Abstract Data Types

Peter Müller
Globewide Network Academy (GNA)
pmueller@uu-gna.mit.edu
Some authors describe object-oriented programming as programming abstract data types and their relationships. Within this section we introduce abstract data types as a basic concept for object-orientation and we explore concepts used in the list example of the last section in more detail.

3.1 Handling Problems

The first thing with which one is confronted when writing programs is the problem. Typically you are confronted with ``real-life'' problems and you want to make life easier by providing a program for the problem. However, real-life problems are nebulous and the first thing you have to do is to try to understand the problem to separate necessary from unnecessary details: You try to obtain your own abstract view, or model, of the problem. This process of modeling is called abstraction and is illustrated in Figure 3.1.

	Figure 3.1: Create a model from a problem with abstraction.

	[image: image1.png]

The model defines an abstract view to the problem. This implies that the model focusses only on problem related stuff and that you try to define properties of the problem. These properties include

· the data which are affected and

· the operations which are identified

by the problem.

As an example consider the administration of employees in an institution. The head of the administration comes to you and ask you to create a program which allows to administer the employees. Well, this is not very specific. For example, what employee information is needed by the administration? What tasks should be allowed? Employees are real persons who can be characterized with many properties; very few are:

· name,

· size,

· date of birth,

· shape,

· social number,

· room number,

· hair colour,

· hobbies.

Certainly not all of these properties are necessary to solve the administration problem. Only some of them are problem specific. Consequently you create a model of an employee for the problem. This model only implies properties which are needed to fulfill the requirements of the administration, for instance name, date of birth and social number. These properties are called the data of the (employee) model. Now you have described real persons with help of an abstract employee.

Of course, the pure description is not enough. There must be some operations defined with which the administration is able to handle the abstract employees. For example, there must be an operation which allows you to create a new employee once a new person enters the institution. Consequently, you have to identify the operations which should be able to be performed on an abstract employee. You also decide to allow access to the employees' data only with associated operations. This allows you to ensure that data elements are always in a proper state. For example you are able to check if a provided date is valid.

To sum up, abstraction is the structuring of a nebulous problem into well-defined entities by defining their data and operations. Consequently, these entities combine data and operations. They are not decoupled from each other.

3.2 Properties of Abstract Data Types

The example of the previous section shows, that with abstraction you create a well-defined entity which can be properly handled. These entities define the data structure of a set of items. For example, each administered employee has a name, date of birth and social number.

The data structure can only be accessed with defined operations. This set of operations is called interface and is exported by the entity. An entity with the properties just described is called an abstract data type (ADT).

Figure 3.2 shows an ADT which consists of an abstract data structure and operations. Only the operations are viewable from the outside and define the interface.

	Figure 3.2: An abstract data type (ADT).

	[image: image2.png]

Once a new employee is ``created'' the data structure is filled with actual values: You now have an instance of an abstract employee. You can create as many instances of an abstract employee as needed to describe every real employed person.

Let's try to put the characteristics of an ADT in a more formal way:

Definition (Abstract Data Type) An abstract data type (ADT) is characterized by the following properties:

1.
It exports a type.

2.

It exports a set of operations. This set is called interface.

3.

Operations of the interface are the one and only access mechanism to the type's data structure.

4.

Axioms and preconditions define the application domain of the type.

With the first property it is possible to create more than one instance of an ADT as exemplified with the employee example. You might also remember the list example of chapter 2. In the first version we have implemented a list as a module and were only able to use one list at a time. The second version introduces the ``handle'' as a reference to a ``list object''. From what we have learned now, the handle in conjunction with the operations defined in the list module defines an ADT List:

1.

When we use the handle we define the corresponding variable to be of type List.

2.

The interface to instances of type List is defined by the interface definition file.

3.

Since the interface definition file does not include the actual representation of the handle, it cannot be modified directly.

4.

The application domain is defined by the semantical meaning of provided operations. Axioms and preconditions include statements such as

· ``An empty list is a list.''

· ``Let l=(d1, d2, d3, ..., dN) be a list. Then l.append(dM) results in l=(d1, d2, d3, ..., dN, dM).''

· ``The first element of a list can only be deleted if the list is not empty.''

However, all of these properties are only valid due to our understanding of and our discipline in using the list module. It is in our responsibility to use instances of List according to these rules.

Importance of Data Structure Encapsulation

The principle of hiding the used data structure and to only provide a well-defined interface is known as encapsulation. Why is it so important to encapsulate the data structure?

To answer this question consider the following mathematical example where we want to define an ADT for complex numbers. For the following it is enough to know that complex numbers consists of two parts: real part and imaginary part. Both parts are represented by real numbers. Complex numbers define several operations: addition, substraction, multiplication or division to name a few. Axioms and preconditions are valid as defined by the mathematical definition of complex numbers. For example, it exists a neutral element for addition.

To represent a complex number it is necessary to define the data structure to be used by its ADT. One can think of at least two possibilities to do this:

· Both parts are stored in a two-valued array where the first value indicates the real part and the second value the imaginary part of the complex number. If x denotes the real part and y the imaginary part, you could think of accessing them via array subscription: x=c[0] and y=c[1].

· Both parts are stored in a two-valued record. If the element name of the real part is r and that of the imaginary part is i, x and y can be obtained with: x=c.r and y=c.i.

Point 3 of the ADT definition says that for each access to the data structure there must be an operation defined. The above access examples seem to contradict this requirement. Is this really true?

Let's look again at the two possibilities for representing imaginary numbers. Let's stick to the real part. In the first version, x equals c[0]. In the second version, x equals c.r. In both cases x equals ``something''. It is this ``something'' which differs from the actual data structure used. But in both cases the performed operation ``equal'' has the same meaning to declare x to be equal to the real part of the complex number c: both cases archieve the same semantics.

If you think of more complex operations the impact of decoupling data structures from operations becomes even more clear. For example the addition of two complex numbers requires you to perform an addition for each part. Consequently, you must access the value of each part which is different for each version. By providing an operation ``add'' you can encapsulate these details from its actual use. In an application context you simply ``add two complex numbers'' regardless of how this functionality is actually archieved.

Once you have created an ADT for complex numbers, say Complex, you can use it in the same way like well-known data types such as integers.

Let's summarize this: The separation of data structures and operations and the constraint to only access the data structure via a well-defined interface allows you to choose data structures appropriate for the application environment.

3.3 Generic Abstract Data Types

ADTs are used to define a new type from which instances can be created. As shown in the list example, sometimes these instances should operate on other data types as well. For instance, one can think of lists of apples, cars or even lists. The semantical definition of a list is always the same. Only the type of the data elements change according to what type the list should operate on.

This additional information could be specified by a generic parameter which is specified at instance creation time. Thus an instance of a generic ADT is actually an instance of a particular variant of the ADT. A list of apples can therefore be declared as follows:

 List<Apple> listOfApples;

The angle brackets now enclose the data type for which a variant of the generic ADT List should be created. listOfApples offers the same interface as any other list, but operates on instances of type Apple.

3.4 Notation

As ADTs provide an abstract view to describe properties of sets of entities, their use is independent from a particular programming language. We therefore introduce a notation here which is adopted from [3]. Each ADT description consists of two parts:

· Data: This part describes the structure of the data used in the ADT in an informal way.

· Operations: This part describes valid operations for this ADT, hence, it describes its interface. We use the special operation constructor to describe the actions which are to be performed once an entity of this ADT is created and destructor to describe the actions which are to be performed once an entity is destroyed. For each operation the provided arguments as well as preconditions and postconditions are given.

As an example the description of the ADT Integer is presented. Let k be an integer expression:

ADT Integer is

Data

A sequence of digits optionally prefixed by a plus or minus sign. We refer to this signed whole number as N.

Operations

constructor

Creates a new integer.

add(k)

Creates a new integer which is the sum of N and k.

Consequently, the postcondition of this operation is sum = N+k. Don't confuse this with assign statements as used in programming languages! It is rather a mathematical equation which yields ``true'' for each value sum, N and k after add has been performed.

sub(k)

Similar to add, this operation creates a new integer of the difference of both integer values. Therefore the postcondition for this operation is sum = N-k.

set(k)

Set N to k. The postcondition for this operation is N = k.

