
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 1



Abstract— This paper addresses the problem of sharing

person-specific genomic sequences without violating the privacy

of their data subjects to support large-scale biomedical research

projects. The proposed method builds on the framework

proposed by Kantarcioglu et al. [1] but extends the results in a

number of ways. One improvement is that our scheme is

deterministic, with zero probability of a wrong answer (as

opposed to a low probability). We also provide a new operating

point in the space-time tradeoff, by offering a scheme that is

twice as fast as theirs but uses twice the storage space. This point

is motivated by the fact that storage is cheaper than computation

in current cloud computing pricing plans. Moreover, our

encoding of the data makes it possible for us to handle a richer

set of queries than exact matching between the query and each

sequence of the database, including: (i) counting the number of

matches between the query symbols and a sequence; (ii) logical

OR matches where a query symbol is allowed to match a subset

of the alphabet thereby making it possible to handle (as a special

case) a “not equal to” requirement for a query symbol (e.g., “not

a G”); (iii) support for the extended alphabet of nucleotide base

codes that encompasses ambiguities in DNA sequences (this

happens on the DNA sequence side instead of the query side); (iv)

queries that specify the number of occurrences of each kind of

symbol in the specified sequence positions (e.g., two ‘A’ and four

‘C’ and one ‘G’ and three ‘T’, occurring in any order in the

query-specified sequence positions); (v) a threshold query whose

answer is ‘yes’ if the number of matches exceeds a query-

specified threshold (e.g., “7 or more matches out of the 15 query-

specified positions”). (vi) For all query types we can hide the

answers from the decrypting server, so that only the client learns

the answer. (vii) In all cases, the client deterministically learns

only the query's answer, except for query type (v) where we

quantify the (very small) statistical leakage to the client of the

actual count.

Index Terms— DNA Databases, Cloud Security, Secure

Outsourcing.

I. INTRODUCTION

NA or Deoxyribonucleic Acid is the medium of long-

term storage and transmission of genetic information for

Portions of this work were supported by NPRP grants from the Qatar

National Research Fund (award number NPRP 09-622-1-090 and NPRP X-
063-1-014); by National Science Foundation Grants CPS-1329979, CNS-

0915436; and by sponsors of the Center for Education and Research in

Information Assurance and Security. The statements made herein are solely
the responsibility of the authors.

M. N., Q. M. and A. S. Authors are with KINDI Center for Computing

Research, Doha, Qatar (e-mail: meb.nassar@gmail.com, qmalluhi@qu.edu.qa,
and ashikfa@qu.edu.qa).

M. A. Author is with Department of Computer Science, Purdue University,

West Lafayette, USA (e-mail: matallah@purdue.edu).

all modern living organisms. Human DNA data (DNA

sequences within the 23 chromosome pairs) are private and

sensitive personal information. However, such data is critical

for conducting biomedical research and studies, for example,

diagnosis of pre-disposition to develop a specific disease, drug

allergy, or prediction of success rate in response to a specific

treatment. Providing a publicly available DNA database for

fostering research in this field is mainly confronted by privacy

concerns. Today, the abundant computation and storage

capacity of cloud services enables practical hosting and

sharing of DNA databases and efficient processing of genomic

sequences, such as performing sequence comparison, exact

and approximate sequence search and various tests (diagnosis,

identity, ancestry and paternity). What is missing is an

efficient security layer that preserves the privacy of

individuals’ records and assigns the burden of query

processing to the cloud. Whereas anonymization techniques

such as de-identification [2], data augmentation [3], or

database partitioning [4] solve this problem partially, they are

not sufficient because in many cases, re-identification of

persons is possible [5]. It follows that the DNA data must be

protected, not just unlinked from the corresponding persons.

In this paper, we consider the framework proposed in [1]

where the DNA records coming from several hospitals are

encrypted and stored at a data storage site, and biomedical

researchers are able to submit aggregate counting queries to

this site. Counting queries are particularly interesting for

statistical analysis.

This paper provides a new method that addresses a larger

set of problems and provides a faster query response time than

the technique introduced in [1]. Our approach is based on the

fact that, given current pricing plans at many cloud services

providers, storage is cheaper than computing. Therefore, we

favor storage over computing resources to optimize cost.

Moreover, from a user experience point of view, response time

is the most tangible indicator of performance; hence it is

natural to aim at reducing it. Our method enhances the state of

the art at both the conceptual level and the implementation

level. More concretely:

 At the conceptual level, we provide a deterministic

scheme, with zero probability of a wrong answer (as

opposed to a low probability). This gives confidence to

the users that they get exact results to all their queries,

without impacting security.

 We also provide a new operating point in the space-time

tradeoff, by giving a scheme that is twice as fast as theirs

but uses twice the storage space. A variant of this scheme

uses only 1.5 their storage space at the expense of

additional latency.

Securing Aggregate Queries for DNA Databases

Mohamed Nassar, Qutaibah Malluhi, Mikhail Atallah, Abdullatif Shikfa

D

mailto:meb.nassar@gmail.com
mailto:qmalluhi@qu.edu.qa
mailto:ashikfa@qu.edu.qa
mailto:matallah@purdue.edu

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 2

 Moreover, our encoding of the data makes it possible for

us to handle a richer set of queries than exact matching

between the query and each sequence of the database,

including:

i. Counting the number of matches between the

query symbols and a sequence;

ii. Logical OR matches where a query symbol is

allowed to match a subset of the alphabet thereby

making it possible to handle (as a special case) a

“not equal to” requirement for a query symbol

(e.g., “not a G”);

iii. Support for the extended alphabet of nucleotide

base codes that encompasses ambiguities in

DNA sequences (contrary to the previous item

this happens on the DNA sequence side instead

of the query side);

iv. Queries that specify the number of occurrences

of each kind of symbol in the specified sequence

positions (e.g., two ‘A’ and four ‘C’ and one ‘G’

and three ‘T’, occurring in any order in the

query-specified sequence positions);

v. A threshold query whose answer is ‘yes’ if the

number of matches exceeds a query-specified

threshold (e.g., “7 or more matches out of the 15

query-specified positions”).

vi. For all query types we can hide the answers from

the decrypting server, so that only the client

learns the answer.

vii. In all cases the client deterministically learns

only the query's answer, except for query type

(v) where we quantify the (very small) statistical

leakage to the client of the actual count.

 At the implementation level, we take advantage of GMP

modular arithmetic routines to achieve a much faster

implementation of the approach in [1], as well as for the

new approaches proposed in this paper.

II. RELATED WORK

There is no universal method to create a protocol for secure

multi-party computation and handling aggregate queries on

encrypted data is not an exception. Several homomorphic

systems only support a subset of mathematical operations, like

addition (Paillier [19], Benaloh [23]), multiplication (ElGamal

[24], RSA [25]), or exclusive-or (Goldwasser and Micali

[26]). From a security perspective, only the additive Paillier

and the multiplicative ElGamal are classified to be IND-CPA

(stands for indistinguishability under chosen plaintext attack)

[27]. Partially homomorphic cryptosystems are more desirable

from a performance point of view than somewhat

homomorphic cryptosystems, which support a limited

operation depth. Fully homomorphic systems have a huge cost

and cannot be deployed in practice.

