this paper, we have revisited the challenge of sharing 

person-specific genomic sequences without violating the 

privacy of their data subjects in order to support large-scale 

biomedical research projects. We have used the framework 

proposed by Kantarcioglu et al. [1] based on additive 

homomorphic encryption, and two servers: one holding the 

keys and one storing the encrypted records. The proposed 

method offers two new operating points in the space-time 

tradeoff and handles new types of queries that are not 

supported in earlier work. Furthermore, the method provides 

support for extended alphabet of nucleotides which is a 

practical and critical requirement for biomedical researchers.   

Big data analytics over genetic data is a good future work 

direction. There are rapid recent advancements that address 

performance limitations of homomorphic encryption 

techniques.  We hope that these advancements will lead to 

more practical solutions in the future that can handle larger-

scale genetics data. It is worth mentioning that our approach is 

not restricted to a fixed homomorphic encryption technique 

and therefore, it would be possible to use and inherit the 

advantages of newly developed ones. 
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