...

end

The description above is a specification for the ADT Integer. Please notice, that we use words for names of operations such as ``add''. We could use the more intuitive ``+'' sign instead, but this may lead to some confusion: You must distinguish the operation ``+'' from the mathematical use of ``+'' in the postcondition. The name of the operation is just syntax whereas the semantics is described by the associated pre- and postconditions. However, it is always a good idea to combine both to make reading of ADT specifications easier.

Real programming languages are free to choose an arbitrary implementation for an ADT. For example, they might implement the operation add with the infix operator ``+'' leading to a more intuitive look for addition of integers.

3.5 Abstract Data Types and Object-Orientation

ADTs allows the creation of instances with well-defined properties and behaviour. In object-orientation ADTs are referred to as classes. Therefore a class defines properties of objects which are the instances in an object-oriented environment.

ADTs define functionality by putting main emphasis on the involved data, their structure, operations as well as axioms and preconditions. Consequently, object-oriented programming is ``programming with ADTs'': combining functionality of different ADTs to solve a problem. Therefore instances (objects) of ADTs (classes) are dynamically created, destroyed and used.

Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)
pmueller@uu-gna.mit.edu
The previous sections already introduce some ``object-oriented'' concepts. However, they were applied in an procedural environment or in a verbal manner. In this section we investigate these concepts in more detail and give them names as used in existing object-oriented programming languages.

4.1 Implementation of Abstract Data Types

The last section introduces abstract data types (ADTs) as an abstract view to define properties of a set of entities. Object-oriented programming languages must allow to implement these types. Consequently, once an ADT is implemented we have a particular representation of it available.

Consider again the ADT Integer. Programming languages such as Pascal, C, Modula-2 and others already offer an implementation for it. Sometimes it is called int or integer. Once you've created a variable of this type you can use its provided operations. For example, you can add two integers:

 int i, j, k; /* Define three integers */

 i = 1; /* Assign 1 to integer i */

 j = 2; /* Assign 2 to integer j */

 k = i + j; /* Assign the sum of i and j to k */

Let's play with the above code fragment and outline the relationship to the ADT Integer. The first line defines three instances i, j and k of type Integer. Consequently, for each instance the special operation constructor should be called. In our example, this is internally done by the compiler. The compiler reserves memory to hold the value of an integer and ``binds'' the corresponding name to it. If you refer to i you actually refer to this memory area which was ``constructed'' by the definition of i. Optionally, compilers might choose to initialize the memory, for example, they might set it to 0 (zero).

The next line

 i = 1;

sets the value of i to be 1. Therefore we can describe this line with help of the ADT notation as follows:

Perform operation set with argument 1 on the Integer instance i. This is written as follows: i.set(1).

We now have a representation at two levels. The first level is the ADT level where we express everything that is done to an instance of this ADT by the invocation of defined operations. At this level, pre- and postconditions are used to describe what actually happens. In the following example, these conditions are enclosed in curly brackets.

{ Precondition: i = n where n is any Integer }
i.set(1)
{ Postcondition: i = 1 }
Don't forget that we currently talk about the ADT level! Consequently, the conditions are mathematical conditions.

The second level is the implementation level, where an actual representation is chosen for the operation. In C the equal sign ``='' implements the set() operation. However, in Pascal the following representation was chosen:

 i := 1;

In either case, the ADT operation set is implemented.

Let's stress these levels a little bit further and have a look at the line

 k = i + j;

Obviously, ``+'' was chosen to implement the add operation. We could read the part ``i + j'' as ``add the value of j to the value of i'', thus at the ADT level this results in

{ Precondition: Let i = n1 and j = n2 with n1, n2 particular Integers }
i.add(j)
{ Postcondition: i = n1 and j = n2 }
The postcondition ensures that i and j do not change their values. Please recall the specification of add. It says that a new Integer is created the value of which is the sum. Consequently, we must provide a mechanism to access this new instance. We do this with the set operation applied on instance k:

{ Precondition: Let k = n where n is any Integer }
k.set(i.add(j))
{ Postcondition: k = i + j }
As you can see, some programming languages choose a representation which almost equals the mathematical formulation used in the pre- and postconditions. This makes it sometimes difficult to not mix up both levels.

4.2 Class

 A class is an actual representation of an ADT. It therefore provides implementation details for the data structure used and operations. We play with the ADT Integer and design our own class for it:

 class Integer {

 attributes:

 int i

 methods:

 setValue(int n)

 Integer addValue(Integer j)

 }

In the example above as well as in examples which follow we use a notation which is not programming language specific. In this notation class {...} denotes the definition of a class. Enclosed in the curly brackets are two sections attributes: and methods: which define the implementation of the data structure and operations of the corresponding ADT. Again we distinguish the two levels with different terms: At the implementation level we speak of ``attributes'' which are elements of the data structure at the ADT level. The same applies to ``methods'' which are the implementation of the ADT operations.

In our example, the data structure consists of only one element: a signed sequence of digits. The corresponding attribute is an ordinary integer of a programming language

. We only define two methods setValue() and addValue() representing the two operations set and add.

Definition (Class) A class is the implementation of an abstract data type (ADT). It defines attributes and methods which implement the data structure and operations of the ADT, respectively. Instances of classes are called objects. Consequently, classes define properties and behaviour of sets of objects.

4.3 Object

 Recall the employee example of chapter 3. We have talked of instances of abstract employees. These instances are actual ``examples'' of an abstract employee, hence, they contain actual values to represent a particular employee. We call these instances objects.

Objects are uniquely identifiable by a name. Therefore you could have two distinguishable objects with the same set of values. This is similar to ``traditional'' programming languages where you could have, say two integers i and j both of which equal to ``2''. Please notice the use of ``i'' and ``j'' in the last sentence to name the two integers. We refer to the set of values at a particular time as the state of the object.

Definition (Object) An object is an instance of a class. It can be uniquely identified by its name and it defines a state which is represented by the values of its attributes at a particular time.
The state of the object changes according to the methods which are applied to it. We refer to these possible sequence of state changes as the behaviour of the object:

Definition (Behaviour) The behaviour of an object is defined by the set of methods which can be applied on it.
We now have two main concepts of object-orientation introduced, class and object. Object-oriented programming is therefore the implementation of abstract data types or, in more simple words, the writing of classes. At runtime instances of these classes, the objects, achieve the goal of the program by changing their states. Consequently, you can think of your running program as a collection of objects. The question arises of how these objects interact? We therefore introduce the concept of a message in the next section.

4.4 Message

 A running program is a pool of objects where objects are created, destroyed and interacting. This interacting is based on messages which are sent from one object to another asking the recipient to apply a method on itself. To give you an understanding of this communication, let's come back to the class Integer presented in section 4.2. In our pseudo programming language we could create new objects and invoke methods on them. For example, we could use

 Integer i; /* Define a new integer object */

 i.setValue(1); /* Set its value to 1 */

to express the fact, that the integer object i should set its value to 1. This is the message ``Apply method setValue with argument 1 on yourself.'' sent to object i. We notate the sending of a message with ``.''. This notation is also used in C++; other object-oriented languages might use other notations, for example ``-[image: image4.png]''.

Sending a message asking an object to apply a method is similar to a procedure call in ``traditional'' programming languages. However, in object-orientation there is a view of autonomous objects which communicate with each other by exchanging messages. Objects react when they receive messages by applying methods on themselves. They also may deny the execution of a method, for example if the calling object is not allowed to execute the requested method.

In our example, the message and the method which should be applied once the message is received have the same name: We send ``setValue with argument 1'' to object i which applies ``setValue(1)''.

Definition (Message) A message is a request to an object to invoke one of its methods. A message therefore contains

· the name of the method and

· the arguments of the method.

Consequently, invocation of a method is just a reaction caused by receipt of a message. This is only possible, if the method is actually known to the object.

Definition (Method) A method is associated with a class. An object invokes a method as a reaction to receipt of a message.
4.5 Summary

To view a program as a collection of interacting objects is a fundamental principle in object-oriented programming. Objects in this collection react upon receipt of messages, changing their state according to invocation of methods which might cause other messages sent to other objects. This is illustrated in Figure 4.1.

	Figure 4.1: A program consisting of four objects.