Several works focus on protecting biometric computations

over genomic sequence records in the context of secure multi-

party computations (SMC). Secure outsourcing is a particular

case of SMC where a client with low resources (energy,

memory, CPU) requests the service of one or more

outsourcing agents with abundant resources. Secure

outsourcing finds a real projection in the current business

models thanks to the proliferation of cloud-based services.

Cloud computing and storage security issues have been

subject to ostensive research in the past years [6]. Areas of

interest include client authentication, hardware virtualization

threats, flooding and denial of service attacks as well as issues

of accountability, storage protection and computation

protection. In the context of DNA data protection, related

works can be divided into five groups depending on the

function or the query being addressed: forensic databases,

profile matching, sequence comparison, testing by finite

automata and aggregate queries.

A. Forensic databases

In a forensic database, a suspect record has to be tested

against an entire database. A record of the database can be

decrypted only if it matches the suspect record. This protects

the other records from being unveiled [7]. Similarly, negative

databases prevent the enumeration of its members by reversely

saving the non-members, in a compressed form [8].

B. Profile matching

In [9] the authors address a multitude of tests such as

identity, ancestry and paternity tests based on Short Tandem

Repeat (STR) profiles. The STR profile is composed of a

number of loci and for each locus the number of repetitions for

a given repeat structure. The authors translate each test into

an algebraic expression and provide a homomorphic

encryption scheme allowing two semi-honest parties to

compare their stored profiles in a semantically secure manner.

The proposed approach allows exact answers or small error

tolerance as practically required by the tests.

C. Sequence comparison

The edit distance is the optimal cost of insertion, deletion

and substitution of characters to go from a sequence 𝜆 to a

sequence 𝜇. The edit script is the chart of the steps leading to

the optimal edit distance. Atallah et al. [10] offers a solution

for securely outsource a dynamic programming solution for

finding the edit distance and the edit script for two given

sequences (particularly genomic sequences with small

alphabet size). The outsourcing protocol is based on two non-

colluding (honest-but-curious) agents that securely collaborate

to performing table lookup and minimum finding. The secure

minimum finding protocol determines the minimum of an

additively split vector based on Yao’s garbled circuits and a

blind-and-permute protocol for hiding the index of this

minimum. In [11] their scheme has been improved for

performance and requires space only linear in the input size.

The work in [12] addresses a similar dynamic programming

solution for finding the longest common subsequence. By

using the “four Russians” technique in a new way, the authors

propose a communication-efficient SMC protocol that

improves over the generic solution based on Yao’s garbled

circuits. Their results feature an asymmetry in the work

required by each participant, which makes it more suitable to

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 3

an outsourcing scenario. In [13] the authors address the

longest common subsequence as a private search problem.

Another example of genome sequence comparison is the

Smith-Waterman algorithm which performs local sequence

alignment. In [14] the authors transform the formulation of

this algorithm for crowdsourcing (i.e., outsourcing to

distributed volunteers). Their scheme, based on computation

with obscured data, preserves a reasonable level of accuracy

but does not provably protect the privacy of the inputs.

D. Sequence testing by finite automata

Sometimes the queries on DNA need to take into account

various errors such as irrelevant mutations, incomplete

specifications and sequencing errors. Therefore, the pattern of

the query should be expressed using regular expressions.

Many works address practical and privacy-preserving

outsourcing of this regular expression type of queries,

implemented as oblivious evaluation of finite automata [15]–

[17].

E. Aggregate queries

For biomedical researchers, important queries have often

the form “How many records contain a diagnosis of Alzheimer

disease and gene variant X?” Secure outsourcing of the

database and allowing such type of queries without requiring

the server to decrypt the data has been addressed in [1]. The

paper presents very practical results. For example, a count

query over 40 records in a database of 5000 records takes 30

minutes. Our paper extends these results by proposing a

variant storage and computation scheme.

III. PROBLEM DEFINITION AND FRAMEWORK

Computer scientists often represent DNA by a large

sequence of characters from the alphabet 𝛴 = {𝐴, 𝐶, 𝐺, 𝑇},

representing the four nucleotide types. This alphabet can be

augmented with additional characters representing ambiguity

in the sequence. This extended alphabet is denoted by

𝛴′ = {𝐴, 𝐶, 𝐺, 𝑇, 𝑁, 𝑀, 𝑅, 𝑊, 𝑆, 𝑌, 𝐾, 𝑉, 𝐻, 𝐷, 𝐵} as defined by

IUPAC [18], see Table 1. Given a database of 𝑑 sequences

𝑠1, 𝑠2, … , 𝑠𝑑 each having 𝑚 characters; the query is

represented as a list of tuples (𝑗𝑖 , 𝑣𝑖) of characters 𝑣𝑖 and

positions 𝑗𝑖; for 𝑖 = 1. . 𝑘. The result of the query is the

number of sequences where 𝑠[𝑗𝑖] == 𝑣𝑖 for all the

tuples (𝑗𝑖 , 𝑣𝑖). The pseudo (Python-like) code of a query in

clear is shown in Listing 1.

In our model, hospitals who have DNA sequences do not

have the computing and processing capabilities to process

researchers’ requests, so they all store their DNA sequences at

a server (which is also more convenient to do queries across

all hospitals). The clients, who are typically researchers, query

the server to obtain statistics on the occurrence of a given

subsequence in the pool of DNA sequences stored on the

server. Due to the sensitivity of DNA, all these operations

have to be performed securely: the goal of securing queries is

making both the client and the server ignorant of exactly

which sequences match the query but only knowing the

aggregated result of the query (i.e., the count).

To be more precise the security model is as follows:

 Hospitals want to protect the confidentiality of the DNA

sequences that they own and no external party has the

right to access these DNA sequences for privacy reasons.

Thus, other parties (be it the server or the clients) should

only work on encrypted sequences and never have access

to the DNA cleartext.

 The server is an external repository of DNA sequences

provided by the various hospitals. The server is

considered honest-but-curious by hospitals: hospitals trust

him to perform the queries requested by clients but they

do not want the server to access the DNA sequences in

clear.

 Clients are entities authorized to perform queries on the

TABLE 1

NUCLEOTIDE BASE CODES (IUPAC)

Symbol Nucleotide Base

A Adenine

C Cytosine

G Guanine

T Thymine

N A or C or G or T

M A or C

R A or G

W A or T

S C or G

Y C or T

K G or T

V Not T

H Not G

D Not C

B Not A

1. #Example of a query:
2. q=[(A,0), (A,2), (C,3), (G,6)]
3. #Example of sequence matching the query:
4. #AAACAGG
5. #D is the set of all sequences
6. count=0
7. for s in D:
8. match=True
9. for (v,j) in q:
10. if s[j]!=v:
11. match=False
12. Break
13. if(match):
14. count+=1

LISTING 1

 PSEUDO-CODE OF AN AGGREGATE QUERY

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 4

database of encrypted DNA sequences. They are only

allowed to obtain statistics on the database: the number or

percentage of sequences matching a given query. The

queries are not confidential and are processed by the

server, however the server should not know the outcome

of the queries.

 We assume that none of these entities collude.

Additively homomorphic encryption is suitable for the

purpose of performing count statistics on encrypted data.

Paillier's homomorphic encryption [19] possesses the

following properties: (i) It's a public key scheme, which means

encryption can be performed by anyone who knows the public

key, whereas decryption can only be done by the matching

private key, known only to a trusted party. (ii) It is

probabilistic. In other words, it is impossible for an adversary

to tell whether two ciphertexts are encryptions of the same

plaintext or not. (iii) It possesses the homomorphic properties

for addition, in particular:

 𝐸𝑝𝑘((𝑚1 + 𝑚2) 𝑚𝑜𝑑 𝑁) = 𝐸𝑝𝑘(𝑚1) ∗ 𝐸𝑝𝑘(𝑚2) 𝑚𝑜𝑑 𝑁2

 𝐸𝑝𝑘((𝑎 ∗ 𝑚1) 𝑚𝑜𝑑 𝑁) = 𝐸𝑝𝑘(𝑚1)𝑎 𝑚𝑜𝑑 𝑁2

Where 𝑁 is the modulus of the encryption and a part of the

public key. Note that the sign " = " above stands for

equivalence not equality.

We consider a framework similar to [1] composed of

several hospitals, several clients representing biomedical

researchers and two non-colluding servers (can be two

different cloud providers, or one cloud provider and one

trusted host). In Fig. 1 we call these two servers Cloud1 and

Cloud2 to emphasize that the framework can be deployed in a

cloud environment:

 Cloud1 represents the data store where all the encrypted

DNA records are stored and is responsible of processing

the queries.

 Cloud2 is a trusted party that generates and holds the

private and public keys of the homomorphic encryption

scheme. In step 1 the public key is sent to the other

parties. Cloud2 is later used as a decyption oracle and it

also shares security associations with the clients in order

to send them the results securely.

 The hospitals obtain the public key in order to encrypt

their DNA records and upload them to Cloud1 (step 2).

 A client representing a biomedical researcher submits a

query to Cloud1 (step 3). The cloud processes the query

over the encrypted records and sends the results to Cloud2

in order to be decrypted (step 4). Cloud1 is required to

permute the results for individual records before sending

them out. The permutation protects the records if in any

case the order of the records can be linked to some

protected information. Finally the client receives from

Cloud2 the decrypted count of matches (step 5) through a

secure channel (built thanks to the security association

etablished at step 1).

Cloud2 may assist the data encryption at the data owners

(the hospitals) through pre-encrypting a large number of

values for the encoding of each letter in the alphabet and

transferring them to the data owners.

IV. STORAGE AND COMPUTATION SCHEMES

A. Summary of the scheme in [1]

The proposed protocol is based on a binary storage scheme.

Each letter has a binary representation over two bits and each

bit is encrypted using Paillier encryption. For example the

letter ‘A’ is coded in binary as two bits 00. Similarly the query

is translated to binary encoding. For example finding the letter

‘A’ at position 6 is equivalent to finding the bit 0 at position

12 in the encoded sequence and the bit 0 at position 13 in the

encoded sequence. Therefore, the required storage capacity for

a sequence is 2 ∗ 𝑚 ∗ 2𝑏 where m is the length of the sequence

and 2b is the size for storing an encrypted value (b is the bit

length of the key modulus). The query is computed as an

algebraic expression that evaluates to an encryption of 0 for

each record matching the query. Two random numbers are

used in order to limit false positives. Without loss of

generality, consider an encoded sequence s and a query of the

form (𝑗𝑖 , 1), for 𝑖 = 1. . 𝑡 and (𝑗𝑖 , 0), for 𝑖 = 𝑡 + 1. .2𝑘 where k

is the length (i.e., number of letters) of the query; the server

computes an expression of the form:

𝑅(𝑞, 𝑠) = ((∏ E(s[ji])
t

i=1
) ∗ E(−t))

r1

∗ (∏ E(s[ji])
2k

i=t+1
)

r0

Where r1 and r0 are random numbers. If s matches the query,

the result of this expression is an encryption of zero with a

high probability. The server sends a permutation of the results

of expressions for all the sequences 𝑠1, … , 𝑠𝑑. The key holder

decrypts and counts the zeros to obtain the result of the query.

Note that the number of modular exponentiation required is

equal to 2, in addition to 2k modular multiplications.

B. Our Schemes

We present two different schemes; the first one requires

more storage capacity but provides better query response time

Fig. 1. Framework of secure aggregate queries over encrypted DNA

database

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 5

than the second one.

1) Quaternary storage, quaternary query

We encode a sequence 𝑠 = [𝐿𝑖], 𝑖 = 1. . 𝑚, using four vectors:

 𝑠𝐴 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐴′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

 𝑠𝐶 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐶′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

 𝑠𝐺 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐺′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

 𝑠𝑇 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝑇′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

For example, sequence “CCGATAT” is encoded as:

 𝑠𝐴 = [0, 0, 0, 1, 0, 1, 0]

 𝑠𝐶 = [1, 1, 0, 0, 0, 0, 0]

 𝑠𝐺 = [0, 0, 1, 0, 0, 0, 0]

 𝑠𝑇 = [0, 0, 1, 0, 1, 0, 1]
The four vectors representing each sequence are encrypted

and uploaded to cloud1. Therefore, the required storage

capacity for a sequence is 4 ∗ 𝑚 ∗ 2𝑏 where m is the length of

the sequence and 2b is the size for storing an encrypted value.

Note that this encoding enables us to support the extended

alphabet contrary to the scheme of [1]. Indeed if there is

ambiguity at a given position, say position i0 and the letter at

this position is M which stands for A or C, we can simply

define 𝑠𝐴[𝑖0] = 𝑠𝐶[𝑖0] = 1.

A query q=(𝑗𝑖 , 𝑣𝑖), 𝑖 = 1. . 𝑘 is decomposed into four

queries, and represented by four vectors as follows:

 Initialize 𝑞𝐴 to a vector of 𝑚 zeroes; then assign 𝑞𝐴[𝑗𝑖] =
1 𝑖𝑓 𝐿𝑖 == ′𝐴′ in the query, 𝑖 = 1. . 𝑘

 qC is a vector of 𝑚 zeroes; 𝑞𝐶[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐶′, 𝑖 =
1. . 𝑘

 qG is a vector of 𝑚 zeroes; 𝑞𝐺[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐺′, 𝑖 =
1. . 𝑘

 qT is a vector of 𝑚 zeroes; 𝑞𝑇[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝑇′, 𝑖 =
1. . 𝑘

Note that although we used m as the size of the query to

ease the presentation and understanding, the knowledge of m

is not required at the client side (moreover m may vary from

one sequence to another). The query simply needs to be as

long as the position of the last element in the subsequence of

the query (𝑣𝑘). The positions after that will all be

automatically assumed as containing 0. The query is then

computed over an encrypted sequence using the following

equation:

𝑅(𝑞, 𝑠) = 𝐸(𝑞𝐴𝑠𝐴 + 𝑞𝐶𝑠𝐶 + 𝑞𝐺𝑠𝐺 + 𝑞𝑇𝑠𝑇) =

𝐸 (∑ 𝑠𝐴,𝑗𝑖

𝑖,𝑞𝐴[𝑗𝑖]=1

+ ∑ 𝑠𝐶,𝑗𝑖

𝑖,𝑞𝐶[𝑗𝑖]=1

+ ∑ 𝑠𝐺,𝑗𝑖

𝑖,𝑞𝐺[𝑗𝑖]=1

+ ∑ 𝑠𝑇,𝑗𝑖

𝑖,𝑞𝑇[𝑗𝑖]=1

)

= ∏ 𝐸(𝑠𝐿𝑖,𝑗𝑖
)

𝑞𝐿𝑖,𝑗𝑖

𝑖=1..𝑘

Note that since 𝑞𝐿,𝑗𝑖
 is either 0 or 1, no modular

exponentiation is needed during the computation of 𝑅 but only

k modular multiplications. The result of the equation decrypts

to exactly 𝑘 if the sequence matches the query.