	[image: image5.png]

In this figure, the program consists of only four objects. These objects send messages to each other, as indicated by the arrowed lines. Note that the third object sends itself a message.

How does this view help us developing software? To answer this question let's recall how we have developed software for procedural programming languages. The first step was to divide the problem into smaller manageable pieces. Typically these pieces were oriented to the procedures which were taken place to solve the problem, rather than the involved data.

As an example consider your computer. Especially, how a character appears on the screen when you type a key. In a procedural environment you write down the several steps necessary to bring a character on the screen:

1.

wait, until a key is pressed.

2.

get key value

3.

write key value at current cursor position

4.

advance cursor position

You do not distinguish entities with well-defined properties and well-known behaviour. In an object-oriented environment you would distinguish the interacting objects key and screen. Once a key receive a message that it should change its state to be pressed, its corresponding object sends a message to the screen object. This message requests the screen object to display the associated key value.

 HYPERLINK "http://www.desy.de/gna/html/cc/Tutorial/tutorial.html"
[image: image7.png]

 HYPERLINK "http://www.desy.de/gna/html/cc/Tutorial/node5.html"
[image: image8.png]

Next: 6 Even More Object-Oriented Up: Introduction to Object-Oriented Programming Previous: 4 Object-Oriented Concepts

Subsections

· 5.1 Relationships

· A-Kind-Of relationship

· Is-A relationship

· Part-Of relationship

· Has-A relationship

· 5.2 Inheritance

· 5.3 Multiple Inheritance

· 5.4 Abstract Classes

· 5.5 Exercises

5 More Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)
pmueller@uu-gna.mit.edu
Whereas the previous lecture introduces the fundamental concepts of object-oriented programming, this lecture presents more details about the object-oriented idea. This section is mainly adopted from [2]

.

5.1 Relationships

In exercise 3.6.5 you already investigate relationships between abstract data types and instances and describe them in your own words. Let's go in more detail here.

A-Kind-Of relationship

Consider you have to write a drawing program. This program would allow drawing of various objects such as points, circles, rectangles, triangles and many more. For each object you provide a class definition. For example, the point class just defines a point by its coordinates:

 class Point {

 attributes:

 int x, y

 methods:

 setX(int newX)

 getX()

 setY(int newY)

 getY()

 }

You continue defining classes of your drawing program with a class to describe circles. A circle defines a center point and a radius:

 class Circle {

 attributes:

 int x, y,

 radius

 methods:

 setX(int newX)

 getX()

 setY(int newY)

 getY()

 setRadius(newRadius)

 getRadius()

 }

Comparing both class definitions we can observe the following:

· Both classes have two data elements x and y. In the class Point these elements describe the position of the point, in the case of class Circle they describe the circle's center. Thus, x and y have the same meaning in both classes: They describe the position of their associated object by defining a point.

· Both classes offer the same set of methods to get and set the value of the two data elements x and y.

· Class Circle ``adds'' a new data element radius and corresponding access methods.

Knowing the properties of class Point we can describe a circle as a point plus a radius and methods to access it. Thus, a circle is ``a-kind-of'' point. However, a circle is somewhat more ``specialized''. We illustrate this graphically as shown in Figure 5.1.

	Figure 5.1: Illustration of ``a-kind-of'' relationship.

	[image: image10.png]

In this and the following figures, classes are drawn using rectangles. Their name always starts with an uppercase letter. The arrowed line indicates the direction of the relation, hence, it is to be read as ``Circle is a-kind-of Point.''

Is-A relationship

The previous relationship is used at the class level to describe relationships between two similar classes. If we create objects of two such classes we refer to their relationship as an ``is-a'' relationship.

Since the class Circle is a kind of class Point, an instance of Circle, say acircle, is a point

. Consequently, each circle behaves like a point. For example, you can move points in x direction by altering the value of x. Similarly, you move circles in this direction by altering their x value.

Figure 5.2 illustrates this relationship. In this and the following figures, objects are drawn using rectangles with round corners. Their name only consists of lowercase letters.

	Figure 5.2: Illustration of ``is-a'' relationship.

	[image: image12.png]

Part-Of relationship

You sometimes need to be able to build objects by combining them out of others. You already know this from procedural programming, where you have the structure or record construct to put data of various types together.

Let's come back to our drawing program. You already have created several classes for the available figures. Now you decide that you want to have a special figure which represents your own logo which consists of a circle and a triangle. (Let's assume, that you already have defined a class Triangle.) Thus, your logo consists of two parts or the circle and triangle are part-of your logo:

 class Logo {

 attributes:

 Circle circle

 Triangle triangle

 methods:

 set(Point where)

 }

We illustrate this in Figure 5.3.

	Figure 5.3: Illustration of ``part-of'' relationship.

	[image: image13.png]

Has-A relationship

This relationship is just the inverse version of the part-of relationship. Therefore we can easily add this relationship to the part-of illustration by adding arrows in the other direction (Figure 5.4).

	Figure 5.4: Illustration of ``has-a'' relationship.

	[image: image14.png]

5.2 Inheritance

With inheritance we are able to make use of the a-kind-of and is-a relationship. As described there, classes which are a-kind-of another class share properties of the latter. In our point and circle example, we can define a circle which inherits from point:

 class Circle inherits from Point {

 attributes:

 int radius

 methods:

 setRadius(int newRadius)

 getRadius()

 }

Class Circle inherits all data elements and methods from point. There is no need to define them twice: We just use already existing and well-known data and method definitions.

On the object level we are now able to use a circle just as we would use a point, because a circle is-a point. For example, we can define a circle object and set its center point coordinates:

 Circle acircle

 acircle.setX(1) /* Inherited from Point */

 acircle.setY(2)

 acircle.setRadius(3) /* Added by Circle */

``Is-a'' also implies, that we can use a circle everywhere where a point is expected. For example, you can write a function or method, say move(), which should move a point in x direction:

 move(Point apoint, int deltax) {

 apoint.setX(apoint.getX() + deltax)

 }

As a circle inherits from a point, you can use this function with a circle argument to move its center point and, hence, the whole circle:

 Circle acircle

 ...

 move(acircle, 10) /* Move circle by moving */

 /* its center point */

Let's try to formalize the term ``inheritance'':

Definition (Inheritance) Inheritance is the mechanism which allows a class A to inherit properties of a class B. We say ``A inherits from B''. Objects of class A thus have access to attributes and methods of class B without the need to redefine them. The following definition defines two terms with which we are able to refer to participating classes when they use inheritance.

Definition (Superclass/Subclass) If class A inherits from class B, then B is called superclass of A. A is called subclass of B. Objects of a subclass can be used where objects of the corresponding superclass are expected. This is due to the fact that objects of the subclass share the same behaviour as objects of the superclass.

In the literature you may also find other terms for ``superclass'' and ``subclass''. Superclasses are also called parent classes. Subclasses may also be called child classes or just derived classes.

Of course, you can again inherit from a subclass, making this class the superclass of the new subclass. This leads to a hierarchy of superclass/subclass relationships. If you draw this hierarchy you get an inheritance graph.

A common drawing scheme is to use arrowed lines to indicate the inheritance relationship between two classes or objects. In our examples we have used ``inherits-from''. Consequently, the arrowed line starts from the subclass towards the superclass as illustrated in Figure 5.5.

	Figure 5.5: A simple inheritance graph.

	[image: image15.png]

In the literature you also find illustrations where the arrowed lines are used just the other way around. The direction in which the arrowed line is used, depends on how the corresponding author has decided to understand it.

Anyway, within this tutorial, the arrowed line is always directed towards the superclass.

In the following sections an unmarked arrowed line indicates ``inherit-from''.

5.3 Multiple Inheritance

One important object-oriented mechanism is multiple inheritance. Multiple inheritance does not mean that multiple subclasses share the same superclass. It also does not mean that a subclass can inherit from a class which itself is a subclass of another class.

Multiple inheritance means that one subclass can have more than one superclass. This enables the subclass to inherit properties of more than one superclass and to ``merge'' their properties.