2) Ternary storage, quaternary query

Since the presence of a letter in a given position of a

sequence can be directly inferred by the absence of the three

other letters, we can reduce the encoding to only three vectors:

 𝑠𝐴 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐴′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

 𝑠𝐶 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐶′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

 𝑠𝐺 = [1 𝑖𝑓 𝐿𝑖 ==′ 𝐺′, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 = 1. . 𝑚]

If we retake the same example, sequence “CCGATAT” is

encoded as:

 𝑠𝐴 = [0, 0, 0, 1, 0, 1, 0]

 𝑠𝐶 = [1, 1, 0, 0, 0, 0, 0]

 𝑠𝐺 = [0, 0, 1, 0, 0, 0, 0]
In other words, the letter ‘A’ is encrypted by the column

vector [1,0,0], the letter ‘C’ by [0,1,0], the letter ‘G’ by

[0,0,1] and the letter ‘T’ by [0,0,0]. The encoding can be

changed to use column vector [0,0,0] to encode the least

frequent letter. This would improve the query performance as

demonstrated later by the query computation formula. In this

scheme, the required storage capacity for a sequence is

3 ∗ 𝑚 ∗ 2𝑏. This scheme does not support the extended

alphabet though.

Similar to the previous scheme, a query q=(𝑗𝑖 , 𝐿𝑖), 𝑖 = 1. . 𝑘

is decomposed into four queries, and represented by four

vectors:

 𝑞𝐴 is a vector of 𝑚 zeroes; 𝑞𝐴[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐴′ 𝑖 =
1. . 𝑘

 𝑞𝐶 is a vector of 𝑚 zeroes; 𝑞𝐶[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐶′, 𝑖 =
1. . 𝑘

 𝑞𝐺 is a vector of 𝑚 zeroes; 𝑞𝐺[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝐺′, 𝑖 =
1. . 𝑘

 𝑞𝑇 is a vector of 𝑚 zeroes; 𝑞𝑇[𝑗𝑖] = 1 𝑖𝑓 𝐿𝑖 == ′𝑇′, 𝑖 =
1. . 𝑘

The query is then computed over an encrypted sequence

using the following equation:

𝑅(𝑞, 𝑠) = 𝐸(𝑞𝐴𝑠𝐴 + 𝑞𝐶𝑠𝐶 + 𝑞𝐺𝑠𝐺 + 𝑞𝑇𝑠𝑇) =

𝐸 (∑ 𝑠𝐴,𝑗𝑖

𝑖,𝑞𝐴[𝑗𝑖]=1

+ ∑ 𝑠𝐶,𝑗𝑖

𝑖,𝑞𝐶[𝑗𝑖]=1

+ ∑ 𝑠𝐺,𝑗𝑖

𝑖,𝑞𝐺[𝑗𝑖]=1

+ ∑ (1 − (𝑠𝐴,𝑗𝑖
+ 𝑠𝐶,𝑗𝑖

+ 𝑠𝐺,𝑗𝑖
))

𝑖,𝑞𝑇[𝑗𝑖]=1

)

= ∏ 𝐸(𝑠𝐿𝑖,𝑗𝑖
)

𝑞𝐿𝑖,𝑗𝑖

𝑖=1..𝑘

Where 𝑠𝑇,𝑗𝑖
= 1 − (𝑠𝐴,𝑗𝑖

+ 𝑠𝐶,𝑗𝑖
+ 𝑠𝐺,𝑗𝑖

) ⇒ 𝐸(𝑠𝑇,𝑗𝑖
) =

(𝐸(𝑠𝐴,𝑗𝑖
)𝐸(𝑠𝐶,𝑗𝑖

)𝐸(𝑠𝐺,𝑗𝑖
))−1𝐸(1). In case all the letters have

the same frequency in the query (i.e., the number of ‘T’ letters

in the query is 𝑘/4), the computation of 𝑅 requires 1.75𝑘

modular multiplications and 0.25𝑘 modular multiplicative

inversions. The resulting value decrypts to exactly 𝑘 if the

sequence matches the query.

The two proposed schemes accounts for approximate

matches which is very useful in practice because of many

sources of error such as genome synthesis error. For example

if 𝐷(𝑅(𝑞, 𝑠)) = 𝑘 − 1 then the query matches the sequence

with only one error at one of the query positions.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 6

3) Match/No-Match answer

Nevertheless the scheme can output a binary result of the

query: 𝑅′(𝑞, 𝑠) = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘))𝑟 where r is a random

non-zero number. Note that one modular exponentiation is

needed in this case. 𝑅′ decrypts to 0 if a match is found and to

a random number if not. Modular multiplication by a random

perfectly hides the answer (except for 0) and has been widely

used in blind signature protocols [20].

4) Space-time comparison

We consider one sequence as a comparison unit and show

in Table 2 the space and time costs. We consider only queries

and sequences over 𝛴 to be able to compare our scheme

against [1], as [1] does not support queries over 𝛴′. In terms of

storage we assume all the sequences have the same length m.

2b is the size of an encrypted value using Paillier encryption

and given modulus N of bit length b. Our schemes require

three or four encrypted words per letter compared to two

encrypted words for [1].

For the computation cost, k is the size of the query, MM is

the time for modular multiplication, MI is the time for modular

multiplicative inversion, ME is the time for modular

exponentiation and AC is the time for adding a constant to a

ciphertext. MM, MI, ME and AC are the major computation

factors.

The AC time represents the time to add −𝑡 (in binary mode)

and – 𝑘 (in both quaternary modes) under encryption. Since t

and k are constant for a given query, 𝐸(−𝑡) and 𝐸(−𝑘) can be

pre-computed once for all the sequences. In practice k and t

are small (less than m) and an encryption of all their possible

values can be pre-computed
1
. The value required by a given

query can be fetched and used in computing R for all the

sequences.

The gain ratio of the quaternary storage scheme compared

to the binary mode is equal to 2. For the ternary storage

scheme, MM is much smaller than ME and can be ignored

(especially when the exponent parameter in ME has the same

bit length of the modulus). MI is also smaller than ME but

cannot be ignored. The gain ratio is on the average 2 ∗
𝑀𝐸/(0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸).

In conclusion, we have presented two new operating points

in the space-time tradeoff of the private query problem, by

giving two schemes that are up to twice as fast as [1] but uses

1.5 to 2 times their storage space.

1 Precomputation is widely used in cryptography, for example to

speed up fixed-base modular exponentiation [22].

Note that aside from performance aspects, our proposed

schemes have other advantages such as the support of

ambiguity in the queries for both our schemes (see paragraphs

7 and 8 below) and the quaternary storage solution supports

the full extended alphabet of nucleotides 𝛴′ at server side as

well. Our schemes are also deterministic because we compute

the exact number of matches as we have one different array

for each symbol of 𝛴, while the scheme of [1] gives only

probabilistic answer as they use binary mode to save space. As

a result, it might happen that an incorrect match at a given

position is cancelled out by another incorrect match at another

position, although the probability is very small because

different random numbers are used each time. The probability

of a wrong answer is of
1

𝑛−1
 for a single query, which is

negligible for large n, while the probability of having at least

one false query result is 1 − (
𝑛−2

𝑛−1
)

𝑞

 for 𝑞 queries.

5) Security evaluation

From a security perspective the framework that we use is

similar to [1]. Both schemes are based on well-known security

building blocks like Paillier’s encryption, public key

encryption and symmetric key encryption. This is why our

security evaluation focuses on the interconnection of these

building blocks and what can go wrong in our settings. To be

more precise:

 The DNA sequences are always encrypted at Cloud1, so
Cloud1 cannot access these sequences in clear. The only
entity which could decrypt them is Cloud2 which is a
trusted entity by the hospital (again with named Cloud2 to
emphasize that it can be deployed in the cloud but it is
very different from cloud1 in that it performs minimal
operations (decryption oracle) and does not have to store
huge data, so it is a specific trusted platform in the cloud.
The confidentiality of DNA sequences is thus correctly
preserved.

 Cloud1 also does not get any leakage from the queries of
clients because he processes the queries in an encrypted
(he cannot decrypt the outcome). The result is decrypted
by Cloud2 which sends the result directly to the client who
made the query through a secure channel thanks to the
security associations between Cloud2 and the clients. This
also means that Cloud1 cannot act as a Client and get the
result of his own queries, unless he colludes with a real
Client, which is out of scope of our model.

 Clients only obtain statistics on the number of DNA
sequences across all hospitals which match their query but
they don’t get the DNA sequences themselves. Learning

TABLE 2
SPACE-TIME COMPARISON

 Binary Mode [1]
Ternary Storage

Quaternary Query

Quaternary Storage

Quaternary Query

Storage 4𝑚𝑏 6𝑚𝑏 8𝑚𝑏

Query Time 2𝑘 ∗ 𝑀𝑀 + 2 ∗ 𝑀𝐸 + 𝐴𝐶 1.75𝑘 ∗ 𝑀𝑀 + 0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸 + 𝐴𝐶 𝑘 ∗ 𝑀𝑀 + 𝑀𝐸 + 𝐴𝐶

Query Time with pre-

computation
2𝑘 ∗ 𝑀𝑀 + 2 ∗ 𝑀𝐸 1.75𝑘 ∗ 𝑀𝑀 + 0.25𝑘 ∗ 𝑀𝐼 + 𝑀𝐸 𝑘 ∗ 𝑀𝑀 + 𝑀𝐸

Query Answer Match/No-Match Match/No-Match except for query (iv)
Match/No-Match

except for query (iv)

Approximate Matches No Yes Yes

Extended alphabet (ambiguity) No No Yes

Probability of error Small Deterministic (Zero) Deterministic (Zero)

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 7

the number of sequences is a leakage that is acceptable in
our model as this leakage would happen even with the
ideal model of a trusted entity doing all the processing
between hospitals and clients.

 The only entity which really has an edge in our framework
is Cloud2 as it owns the private key. We argue however
that:

o Cloud2 is a trusted entity
o Cloud2 does not have access to encrypted DNA

sequences unless he colludes with Cloud1 or a
Hospital

o Cloud2 sees the queries and the outcome of the
queries on each DNA sequence individually so
potentially he has a higher leakage than the
clients. However to avoid this situation, the
Clients can collude with Cloud1 to prevent
Cloud2 from getting the outcomes on each
sequence individually, as explained in the next
paragraph.

6) Hiding from the decrypting server

The client and Cloud1 can collaborate to hide the answer

from the decrypting server Cloud2. The client and Cloud1

exchange a seed for a pseudo-random generator. For each

(query, sequence) tuple the client and Cloud1 synchronize to

independently generate the same random number r1

(distinguishing it from r in the previous section). Cloud1 adds

r1 to the answer for the query under encryption: 𝑅′′ = 𝑅′ ∗
𝐸(𝑟1). Cloud1 decrypts 𝑅′′ but cannot discover the answer

since it doesn’t know r1. The client receives the decryption of

𝑅’’ which is equivalent to 𝐷(𝑅′) + 𝑟1, and subtracts r1 to

obtain the result.

Table 3 presents an analysis of the information exchanged

between the different entities and their impact on security.

TABLE 3: PER-ELEMENT SECURITY ANALYSIS

Element Description Analysis

N

Part of the public key.

It reveals the length of

plaintext and the space

of ciphertext.

As this is part of the public key,

anybody should be able to see N.

Revealing the ciphertext space is

not considered a major issue in

the literature.

E(M)
Paillier’s encryption of

a message M.

This encryption is malleable. An

adversary intercepting a message

can change it. But since we

typically assume that all

communications between entities

are secured in a classical sense,

for example they are performed

over TLS, a message modification

attack is not possible. Otherwise

Paillier’s scheme is IND-CPA.

Seed_C

This seed is shared

between cloud 1 and a

client C. It has for goal

to hide the results from

the decryption oracle

(cloud 2).

We choose the seed as a secret

key (randomly and with length

128 bits at least), and we use a

secure PRNG (for example one

which is derived from a

symmetric block cipher).

Obtaining the seed is as difficult

as obtaining the secret key of an

encrypted message which is

computationally infeasible with

appropriately long seed (or key)

size. Hence there is no leakage at

Cloud2.

Finally, our scheme takes benefit of existing security

infrastructure which is normally available at a cloud service

provider such as authentication, confidentiality and integrity.

7) Set match query

This helps supporting ambiguity from the query side

 Example: q=[((A|C),0), (G,1), (T,2), (G,3), ((C|T),4)

(T,5)]

 Solution: Put 1 at position 1 in 𝑞𝐴 and 1 at position 1 in

𝑞𝐶 . Put 1 at position 5 in 𝑞𝐶 and 1 at position 5 in 𝑞𝑇.

Encode the remaining letters of the query as in the initial

scheme.

8) Negation query

 Example: q=[((!A),0), (C,1), ((!A^!T),2), (T,3)]

 Solution: Put 1s in qC, qG and qT at position 1. Put 1 in

𝑞𝐶 𝑎𝑛𝑑 𝑞𝐺 at position 3, because (!A^!T) = (C|G)

9) Exactly (k’<k) matches

 In this case we compute 𝑅′ = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘′))𝑟 where r

is a random number. 𝐷(𝑅’) == 0 if exactly k’ matches are

found.