As an example consider again our drawing program. Suppose we already have a class String which allows convenient handling of text. For example, it might have a method to append other text. In our program we would like to use this class to add text to the possible drawing objects. It would be nice to also use already existing routines such as move() to move the text around. Consequently, it makes sense to let a drawable text have a point which defines its location within the drawing area. Therefore we derive a new class DrawableString which inherits properties from Point and String as illustrated in Figure 5.6.

	Figure 5.6: Derive a drawable string which inherits properties of Point and String.

	[image: image16.png]

In our pseudo language we write this by simply separating the multiple superclasses by comma:

 class DrawableString inherits from Point, String {

 attributes:

 /* All inherited from superclasses */

 methods:

 /* All inherited from superclasses */

 }

We can use objects of class DrawableString like both points and strings. Because a drawablestring is-a point we can move them around

 DrawableString dstring

 ...

 move(dstring, 10)

 ...

Since it is a string, we can append other text to them:

 dstring.append("The red brown fox ...")

Now it's time for the definition of multiple inheritance:

Definition (Multiple Inheritance) If class A inherits from more than one class, ie. A inherits from B1, B2, ..., Bn, we speak of multiple inheritance. This may introduce naming conflicts in A if at least two of its superclasses define properties with the same name.
The above definition introduce naming conflicts which occur if more than one superclass of a subclass use the same name for either attributes or methods. For an example, let's assume, that class String defines a method setX() which sets the string to a sequence of ``X'' characters

. The question arises, what should be inherited by DrawableString? The Point, String version or none of them?

These conflicts can be solved in at least two ways:

· The order in which the superclasses are provided define which property will be accessible by the conflict causing name. Others will be ``hidden''.

· The subclass must resolve the conflict by providing a property with the name and by defining how to use the ones from its superclasses.

The first solution is not very convenient as it introduces implicit consequences depending on the order in which classes inherit from each other. For the second case, subclasses must explicitly redefine properties which are involved in a naming conflict.

A special type of naming conflict is introduced if a class D multiply inherits from superclasses B and C which themselves are derived from one superclass A. This leads to an inheritance graph as shown in Figure 5.7.

	Figure 5.7: A name conflict introduced by a shared superclass of superclasses used with multiple inheritance.

	[image: image18.png]

The question arises what properties class D actually inherits from its superclasses B and C. Some existing programming languages solve this special inheritance graph by deriving D with

· the properties of A plus

· the properties of B and C without the properties they have inherited from A.

Consequently, D cannot introduce naming conflicts with names of class A. However, if B and C add properties with the same name, D runs into a naming conflict.

Another possible solution is, that D inherits from both inheritance paths. In this solution, D owns two copies of the properties of A: one is inherited by B and one by C.

Although multiple inheritance is a powerful object-oriented mechanism the problems introduced with naming conflicts have lead several authors to ``doom'' it. As the result of multiple inheritance can always be achieved by using (simple) inheritance some object-oriented languages even don't allow its use. However, carefully used, under some conditions multiple inheritance provides an efficient and elegant way of formulating things.

5.4 Abstract Classes

With inheritance we are able to force a subclass to offer the same properties like their superclasses. Consequently, objects of a subclass behave like objects of their superclasses.

Sometimes it make sense to only describe the properties of a set of objects without knowing the actual behaviour beforehand. In our drawing program example, each object should provide a method to draw itself on the drawing area. However, the necessary steps to draw an objects depends on its represented shape. For example, the drawing routine of a circle is different from the drawing routine of a rectangle.

Let's call the drawing method print(). To force every drawable object to include such method, we define a class DrawableObject from which every other class in our example inherits general properties of drawable objects:

 abstract class DrawableObject {

 attributes:

 methods:

 print()

 }

We introduce the new keyword abstract here. It is used to express the fact that derived classes must ``redefine'' the properties to fulfill the desired functionality. Thus from the abstract class' point of view, the properties are only specified but not fully defined. The full definition including the semantics of the properties must be provided by derived classes.

Now, every class in our drawing program example inherits properties from the general drawable object class. Therefore, class Point changes to:

 class Point inherits from DrawableObject {

 attributes:

 int x, y

 methods:

 setX(int newX)

 getX()

 setY(int newY)

 getY()

 print() /* Redefine for Point */

 }

We are now able to force every drawable object to have a method called print which should provide functionality to draw the object within the drawing area. The superclass of all drawable objects, class DrawableObject, does not provide any functionality for drawing itself. It is not intended to create objects from it. This class rather specifies properties which must be defined by every derived class. We refer to this special type of classes as abstract classes:

Definition (Abstract Class) A class A is called abstract class if it is only used as a superclass for other classes. Class A only specifies properties. It is not used to create objects. Derived classes must define the properties of A.
Abstract classes allow us to structure our inheritance graph. However, we actually don't want to create objects from them: we only want to express common characteristics of a set of classes.

 HYPERLINK "http://www.desy.de/gna/html/cc/Tutorial/tutorial.html"
[image: image20.png]

 HYPERLINK "http://www.desy.de/gna/html/cc/Tutorial/node8.html"
[image: image21.png]

Next: 9 More on C++ Up: Introduction to Object-Oriented Programming Previous: 7 Introduction to C++

Subsections

· 8.1 Basic Extensions

· 8.1.1 Data Types

· 8.1.2 Functions

· 8.2 First Object-oriented Extensions

· 8.2.1 Classes and Objects

· 8.2.2 Constructors

· 8.2.3 Destructors

8 From C To C++

Peter Müller
Globewide Network Academy (GNA)
pmueller@uu-gna.mit.edu
This section presents extensions to the C language which were introduced by C++ [6]. It also deals with object-oriented concepts and their realization.

8.1 Basic Extensions

 The following sections present extensions to already introduced concepts of C. Section 8.2 presents object-oriented extensions.

C++ adds a new comment which is introduced by two slashes (//) and which lasts until the end of line. You can use both comment styles, for example to comment out large blocks of code:

 /* C comment can include // and can span over

 several lines. */

 // /* This is the C++ style comment */ until end of line

In C you must define variables at the beginning of a block. C++ allows you to define variables and objects at any position in a block. Thus, variables and objects should be defined where they are used.

8.1.1 Data Types

C++ introduces a new data type called reference. You can think of them as if they were ``aliases'' to ``real'' variables or objects. As an alias cannot exist without its corresponding real part, you cannot define single references. The ampersand (&) is used to define a reference. For example:

 int ix; /* ix is "real" variable */

 int &rx = ix; /* rx is "alias" for ix */

 ix = 1; /* also rx == 1 */

 rx = 2; /* also ix == 2 */

References can be used as function arguments and return values. This allows to pass parameters as reference or to return a ``handle'' to a calculated variable or object.

The table 8.1 is adopted from [1] and provides you with an overview of possible declarations. It is not complete in that it shows not every possible combination and some of them have not been introduced here, because we are not going to use them. However, these are the ones which you will probably use very often.

	Table 8.1: Declaration expressions.

	
[image: image22.png]

In C and C++ you can use the modifier const to declare particular aspects of a variable (or object) to be constant. The next table 8.2 lists possible combinations and describe their meaning. Subsequently, some examples are presented which demonstrate the use of const.

	Table 8.2: Constant declaration expresssions.

	
[image: image23.png]

Now let's investigate some examples of contant variables and how to use them. Consider the following declarations (again from [1]):

 int i; // just an ordinary integer

 int *ip; // uninitialized pointer to

 // integer

 int * const cp = &i; // constant pointer to integer

 const int ci = 7; // constant integer

 const int *cip; // pointer to constant integer

 const int * const cicp = &ci; // constant pointer to constant

 // integer

The following assignments are valid:

 i = ci; // assign constant integer to integer

 *cp = ci; // assign constant integer to variable

 // which is referenced by constant pointer

 cip = &ci; // change pointer to constant integer

 cip = cicp; // set pointer to constant integer to

 // reference variable of constant pointer to

 // constant integer

The following assignments are invalid:

 ci = 8; // cannot change constant integer value

 *cip = 7; // cannot change constant integer referenced

 // by pointer

 cp = &ci; // cannot change value of constant pointer

 ip = cip; // this would allow to change value of

 // constant integer *cip with *ip

When used with references some peculiarities must be considered. See the following example program:

 #include <stdio.h>

 int main() {

 const int ci = 1;

 const int &cr = ci;

 int &r = ci; // create temporary integer for reference

 // cr = 7; // cannot assign value to constant reference

 r = 3; // change value of temporary integer

 print("ci == %d, r == %d\n", ci, r);

 return 0;

 }

When compiled with GNU g++, the compiler issues the following warning:

conversion from `const int' to `int &' discards const

What actually happens is, that the compiler automatically creates a temporay integer variable with value of ci to which reference r is initialized. Consequently, when changing r the value of the temporary integer is changed. This temporary variable lives as long as reference r.