10) Exactly (a As , c Cs , g Gs and t Ts)

This query can be computed as follows: 𝑅′ =

(𝐸(𝑞𝐴𝑠𝐴)𝐸(−𝑎))
𝑟1

(𝐸(𝑞𝐶𝑠𝐶)𝐸(−𝑐))
𝑟2(𝐸(𝑞𝐺𝑠𝐺)𝐸(−𝑔))𝑟3

(𝐸(𝑞𝑇𝑠𝑇)𝐸(−𝑡))𝑟4

Where 𝑟1, 𝑟2, 𝑟3 and 𝑟4 are random number. R’ decrypts to 0

if the query is matched. Four modular exponentiations are

needed in this case.

11) At least k’ matches out of k

We compute 𝑅′ = (𝑅(𝑞, 𝑠) ∗ 𝐸(−𝑘′))𝑟where r is a positive

random number. If R’ decrypts to 0 we have exact match of

k’. if D(R’) < N/2 we have more than k’ matches, if D(R’) >

N/2 we have less than k’ matches, assuming r is chosen within

a sufficiently small margin (𝑟 ∗ ∆<< 𝑁/2), where ∆ is the

estimated maximum difference 𝐷(𝑅) − 𝑘’ for all the records.

V. EXPERIMENTAL EVALUATION

We have implemented a prototype for evaluating the two

outsourcing schemes: binary mode [1] and quaternary mode.

By quaternary mode we refer to quaternary query encoding. In

our experiments we use ternary storage. However, our

discussion includes comments on the expected results for

quaternary storage. The implementation uses the Python

language and the Gmpy2 library
2
 for supporting arithmetic

operations in Paillier’s cryptosystem. To simplify the

implementation, we used the special case of Paillier’s

cryptosystem where p and q are two primes of equivalent

bitlength, 𝑁 = 𝑝𝑞; 𝑔 = 𝑁 + 1, 𝜆 = 𝜑(𝑁) and 𝜇 =
𝜑(𝑁)−1 𝑚𝑜𝑑 𝑁, where 𝜑(𝑁) = (𝑝 − 1)(𝑞 − 1). Table 4

describes the different parameters of our experiments. These

experiments are run on one processor Intel Xeon CPU

2.90GHz on a Linux server machine.

2 Gmpy2 is C-coded Python extension modules that support fast

multiple-precision arithmetic (https://pypi.python.org/pypi/gmpy2).

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 8

A. Response time

We first evaluate our implementation by running 1000

operations on randomly generated numbers for each type of

the basic operations of the cryptosystem. The results are

shown in Fig. 2. Note that adding and inverting ciphertexts

(MM and MI) are small compared to ME and AC. In fact

modular exponentiation have 𝑂(𝑏. 𝑀(𝑏)) complexity, where

𝑀(𝑏) is the complexity of modular multiplication and depends

on the used multiplication algorithm (textbook multiplication

is 𝑂(𝑏2)) [21]. We show the results of 10,000 operations for

MM and MI in the histogram instead of 1000 operations to

show that MI is relatively more significant than MM. Key

generation is done once at setup and has recourse to the

primality test in Gmpy2 (taking much less than 1s for

b=1024).

We second evaluate the query response time. In these

experiments we ignore the input/output time and only account

for the time of computational operations (this situation is

legitimate for scenarios where access time is constant). In Fig.

3, the query response time for the two modes and different

database sizes is depicted (k=[10, 20, 30, 40], d=[5000, 10000,

15000, 20000], m=300, b=1024).

As expected, Quaternary mode (ternary storage) is faster

with a speed up of approximately 2 for small query sizes. The

gain ratio decreases when the query size increases because the

number of MI increases proportionally. For this set of

experiments the gain ratio ranges between 1.87 and 1.98. Note

that if quaternary storage has been used, this ratio would be

constantly 2. In both modes, the query response time increases

linearly with the database size. In binary mode the query size

affects marginally the response time because it only increases

the number of MM operations having relatively small cost.

In the third experiment we study the effect of the key size

on the execution time of the queries (k=20, d=10000, m=300,

b=[64, 128, 512, 1024, 2048]). Theoretically the query

execution time is 𝑂(𝑏. 𝑀(𝑏)) where b is the size of the key.

Fig. 4 shows that an approximate speed up of 2 is maintained

as the key size varies. For the choice of the key, a size of

1024 bits is fairly considered as semantically secure.

Fig. 5 (log scale) shows the database encryption time, which

is also 𝑂(𝑏. 𝑀(𝑏)). The quaternary mode (ternary storage)

time is 1.5 the time of the binary mode since it requires three

encryptions per letter, compared to only two for the binary

mode (in quaternary storage this ratio becomes 2). Note that

database encryption is done only once at setup time.

For decryption (Fig. 6), the binary mode requires exactly

two decryptions per letter while the quaternary mode (both

ternary and quaternary storage) takes 2.25 decryptions on

average if the letters are uniformly distributed (it stops if the

decrypted value is one or continues till the three decryptions

are done: 0.25 ∗ 1 + 0.25 ∗ 2 + 0.5 ∗ 3). The order of decryption

can be changed according to the frequency distribution of the

values in the database if known to be non-uniform.

The experiments show that encryption/decryption is roughly

twice longer in the quaternary mode compared to the binary

mode (although decryption is less than twice the time), but

query time is twice faster. Query is the operation which has to

be performed many times as opposed to encryption which is

performed only once at set up time.

TABLE 4

PARAMETERS OF THE EXPERIMENTS

Parameter Description

𝑑 Number of records in the database

𝑚 Length of a record

𝑏 Public key modulus size in bits

𝑘 Query size
Mode (B) for binary, (Q) for quaternary

Fig. 2. Performance evaluation of implemented Paillier's basic

operations (b=1024): cost of 1000 operations on randomly chosen

operands

Fig. 3. Comparison of query response time for Binary (B) mode and

Quaternary (Q) mode

Fig. 4. Comparison of query response time for different key bit length

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 9

Note that all our experiments are reproducible by

downloading the source code of the tool “private_dna” and the

Paillier library at the following checkout URL:

https://github.com/mnassar/private-dna-queries.

B. Experiments with real DNA data on the cloud

We have also performed experiments on real DNA data. We

use a genomic data set from the UCSC Genome Browser
3
. We

have used a prepackaged download of 1000 base pairs (bp)

upstream sequences of annotated transcription starts of RefSeq

genes with annotated 5' UTRs. The upstream sequences

typically have the control elements for gene transcription.

Therefore, finding the same upstream pattern in multiple

sequences is important because it could imply that the

corresponding genes are co-regulated.

The dataset contains the starts of 41,782 sequences up to

lengths of 300 letters in one subset and 500 letters in another.

The dataset has a 5 letters alphabet: A, C, G, T and N. Table 5

shows the distribution of these letters in the data set.

TABLE 5

FREQUENCIES OF LETTERS IN UPSTREAM1000 DATA

Length A C G T N

300 20.5% 29.7% 29.4% 20.4% 0.02%

500 21.8% 28.4% 28.1% 21.6% 0.02%

Notice the presence of the N indicating an unknown base in

the DNA sequence. The encoding of N can be incorporated

easily in our quaternary scheme by putting 1s in the four

encoding vectors, whereas it is impossible in the binary mode

without increasing the number of encoding bits.