Reference cr is defined as read-only (constant reference). This disables its use on the left side of assignments. You may want to remove the comment in front of the particular line to check out the resulting error message of your compiler.

8.1.2 Functions

C++ allows function overloading as defined in section 6.3. For example, we can define two different functions max(), one which returns the maximum of two integers and one which returns the maximum of two strings:

 #include <stdio.h>

 int max(int a, int b) {

 if (a > b) return a;

 return b;

 }

 char *max(char *a, char * b) {

 if (strcmp(a, b) > 0) return a;

 return b;

 }

 int main() {

 printf("max(19, 69) = %d\n", max(19, 69));

 printf("max(abc, def) = %s\n", max("abc", "def"));

 return 0;

 }

The above example program defines these two functions which differ in their parameter list, hence, they define two different functions. The first printf() call in function main() issues a call to the first version of max(), because it takes two integers as its argument. Similarly, the second printf() call leads to a call of the second version of max().

References can be used to provide a function with an alias of an actual function call argument. This enables to change the value of the function call argument as it is known from other languages with call-by-reference parameters:

 void foo(int byValue, int &byReference) {

 byValue = 42;

 byReference = 42;

 }

 void bar() {

 int ix, jx;

 ix = jx = 1;

 foo(ix, jx);

 /* ix == 1, jx == 42 */

 }

8.2 First Object-oriented Extensions

 In this section we present how the object-oriented concepts of section 4 are used in C++.

8.2.1 Classes and Objects

C++ allows the declaration and definition of classes. Instances of classes are called objects. Recall the drawing program example of section 5 again. There we have developed a class Point. In C++ this would look like this:

 class Point {

 int _x, _y; // point coordinates

 public: // begin interface section

 void setX(const int val);

 void setY(const int val);

 int getX() { return _x; }

 int getY() { return _y; }

 };

 Point apoint;

This declares a class Point and defines an object apoint. You can think of a class definition as a structure definition with functions (or ``methods''). Additionally, you can specify the access rights in more detail. For example, _x and _y are private, because elements of classes are private as default. Consequently, we explicitly must ``switch'' the access rights to declare the following to be public. We do that by using the keyword public followed by a colon: Every element following this keyword are now accessible from outside of the class.

We can switch back to private access rights by starting a private section with private:. This is possible as often as needed:

 class Foo {

 // private as default ...

 public:

 // what follows is public until ...

 private:

 // ... here, where we switch back to private ...

 public:

 // ... and back to public.

 };

Recall that a structure struct is a combination of various data elements which are accessible from the outside. We are now able to express a structure with help of a class, where all elements are declared to be public:

 class Struct {

 public: // Structure elements are public by default

 // elements, methods

 };

This is exactly what C++ does with struct. Structures are handled like classes. Whereas elements of classes (defined with class) are private by default, elements of structures (defined with struct) are public. However, we can also use private: to switch to a private section in structures.

Let's come back to our class Point. Its interface starts with the public section where we define four methods. Two for each coordinate to set and get its value. The set methods are only declared. Their actual functionality is still to be defined. The get methods have a function body: They are defined within the class or, in other words, they are inlined methods.

This type of method definition is useful for small and simple bodies. It also improve performance, because bodies of inlined methods are ``copied'' into the code wherever a call to such a method takes place.

On the contrary, calls to the set methods would result in a ``real'' function call. We define these methods outside of the class declaration. This makes it necessary, to indicate to which class a method definition belongs to. For example, another class might just define a method setX() which is quite different from that of Point. We must be able to define the scope of the definition; we therefore use the scope operator ``::'':

 void Point::setX(const int val) {

 _x = val;

 }

 void Point::setY(const int val) {

 _y = val;

 }

Here we define method setX() (setY()) within the scope of class Point. The object apoint can use these methods to set and get information about itself:

 Point apoint;

 apoint.setX(1); // Initialization

 apoint.setY(1);

 //

 // x is needed from here, hence, we define it here and

 // initialize it to the x-coordinate of apoint

 //

 int x = apoint.getX();

The question arises about how the methods ``know'' from which object they are invoked. This is done by implicitly passing a pointer to the invoking object to the method. We can access this pointer within the methods as this. The definitions of methods setX() and setY() make use of class members _x and _y, respectively. If invoked by an object, these members are ``automatically'' mapped to the correct object. We could use this to illustrate what actually happens:

 void Point::setX(const int val) {

 this->_x = val; // Use this to reference invoking

 // object

 }

 void Point::setY(const int val) {

 this->_y = val;

 }

Here we explicitly use the pointer this to explicitly dereference the invoking object. Fortunately, the compiler automatically ``inserts'' these dereferences for class members, hence, we really can use the first definitions of setX() and setY(). However, it sometimes make sense to know that there is a pointer this available which indicates the invoking object.

Currently, we need to call the set methods to initialize a point object

. However, we would like to initialize the point when we define it. We therefore use special methods called constructors.

8.2.2 Constructors

 Constructors are methods which are used to initialize an object at its definition time. We extend our class Point such that it initializes a point to coordinates (0, 0):

 class Point {

 int _x, _y;

 public:

 Point() {

 _x = _y = 0;

 }

 void setX(const int val);

 void setY(const int val);

 int getX() { return _x; }

 int getY() { return _y; }

 };

Constructors have the same name of the class (thus they are identified to be constructors). They have no return value. As other methods, they can take arguments. For example, we may want to initialize a point to other coordinates than (0, 0). We therefore define a second constructor taking two integer arguments within the class:

 class Point {

 int _x, _y;

 public:

 Point() {

 _x = _y = 0;

 }

 Point(const int x, const int y) {

 _x = x;

 _y = y;

 }

 void setX(const int val);

 void setY(const int val);

 int getX() { return _x; }

 int getY() { return _y; }

 };

Constructors are implicitly called when we define objects of their classes:

 Point apoint; // Point::Point()

 Point bpoint(12, 34); // Point::Point(const int, const int)

With constructors we are able to initialize our objects at definition time as we have requested it in section 2 for our singly linked list. We are now able to define a class List where the constructors take care of correctly initializing its objects.

If we want to create a point from another point, hence, copying the properties of one object to a newly created one, we sometimes have to take care of the copy process. For example, consider the class List which allocates dynamically memory for its elements. If we want to create a second list which is a copy of the first, we must allocate memory and copy the individual elements. In our class Point we therefore add a third constructor which takes care of correctly copying values from one object to the newly created one:

 class Point {

 int _x, _y;

 public:

 Point() {

 _x = _y = 0;

 }

 Point(const int x, const int y) {

 _x = x;

 _y = y;

 }

 Point(const Point &from) {

 _x = from._x;

 _y = from._y;

 }

 void setX(const int val);

 void setY(const int val);

 int getX() { return _x; }

 int getY() { return _y; }

 };

The third constructor takes a constant reference to an object of class Point as an argument and assigns _x and _y the corresponding values of the provided object.

This type of constructor is so important that it has its own name: copy constructor. It is highly recommended that you provide for each of your classes such a constructor, even if it is as simple as in our example. The copy constructor is called in the following cases:

 Point apoint; // Point::Point()

 Point bpoint(apoint); // Point::Point(const Point &)

 Point cpoint = apoint; // Point::Point(const Point &)

With help of constructors we have fulfilled one of our requirements of implementation of abstract data types: Initialization at definition time. We still need a mechanism which automatically ``destroys'' an object when it gets invalid (for example, because of leaving its scope). Therefore, classes can define destructors.

8.2.3 Destructors

 Consider a class List. Elements of the list are dynamically appended and removed. The constructor helps us in creating an initial empty list. However, when we leave the scope of the definition of a list object, we must ensure that the allocated memory is released. We therefore define a special method called destructor which is called once for each object at its destruction time:

 void foo() {

 List alist; // List::List() initializes to

 // empty list.

 ... // add/remove elements

 } // Destructor call!

Destruction of objects take place when the object leaves its scope of definition or is explicitly destroyed. The latter happens, when we dynamically allocate an object and release it when it is no longer needed.

Destructors are declared similar to constructors. Thus, they also use the name prefixed by a tilde (~) of the defining class:

 class Point {

 int _x, _y;

 public:

 Point() {

 _x = _y = 0;

 }

 Point(const int x, const int y) {

 _x = xval;

 _y = yval;

 }

 Point(const Point &from) {

 _x = from._x;

 _y = from._y;

 }

 ~Point() { /* Nothing to do! */ }

 void setX(const int val);

 void setY(const int val);

 int getX() { return _x; }

 int getY() { return _y; }

 };

Destructors take no arguments. It is even invalid to define one, because destructors are implicitly called at destruction time: You have no chance to specify actual arguments.

5.5 Exercises

1.

Inheritance. Consider the drawing program example again.

(a)

Define class Rectangle by inheriting from class Point. The point should indicate the upper left corner of the rectangle. What are your class attributes? What additional methods do you introduce?

(b)

All current examples are based on a two-dimensional view. You now want to introduce 3D objects such as spheres, cubes or cuboids. Design a class Sphere by using a class 3D-Point. Specify the role of the point in a sphere. What relationship do you use between class Point and 3D-Point?

(c)

What functionality does move() provide for 3D objects? Be as precise as you can.

(d)

Draw the inheritance graph including the following classes DrawableObject, Point, Circle, Rectangle, 3D-Point and Sphere.

(e)

Have a look at the inheritance graph of Figure 5.8.

	Figure 5.8: Alternative inheritance graph for class Sphere.

	[image: image25.png]

A corresponding definition might look like this:

 class Sphere inherits from Circle {

 attributes:

 int z /* Add third dimension */

 methods:

 setZ(int newZ)

 getZ()

 }

Give reasons for advantages/disadvantages of this alternative.

2.

Multiple inheritance. Compare the inheritance graph shown in Figure 5.9 with that of Figure 5.7. Here, we illustrate that B and C have each their own copy of A.

	Figure 5.9: Illustration of the second multiple inheritance semantics.

	[image: image26.png]

What naming conflicts can occur? Try to define cases by playing with simple example classes.

9.1 Inheritance

 In our pseudo language, we formulate inheritance with ``inherits from''. In C++ these words are replaced by a colon. As an example let's design a class for 3D points. Of course we want to reuse our already existing class Point. We start designing our class as follows:

 class Point3D : public Point {

 int _z;

 public:

 Point3D() {

 setX(0);

 setY(0);

 _z = 0;

 }

 Point3D(const int x, const int y, const int z) {

 setX(x);

 setY(y);

 _z = z;

 }

 ~Point3D() { /* Nothing to do */ }

 int getZ() { return _z; }

 void setZ(const int val) { _z = val; }

 };

9.1.1 Types of Inheritance

 You might notice again the keyword public used in the first line of the class definition (its signature). This is necessary because C++ distinguishes two types of inheritance: public and private. As a default, classes are privately derived from each other. Consequently, we must explicitly tell the compiler to use public inheritance.

The type of inheritance influences the access rights to elements of the various superclasses. Using public inheritance, everything which is declared private in a superclass remains private in the subclass. Similarly, everything which is public remains public. When using private inheritance the things are quite different as is shown in table 9.1.

	Table 9.1: Access rights and inheritance.

	
[image: image27.png]

The leftmost column lists possible access rights for elements of classes. It also includes a third type protected. This type is used for elements which should be directly usable in subclasses but which should not be accessible from the outside. Thus, one could say elements of this type are between private and public elements in that they can be used within the class hierarchy rooted by the corresponding class.

The second and third column show the resulting access right of the elements of a superclass when the subclass is privately and publically derived, respectively.

9.1.2 Construction

 When we create an instance of class Point3D its constructor is called. Since Point3D is derived from Point the constructor of class Point is also called. However, this constructor is called before the body of the constructor of class Point3D is executed. In general, prior to the execution of the particular constructor body, constructors of every superclass are called to initialize their part of the created object.

When we create an object with

 Point3D point(1, 2, 3);

the second constructor of Point3D is invoked. Prior to the execution of the constructor body, the constructor Point() is invoked, to initialize the point part of object point. Fortunately, we have defined a constructor which takes no arguments. This constructor initializes the 2D coordinates _x and _y to 0 (zero). As Point3D is only derived from Point there are no other constructor calls and the body of Point3D(const int, const int, const int) is executed. Here we invoke methods setX() and setY() to explicitly override the 2D coordinates. Subsequently, the value of the third coordinate _z is set.

This is very unsatisfactory as we have defined a constructor Point() which takes two arguments to initialize its coordinates to them. Thus we must only be able to tell, that instead of using the default constructor Point() the paramterized Point(const int, const int) should be used. We can do that by specifying the desired constructors after a single colon just before the body of constructor Point3D():

 class Point3D : public Point {

 ...

 public:

 Point3D() { ... }

 Point3D(

 const int x,

 const int y,

 const int z) : Point(x, y) {

 _z = z;

 }

 ...

 };

If we would have more superclasses we simply provide their constructor calls as a comma separated list. We also use this mechanism to create contained objects. For example, suppose that class Part only defines a constructor with one argument. Then to correctly create an object of class Compound we must invoke Part() with its argument:

 class Compound {

 Part part;

 ...

 public:

 Compound(const int partParameter) : part(partParameter) {

 ...

 }

 ...

 };

This dynamic initialization can also be used with built-in data types. For example, the constructors of class Point could be written as:

 Point() : _x(0), _y(0) {}

 Point(const int x, const int y) : _x(x), _y(y) {}

You should use this initialization method as often as possible, because it allows the compiler to create variables and objects correctly initialized instead of creating them with a default value and to use an additional assignment (or other mechanism) to set its value.

9.1.3 Destruction

 If an object is destroyed, for example by leaving its definition scope, the destructor of the corresponding class is invoked. If this class is derived from other classes their destructors are also called, leading to a recursive call chain.

9.1.4 Multiple Inheritance

 C++ allows a class to be derived from more than one superclass, as was already briefly mentioned in previous sections. You can easily derive from more than one class by specifying the superclasses in a comma separated list:

 class DrawableString : public Point, public DrawableObject {

 ...

 public:

 DrawableString(...) :

 Point(...),

 DrawableObject(...) {

 ...

 }

 ~DrawableString() { ... }

 ...

 };

We will not use this type of inheritance in the remainder of this tutorial. Therefore we will not go into further detail here.

9.2 Polymorphism

 In our pseudo language we are able to declare methods of classes to be virtual, to force their evaluation to be based on object content rather than object type. We can also use this in C++:

 class DrawableObject {

 public:

 virtual void print();

 };

Class DrawableObject defines a method print() which is virtual. We can derive from this class other classes:

 class Point : public DrawableObject {

 ...

 public:

 ...

 void print() { ... }

 };

Again, print() is a virtual method, because it inherits this property from DrawableObject. The function display() which is able to display any kind of drawable object, can then be defined as:

 void display(const DrawableObject &obj) {

 // prepare anything necessary

 obj.print();

 }

When using virtual methods some compilers complain if the corresponding class destructor is not declared virtual as well. This is necessary when using pointers to (virtual) subclasses when it is time to destroy them. As the pointer is declared as superclass normally its destructor would be called. If the destructor is virtual, the destructor of the actual referenced object is called (and then, recursively, all destructors of its superclasses). Here is an example adopted from [1]:

 class Colour {

 public:

 virtual ~Colour();

 };

 class Red : public Colour {

 public:

 ~Red(); // Virtuality inherited from Colour

 };

 class LightRed : public Red {

 public:

 ~LightRed();

 };

Using these classes, we can define a palette as follows:

 Colour *palette[3];

 palette[0] = new Red; // Dynamically create a new Red object

 palette[1] = new LightRed;

 palette[2] = new Colour;

The newly introduced operator new creates a new object of the specified type in dynamic memory and returns a pointer to it. Thus, the first new returns a pointer to an allocated object of class Red and assigns it to the first element of array palette. The elements of palette are pointers to Colour and, because Red is-a Colour the assignment is valid.