We have experimented with this data set using Amazon web

services. The experiments are run on a m3.xlarge instance (4

vCPU 15 GiB 2 x 40 GB SSD storage) with high frequency

Intel Xeon E5-2670 v2 (Ivy Bridge) processors (25M Cache,

2.50 GHz). The DNA dataset is stored in-memory using a

REDIS4 database.

3 https://genome.ucsc.edu/
4 Redis is an open source, in-memory data structure store, used as database,

cache and message broker (http://redis.io/)

Fig. 7 shows the response time for a match/no-match query

of 40 loci with different key sizes comparing our approach

with the binary scheme in [1] (In the binary scheme we ignore

the letter ‘N’). We show the total cumulative CPU time of the

different cryptographic functions: e_add (which is a modular

multiplication MM), e_add_const (AC) and e_mult_const

(which is a modular exponentiation ME). By cumulative time

we mean the time spent in a function and all sub functions

invoked from that function. By total time we mean the time

for all the calls to a function during a query computation. We

also measure the overall cryptography functions wall clock

time and the overall query response wall clock time. The wall

clock time is governed by the crypto time and the Redis server

access time. We reduce the number of accesses to the Redis

in-memory server to only one access per record. Redis Mget

allows obtaining values for multiple keys in one access. So

the number of Redis accesses is equal to the size of the

database in terms of records. The timing of individual crypto

functions is obtained using the Python CProfile module. For

keys of size 64, 128 and 256 we fit the whole encrypted

dataset in memory. For keys of higher size, we only cache the

sub-dataset based on the query indices.

The results in Fig. 7 follow the theoretical analysis and the

simulation based performance shown in Fig. 4. For this set of

experiments the gain ratio is 1.7 in average. It is also worth

mentioning that approximate queries take less time than

match/no-match queries in our approach.

C. Storage vs. computation cost discussion

In current cloud pricing plans, storage is much cheaper than

computational power. For example, current Amazon prices for

S3 storage starts with 0.03$ per GB / Month and decreases to

0.0275$ per GB / Month if more than 5000 TB are reserved
5
.

Using Amazon Elastic Map Reduce to take benefit of

parallelism in query processing, we pay an hourly rate for

every instance hour of usage (so a 10-node cluster running for

10 hours costs the same as a 100-node cluster running for 1

hour). Hourly prices range from $0.011/hour to $0.27/hour.

5 Checked on 9/28/2016

Fig. 5. Comparison of database encryption time for different key bit

length Fig. 6. Comparison of database decryption time for different key bit
length

https://genome.ucsc.edu/

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 10

In our scenario, processing a query nearly requires half the

time at the expense of doubling storage. For example, our

relatively small dataset having 41,782 records of 300 letters

each, encrypted using a 1024 bits key, requires about 31 GB of

storage. It means that storage costs only about 1 dollar per

month. On the other hand, the cost of renting an m3.xlarge

instance is $0.266 per Hour. A query of 40 loci requires

roughly 4.5 minutes in our setting but requires about 6.5

minutes in [1]. Therefore, for a batch of more than 25 queries,

our approach has lower cost than [1]. The same analysis

applies for larger databases since both the query cost and the

storage cost vary linearly in the database size, under the same

key size. The storage cost is paid once at setup time, and is

amortized through subsequent queries. Moreover, from the

user perspective, we are gaining a faster response. This

scenario assumes that data is stored in S3 and transferred

intermittently to computing node or cluster. The data transfer

time in our scenario is quite tolerable and comparable to

cluster allocation time. For our transfer size of 31 GB, we

record a transfer time of around 29 seconds between our EC2

instance and S3; for either download or upload. Note that most

cloud providers have specialized transfer services for big data

(peta-byte scale).

For cost effectiveness, we suggest two deployment

schemes:

1. Rent one or a cluster of Redis machines, and cache

encrypted DNA sequences of importance (or just the segments

of importance) prior to starting a batch of queries.

2. Rent a Spark/Hadoop map-reduce cluster and distribute

data in a load balanced manner prior to executing batches of

queries, therefore each node would process its part of the data.

In case a cache is used, additional network transfer

overhead is required intermittently. The authors in [1] suggest

estimating the result of a query for the whole database based

on the result of the query for a random sample of the database,

mainly to improve performance. We suggest using the same

approach but for handling limited available cache and

optimizing the cache replacement policy. An estimation of the

query for the whole database can be determined within a given

error margin, solely based on the cached sequences.

VI. CONCLUSION

 In this paper, we have revisited the challenge of sharing

person-specific genomic sequences without violating the

privacy of their data subjects in order to support large-scale

biomedical research projects. We have used the framework

proposed by Kantarcioglu et al. [1] based on additive

homomorphic encryption, and two servers: one holding the

keys and one storing the encrypted records. The proposed

method offers two new operating points in the space-time

tradeoff and handles new types of queries that are not

supported in earlier work. Furthermore, the method provides

support for extended alphabet of nucleotides which is a

practical and critical requirement for biomedical researchers.

Big data analytics over genetic data is a good future work

direction. There are rapid recent advancements that address

performance limitations of homomorphic encryption

techniques. We hope that these advancements will lead to

more practical solutions in the future that can handle larger-

scale genetics data. It is worth mentioning that our approach is

not restricted to a fixed homomorphic encryption technique

and therefore, it would be possible to use and inherit the

advantages of newly developed ones.

REFERENCES

[1] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin, “A

cryptographic approach to securely share and query

genomic sequences,” Inf. Technol. Biomed. IEEE

Trans., vol. 12, no. 5, pp. 606–617, 2008.

[2] B. Malin and L. Sweeney, “How (not) to protect

genomic data privacy in a distributed network: using

trail re-identification to evaluate and design anonymity

protection systems,” J. Biomed. Inform., vol. 37, no. 3,

pp. 179–192, 2004.

[3] Z. Lin, A. B. Owen, and R. B. Altman, “Genomic

research and human subject privacy,” Science (80-.).,

vol. 305, no. 5681, p. 183, 2004.

[4] A. E. Nergiz, C. Clifton, and Q. M. Malluhi,

“Updating outsourced anatomized private databases,”

in Proceedings of the 16th International Conference

Fig. 7. Query response time on real DNA dataset

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 11

on Extending Database Technology, 2013, pp. 179–

190.

[5] L. Sweeney, A. Abu, and J. Winn, “Identifying

Participants in the Personal Genome Project by

Name,” Available SSRN 2257732, 2013.

[6] E. Aguiar, Y. Zhang, and M. Blanton, “An Overview

of Issues and Recent Developments in Cloud

Computing and Storage Security,” in High

Performance Cloud Auditing and Applications, 2014,

pp. 3–33.

[7] P. Bohannon, M. Jakobsson, and S. Srikwan,

“Cryptographic Approaches to Privacy in Forensic

DNA Databases,” in Public Key Cryptography, vol.

1751, H. Imai and Y. Zheng, Eds. Springer Berlin

Heidelberg, 2000, pp. 373–390.