The contrary operator to new is delete which explicitly destroys an object referenced by the provided pointer. If we apply delete to the elements of palette the following destructor calls happen:

 delete palette[0];

 // Call destructor ~Red() followed by ~Colour()

 delete palette[1];

 // Call ~LightRed(), ~Red() and ~Colour()

 delete palette[2];

 // Call ~Colour()

The various destructor calls only happen, because of the use of virtual destructors. If we would have not declared them virtual, each delete would have only called ~ Colour() (because palette[i] is of type pointer to Colour).

9.3 Abstract Classes

 Abstract classes are defined just as ordinary classes. However, some of their methods are designated to be necessarily defined by subclasses. We just mention their signature including their return type, name and parameters but not a definition. One could say, we omit the method body or, in other words, specify ``nothing''. This is expressed by appending ``= 0'' after the method signatures:

 class DrawableObject {

 ...

 public:

 ...

 virtual void print() = 0;

 };

This class definition would force every derived class from which objects should be created to define a method print(). These method declarations are also called pure methods.

Pure methods must also be declared virtual, because we only want to use objects from derived classes. Classes which define pure methods are called abstract classes.

9.4 Operator Overloading

 If we recall the abstract data type for complex numbers, Complex, we could create a C++ class as follows:

 class Complex {

 double _real,

 _imag;

 public:

 Complex() : _real(0.0), _imag(0.0) {}

 Complex(const double real, const double imag) :

 _real(real), _imag(imag) {}

 Complex add(const Complex op);

 Complex mul(const Complex op);

 ...

 };

We would then be able to use complex numbers and to ``calculate'' with them:

 Complex a(1.0, 2.0), b(3.5, 1.2), c;

 c = a.add(b);

Here we assign c the sum of a and b. Although absolutely correct, it does not provide a convenient way of expression. What we would rather like to use is the well-known ``+'' to express addition of two complex numbers. Fortunately, C++ allows us to overload almost all of its operators for newly created types. For example, we could define a ``+'' operator for our class Complex:

 class Complex {

 ...

 public:

 ...

 Complex operator +(const Complex &op) {

 double real = _real + op._real,

 imag = _imag + op._imag;

 return(Complex(real, imag));

 }

 ...

 };

In this case, we have made operator + a member of class Complex. An expression of the form

 c = a + b;

is translated into a method call

 c = a.operator +(b);

Thus, the binary operator + only needs one argument. The first argument is implicitly provided by the invoking object (in this case a).

However, an operator call can also be interpreted as a usual function call, as in

 c = operator +(a, b);

In this case, the overloaded operator is not a member of a class. It is rather defined outside as a normal overloaded function. For example, we could define operator + in this way:

 class Complex {

 ...

 public:

 ...

 double real() { return _real; }

 double imag() { return _imag; }

 // No need to define operator here!

 };

 Complex operator +(Complex &op1, Complex &op2) {

 double real = op1.real() + op2.real(),

 imag = op1.imag() + op2.imag();

 return(Complex(real, imag));

 }

In this case we must define access methods for the real and imaginary parts because the operator is defined outside of the class's scope. However, the operator is so closely related to the class, that it would make sense to allow the operator to access the private members. This can be done by declaring it to be a friend of class Complex.

9.5 Friends

We can define functions or classes to be friends of a class to allow them direct access to its private data members. For example, in the previous section we would like to have the function for operator + to have access to the private data members _real and _imag of class Complex. Therefore we declare operator + to be a friend of class Complex:

 class Complex {

 ...

 public:

 ...

 friend Complex operator +(

 const Complex &,

 const Complex &

);

 };

 Complex operator +(const Complex &op1, const Complex &op2) {

 double real = op1._real + op2._real,

 imag = op1._imag + op2._imag;

 return(Complex(real, imag));

 }

You should not use friends very often because they break the data hiding principle in its fundamentals. If you have to use friends very often it is always a sign that it is time to restructure your inheritance graph.

9.6 How to Write a Program

 Until now, we have only presented parts of or very small programs which could easily be handled in one file. However, greater projects, say, a calendar program, should be split into manageable pieces, often called modules. Modules are implemented in separate files and we will now briefly discuss how modularization is done in C and C++. This discussion is based on UNIX and the GNU C++ compiler. If you are using other constellations the following might vary on your side. This is especially important for those who are using integrated development environments (IDEs), for example, Borland C++.

Roughly speaking, modules consist of two file types: interface descriptions and implementation files. To distinguish these types, a set of suffixes are used when compiling C and C++ programs. Table 9.2 shows some of them.

	Table 9.2: Extensions and file types.

	
[image: image28.png]

In this tutorial we will use .h for header files, .cc for C++ files and .tpl for template definition files. Even if we are writing ``only'' C code, it makes sense to use .cc to force the compiler to treat it as C++. This simplifies combination of both, since the internal mechanism of how the compiler arrange names in the program differs between both languages

.

9.6.1 Compilation Steps

 The compilation process takes .cc files, preprocess them (removing comments, add header files)

 and translates them into object files

. Typical suffixes for that file type are .o or .obj.

After successful compilation the set of object files is processed by a linker. This program combine the files, add necessary libraries

 and creates an executable. Under UNIX this file is called a.out if not other specified. These steps are illustrated in Figure 9.1.

	Figure 9.1: Compilation steps.

	[image: image33.png]

With modern compilers both steps can be combined. For example, our small example programs can be compiled and linked with the GNU C++ compiler as follows (``example.cc'' is just an example name, of course):

 gcc example.cc

9.6.2 A Note about Style

 Header files are used to describe the interface of implementation files. Consequently, they are included in each implementation file which uses the interface of the particular implementation file. As mentioned in previous sections this inclusion is achieved by a copy of the content of the header file at each preprocessor #include statement, leading to a ``huge'' raw C++ file.

To avoid the inclusion of multiple copies caused by mutual dependencies we use conditional coding. The preprocessor also defines conditional statements to check for various aspects of its processing. For example, we can check if a macro is already defined:

 #ifndef MACRO

 #define MACRO /* define MACRO */

 ...

 #endif

The lines between #ifndef and #endif are only included, if MACRO is not already defined. We can use this mechanism to prevent multiple copies:

 /*

 ** Example for a header file which `checks' if it is

 ** already included. Assume, the name of the header file

 ** is `myheader.h'

 */

 #ifndef __MYHEADER_H

 #define __MYHEADER_H

 /*

 ** Interface declarations go here

 */

 #endif /* __MYHEADER_H */

__MYHEADER_H is a unique name for each header file. You might want to follow the convention of using the name of the file prefixed with two underbars. The first time the file is included, __MYHEADER_H is not defined, thus every line is included and processed. The first line just defines a macro called __MYHEADER_H. If accidentally the file should be included a second time (while processing the same input file), __MYHEADER_H is defined, thus everything leading up to the #endif is skipped.

6 Even More Object-Oriented Concepts

Peter Müller
Globewide Network Academy (GNA)
pmueller@uu-gna.mit.edu
We continue with our tour through the world of object-oriented concepts by presenting a short introduction to static versus dynamic binding. With this, we can introduce polymorphism as a mechanism which let objects figure out what to do at runtime. But first, here is a brief overview about generic types.

6.1 Generic Types

We already know generic types from chapter 3 when we have talked about generic abstract data types. When defining a class, we actually define a user defined type. Some of these types can operate on other types. For example, there could be lists of apples, list of cars, lists of complex numbers of even lists of lists.

At the time, when we write down a class definition, we must be able to say that this class should define a generic type. However, we don't know with which types the class will be used. Consequently, we must be able to define the class with help of a ``placeholder'' to which we refer as if it is the type on which the class operates. Thus, the class definition provides us with a template of an actual class. The actual class definition is created once we declare a particular object. Let's illustrate this with the following example. Suppose, you want to define a list class which should be a generic type. Thus, it should be possible to declare list objects for apples, cars or any other type.

 template class List for T {

 attributes:

 ... /* Data structure needed to implement */

 /* the list */

 methods:

 append(T element)

 T getFirst()

 T getNext()

 bool more()

 }

The above template class List looks like any other class definition. However, the first line declares List to be a template for various types. The identifier T is used as a placeholder for an actual type. For example, append() takes one element as an argument. The type of this element will be the data type with which an actual list object is created. For example, we can declare a list object for apples if a definition fot the type Apple exists:

 List for Apple appleList

 Apple anApple,

 anotherApple

 appleList.append(anotherApple)

 appleList.append(anApple)

The first line declares appleList to be a list for apples. At this time, the compiler uses the template definition, substitutes every occurrence of T with Apple and creates an actual class definition for it. This leads to a class definition similar to the one that follows:

 class List {

 attributes:

 ... /* Data structure needed to implement */

 /* the list */

 methods:

 append(Apple element)

 Apple getFirst()

 Apple getNext()

 bool more()

 }

This is not exactly, what the compiler generates. The compiler must ensure that we can create multiple lists for different types at any time. For example, if we need another list for, say pears, we can write:

 List for Apple appleList

 List for Pear pearList

 ...

In both cases the compiler generates an actual class definition. The reason why both do not conflict by their name is that the compiler generates unique names. However, since this is not viewable to us, we don't go in more detail here. In any case, if you declare just another list of apples, the compiler can figure out if there already is an actual class definition and use it or if it has to be created. Thus,

 List for Apple aList

 List for Apple anotherList

will create the actual class definition for aList and will reuse it for anotherList. Consequently, both are of the same type. We summarize this in the following definition:

Definition (Template Class) If a class A is parameterized with a data type B, A is called template class. Once an object of A is created, B is replaced by an actual data type. This allows the definition of an actual class based on the template specified for A and the actual data type.
We are able to define template classes with more than one parameter. For example, directories are collections of objects where each object can be referenced by a key. Of course, a directory should be able to store any type of object. But there are also various possibilities for keys. For instance, they might be strings or numbers. Consequently, we would define a template class Directory which is based on two type parameters, one for the key and one for the stored objects.

6.2 Static and Dynamic Binding

In strongly typed programming languages you typically have to declare variables prior to their use. This also implies the variable's definition where the compiler reserves space for the variable. For example, in Pascal an expression like

 var i : integer;

declares variable i to be of type integer. Additionally, it defines enough memory space to hold an integer value.

With the declaration we bind the name i to the type integer. This binding is true within the scope in which i is declared. This enables the compiler to check at compilation time for type consistency. For example, the following assignment will result in a type mismatch error when you try to compile it:

 var i : integer;

 ...

 i := 'string';

We call this particular type of binding ``static'' because it is fixed at compile time.

Definition (Static Binding) If the type T of a variable is explicitly associated with its name N by declaration, we say, that N is statically bound to T. The association process is called static binding.
There exist programming languages which are not using explicitly typed variables. For example, some languages allow to introduce variables once they are needed:

 ... /* No appearance of i */

 i := 123 /* Creation of i as an integer */

The type of i is known as soon as its value is set. In this case, i is of type integer since we have assigned a whole number to it. Thus, because the content of i is a whole number, the type of i is integer.

Definition (Dynamic Binding) If the type T of a variable with name N is implicitly associated by its content, we say, that N is dynamically bound to T. The association process is called dynamic binding.
Both bindings differ in the time when the type is bound to the variable. Consider the following example which is only possible with dynamic binding:

 if somecondition() == TRUE then

 n := 123

 else

 n := 'abc'

 endif

The type of n after the if statement depends on the evaluation of somecondition(). If it is TRUE, n is of type integer whereas in the other case it is of type string.

6.3 Polymorphism

 Polymorphism allows an entity (for example, variable, function or object) to take a variety of representations. Therefore we have to distinguish different types of polymorphism which will be outlined here.

The first type is similar to the concept of dynamic binding. Here, the type of a variable depends on its content. Thus, its type depends on the content at a specific time:

 v := 123 /* v is integer */

 ... /* use v as integer */

 v := 'abc' /* v "switches" to string */

 ... /* use v as string */

Definition (Polymorphism (1)) The concept of dynamic binding allows a variable to take different types dependent on the content at a particular time. This ability of a variable is called polymorphism. Another type of polymorphism can be defined for functions. For example, suppose you want to define a function isNull() which returns TRUE if its argument is 0 (zero) and FALSE otherwise. For integer numbers this is easy:

 boolean isNull(int i) {

 if (i == 0) then

 return TRUE

 else

 return FALSE

 endif

 }

However, if we want to check this for real numbers, we should use another comparison due to the precision problem:

 boolean isNull(real r) {

 if (r < 0.01 and r > -0.99) then

 return TRUE

 else

 return FALSE

 endif

 }

In both cases we want the function to have the name isNull. In programming languages without polymorphism for functions we cannot declare these two functions because the name isNull would be doubly defined. Without polymorphism for functions, doubly defined names would be ambiguous. However, if the language would take the parameters of the function into account it would work. Thus, functions (or methods) are uniquely identified by:

· the name of the function (or method) and

· the types of its parameter list.

Since the parameter list of both isNull functions differ, the compiler is able to figure out the correct function call by using the actual types of the arguments:

 var i : integer

 var r : real

 i = 0

 r = 0.0

 ...

 if (isNull(i)) then ... /* Use isNull(int) */

 ...

 if (isNull(r)) then ... /* Use isNull(real) */

Definition (Polymorphism (2)) If a function (or method) is defined by the combination of

· its name and

· the list of types of its parameters

we speak of polymorphism. This type of polymorphism allows us to reuse the same name for functions (or methods) as long as the parameter list differs. Sometimes this type of polymorphism is called overloading.

The last type of polymorphism allows an object to choose correct methods. Consider the function move() again, which takes an object of class Point as its argument. We have used this function with any object of derived classes, because the is-a relation holds.

Now consider a function display() which should be used to display drawable objects. The declaration of this function might look like this:

 display(DrawableObject o) {

 ...

 o.print()

 ...

 }

We would like to use this function with objects of classes derived from DrawableObject:

 Circle acircle

 Point apoint

 Rectangle arectangle

 display(apoint) /* Should invoke apoint.print() */

 display(acircle) /* Should invoke acircle.print() */

 display(arectangle) /* Should invoke arectangle.print() */

The actual method should be defined by the content of the object o of function display(). Since this is somewhat complicated, here is a more abstract example:

 class Base {

 attributes:

 methods:

 virtual foo()

 bar()

 }

 class Derived inherits from Base {

 attributes:

 methods:

 virtual foo()

 bar()

 }

 demo(Base o) {

 o.foo()

 o.bar()

 }

 Base abase

 Derived aderived

 demo(abase)

 demo(aderived)

In this example we define two classes Base and Derived. Each class defines two methods foo() and bar(). The first method is defined as virtual. This means that if this method is invoked its definition should be evaluated by the content of the object.

We then define a function demo() which takes a Base object as its argument. Consequently, we can use this function with objects of class Derived as the is-a relation holds. We call this function with a Base object and a Derived object, respectively.

Suppose, that foo() and bar() are defined to just print out their name and the class in which they are defined. Then the output is as follows:

 foo() of Base called.

 bar() of Base called.

 foo() of Derived called.

 bar() of Base called.

Why is this so? Let's see what happens. The first call to demo() uses a Base object. Thus, the function's argument is ``filled'' with an object of class Base. When it is time to invoke method foo() it's actual functionality is chosen based on the current content of the corresponding object o. This time, it is a Base object. Consequently, foo() as defined in class Base is called.

The call to bar() is not subject to this content resolution. It is not marked as virtual. Consequently, bar() is called in the scope of class Base.

The second call to demo() takes a Derived object as its argument. Thus, the argument o is filled with a Derived object. However, o itself just represents the Base part of the provided object aderived.

Now, the call to foo() is evaluated by examining the content of o, hence, it is called within the scope of Derived. On the other hand, bar() is still evaluated within the scope of Base.

Definition (Polymorphism (3)) Objects of superclasses can be filled with objects of their subclasses. Operators and methods of subclasses can be defined to be evaluated in two contextes:

1.

Based on object type, leading to an evaluation within the scope of the superclass.

2.

Based on object content, leading to an evaluation within the scope of the contained subclass.

The second type is called polymorphism.