[8] F. Esponda, E. S. Ackley, P. Helman, H. Jia, and S.

Forrest, “Protecting data privacy through hard-to-

reverse negative databases,” Int. J. Inf. Secur., vol. 6,

no. 6, pp. 403–415, 2007.

[9] F. Bruekers, S. Katzenbeisser, K. Kursawe, and P.

Tuyls, “Privacy-preserving matching of dna profiles,”

IACR Cryptol. ePrint Arch., vol. 2008, p. 203, 2008.

[10] M. J. Atallah and J. Li, “Secure outsourcing of

sequence comparisons,” Int. J. Inf. Secur., vol. 4, no.

4, pp. 277–287, Mar. 2005.

[11] M. Blanton, M. M. J. Atallah, K. B. K. Frikken, and

Q. Malluhi, “Secure and Efficient Outsourcing of

Sequence Comparisons,” Comput. Secur. 2012, pp.

505–522, 2012.

[12] M. Franklin, M. Gondree, and P. Mohassel,

“Communication-efficient private protocols for

longest common subsequence,” in Topics in

Cryptology--CT-RSA 2009, Springer, 2009, pp. 265–

278.

[13] M. Gondree and P. Mohassel, “Longest common

subsequence as private search,” in Proceedings of the

8th ACM workshop on Privacy in the electronic

society, 2009, pp. 81–90.

[14] D. Szajda, M. Pohl, J. Owen, B. Lawson, and V.

Richmond, “Toward a practical data privacy scheme

for a distributed implementation of the Smith-

Waterman genome sequence comparison algorithm,”

in Proceedings of the 12th Annual Network and

Distributed System Security Symposium (NDSS 06),

2006.

[15] M. Blanton and M. Aliasgari, “Secure outsourcing of

DNA searching via finite automata,” in Data and

Applications Security and Privacy XXIV, Springer,

2010, pp. 49–64.

[16] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M.

Celik, “Privacy preserving error resilient dna

searching through oblivious automata,” in

Proceedings of the 14th ACM conference on

Computer and communications security, 2007, pp.

519–528.

[17] K. B. Frikken, “Practical private DNA string searching

and matching through efficient oblivious automata

evaluation,” in Data and Applications Security XXIII,

Springer, 2009, pp. 81–94.

[18] K. Kozl and C. Listy, “Biochemical nomenclature and

related documents,” Chem. List., vol. 72, pp. 288–305,

1978.

[19] P. Paillier, “Public-key cryptosystems based on

composite degree residuosity classes,” in Proceedings

of the 17th international conference on Theory and

application of cryptographic techniques

(EUROCRYPT’99) , 1999, pp. 223–238.

[20] D. Chaum, “Blind signatures for untraceable

payments,” in Advances in cryptology, 1983, pp. 199–

203.

[21] A. J. Menezes, P. C. Van Oorschot, and S. A.

Vanstone, Handbook of applied cryptography. CRC

press, 1996.

[22] E. Brickell, D. Gordon, K. McCurley, and D. Wilson,

“Fast Exponentiation with Precomputation,” in

Advances in Cryptology — EUROCRYPT’ 92, vol.

658, R. Rueppel, Ed. Springer Berlin Heidelberg,

1993, pp. 200–207.

[23] Benaloh, J. (1994, May). Dense probabilistic

encryption. In Proceedings of the workshop on

selected areas of cryptography (pp. 120-128).

[24] ElGamal, T. (1984, August). A public key

cryptosystem and a signature scheme based on

discrete logarithms. In Workshop on the Theory and

Application of Cryptographic Techniques (pp. 10-18).

Springer Berlin Heidelberg.

[25] Rivest, R. L., Shamir, A., & Adleman, L. (1978). A

method for obtaining digital signatures and public-key

cryptosystems. Communications of the ACM, 21(2),

120-126.

[26] Goldwasser, S., & Micali, S. (1984). Probabilistic

encryption. Journal of computer and system

sciences, 28(2), 270-299.

[27] Fontaine, C., & Galand, F. (2007). A survey of

homomorphic encryption for nonspecialists. EURASIP

Journal on Information Security, 2007(1), 1-10.

Mohamad Nassar is currently a visiting

assistant professor at American University

of Beirut (AUB), Lebanon. He was a Post

Doc fellow at the Kindi Research Lab in

Qatar University (2011-2014). He received

the research master degree (DEA) in

computer science in 2005 and the PhD

degree in 2009, both from Nancy University, France. He

worked as a research engineer in INRIA Nancy and Ericsson,

Ireland (2009-2011). His PhD research focuses on monitoring

and intrusion detection in VoIP networks. His current research

interests are practical machine learning, data security and

privacy.

Qutaibah M. Malluhi joined Qatar

University in September 2005. He is the

Director of the KINDI Center for

Computing Research. He served as the

head of Computer Science and Engineering

Department at Qatar University between

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2017.2682860, IEEE
Transactions on Cloud Computing

TCC 12

2005-2012. Before joining Qatar University he was a

professor of Computer Science at Jackson State University

where he served as a faculty member between 1994 and 2005.

During 1995 and 1996, he was a research faculty at Lawrence

Berkeley National Laboratory, Berkeley California. Dr.

Malluhi was the co-founder and CTO of Data Reliability Inc.

between 2001 and 2005. He was also the Co-Founder and

Executive Advisor for the Qatar Mobility Innovation Center at

the Qatar Science and Technology Park. Prof. Malluhi was a

consultant for several telecommunication companies where he

built networks, designed internet/intranet systems, developed

distributed applications and telecommunication management

software.

Mikhail J. Atallah ’s current research

interests are primarily in information

security, and also include algorithms,

parallel computation, and computational

geometry. His work in information security

centers on protocols for online

collaborations between entities that do not

completely trust each other, on key

management issues in access control, and on watermarking

digital objects (particularly non-media, such as relational data

and natural language text). As a Fellow of both the ACM and

IEEE, he has served on the editorial boards of top journals,

and on the program committees of top conferences and

workshops. He was keynote and invited speaker at many

national and international meetings, and a speaker nine times

in the Distinguished Colloquium Series of top Computer

Science Departments. He was selected in 1999 as one of the

best teachers in the history of Purdue University and included

in Purdue’s Book of Great Teachers, a permanent wall display

of Purdue’s best teachers past and present. He is a co-founder

of Arxan Technologies Inc.

Abdullatif Shikfa is a research assistant

professor at KINDI center for computing

research of Qatar University. Before joining

Qatar University, Abdullatif held both

research and industry positions: he served as

research engineer at EURECOM, as

scientific advisor and deputy head of the

security research department at Bell Labs, Alcatel-Lucent and

then he worked as technical project manager and security

expert at Thales. His research interests and experience span a

wide range of topics in information and communication

security from trust and cooperation enforcement to secure

routing, through protection of users' privacy mainly by

applying advanced cryptographic primitives to enable

computation on encrypted data. Dr. Shikfa obtained his PhD

from Telecom ParisTech in 2010 and he is an alumnus of

Ecole Polytechnique (MSc. 2004), of University of Nice

Sophia Antipolis (MSc. 2005), and of ENST-EURECOM

(MSc. 2006).

