INDEX

Abstract

1
1 Introduction

2
2 Overview of system blue gene/l supercomputer

3
2.1 Overall organization

2.2 Blue gene /L Communication Hardware
 2.3 Hardware Technologies for petascale computing
 2.4 Special purpose hardware

3 Blue gene system software

10
 3.1 For i/o nodes

3.2 Compute nodes

3.3 System management software

3.4 Compiler and run time support

3.5 Communication infrastructure

4 Blue gene/l simulation environment

21
5 Trends in supercomputer

23
6 Programming methodologies for petascale computing

24
6.1 New algorithms for petascale computing

7 Validating the architecture with application programs

29
8 Blue Gene science applications development

31
9 Conclusion

33

Blue Gene Technology
Abstract

Blue Gene is a massively parallel computer being developed at the IBM Thomas J. Watson Research Center. Blue Gene represents a hundred-fold improvement on performance compared with the fastest supercomputers of today. It will achieve 1 PetaFLOP/sec through unprecedented levels of parallelism in excess of 4,0000,000 threads of execution. The Blue Gene project has two important goals, in which understanding of biologically import processes will be advanced, as well as advancement of knowledge of cellular architectures (massively parallel system built of single chip cells that integrate processors, memory and communication), and of the software needed to exploit those effectively. This massively parallel system of 65,536 nodes is based on a new architecture that exploits system-on-a-chip technology to deliver target peak processing power of 360 teraFLOPS (trillion floating-point operations per second). The machine is scheduled to be operational in the 2004-2005 time frame, at price/performance and power consumption/performance targets unobtainable with conventional architectures.
Submitted by

Athira Gopal

Roll No:33

S7 CSE
Chapter 1: INTRODUCTION

In November 2001 IBM announced a partnership with Lawrence Livermore National Laboratory to build the Blue Gene/L (BG/L) supercomputer, a 65,536-node machine designed around embedded PowerPC processors. Through the use of system-on-a-chip integration coupled with a highly scalable cellular architecture, Blue Gene/L will deliver 180 or 360 Teraflops of peak computing power, depending on the utilization mode. Blue Gene/L represents a new level of scalability for parallel systems. Whereas existing large scale systems range in size from hundreds to a few of compute nodes, Blue Gene/L makes a jump of almost two orders of magnitude. Several techniques have been proposed for building such a powerful machine. Some of the designs call for extremely powerful (100 GFLOPS) processors based on superconducting technology. The class of designs that we focus on use current and foreseeable CMOS technology. It is reasonably clear that such machines, in the near future at least, will require a departure from the architectures of the current parallel supercomputers, which use few thousand commodity microprocessors. With the current technology, it would take around a million microprocessors to achieve a petaFLOPS performance. Clearly, power requirements and cost considerations alone preclude this option. The class of machines of interest to us use a “processorsin- memory” design: the basic building block is a single chip that includes multiple processors as well as memory and interconnection routing logic. On such machines, the ratio of memory-to-processors will be substantially lower than the prevalent one. As the technology is assumed to be the current generation one, the number of processors will still have to be close to a million, but the number of chips will be much lower. Using such a design, petaFLOPS performance will be reached within the next 2-3 years, especially since IBM hasannounced the Blue Gene project aimed at building such a machine. The system software for Blue Gene/L is a combination of standard and custom solutions. The software architecture for the machine is divided into three functional Entities arranged hierarchically: a computational core, a control infrastructure and a service infrastructure. The I/O nodes (part of the control infrastructure) execute a version of the Linux kernel and are the primary off-load engine for most system services. No user code directly executes on the I/O nodes.
Chapter 2:Overview of system blue gene/l supercomputer

Blue Gene/L is a new architecture for high performance parallel computers based on low cost embedded PowerPC technology.

2.1 Overall Organization

The basic building block of Blue Gene/L is a custom system-on-a-chip that integrates processors, memory and communications logic in the same piece of silicon. The BG/L chip contains two standard 32-bit embedded PowerPC 440 cores, each with private L1 32KB instruction and 32KB data caches. L2 caches acts as prefetch buffer for L3 cache.

Each core drives a custom 128-bit double FPU that can perform four double precision floating-point operations per cycle. This custom FPU consists of two conventional FPUs joined together, each having a 64-bit register file with 32 registers. One of the conventional FPUs (the primary side) is compatible with the standard PowerPC floatingpoint instruction set. In most scenarios, only one of the 440 cores is dedicated to run user applications while the second processor drives the networks. At a target speed of 700 MHz the peak performance of a node is 2.8 GFlop/s. When both cores and FPUs in a chip are used, the peak performance per node is 5.6 GFlop/s. To overcome these limitations BG/L provides a variety of synchronization devices in the chip: lockbox, shared SRAM, L3 scratchpad and the blind device. The lockbox unit contains a limited number of memory locations for fast atomic test-and sets and barriers. 16 KB of SRAM in the chip can be used to exchange data between the cores and regions of the EDRAM L3 cache can be reserved as an addressable scratchpad. The blind device permits explicit cache management.

 The low power characteristics of Blue Gene/L permit a very dense packaging as in research paper [1]. Two nodes share a node card that also contains SDRAM-DDR memory. Each node supports a maximum of 2 GB external memory but in the current configuration each node directly addresses 256MB at 5.5 GB/s bandwidth with a 75-cycle latency. Sixteen compute cards can be plugged in a node board. A cabinet with two mid planes contains 32 node boards for a total of 2048 CPUs and a peak performance of 2.9/5.7 TFlops. The complete system has 64 cabinets and 16 TB of memory.

 In addition to the 64K-compute nodes, BG/L contains a number of I/O nodes (1024 in the current design). Compute nodes and I/O nodes are physically identical although I/O nodes are likely to contain more memory.

[image: image1.png]
2.2 Blue Gene/L Communications Hardware

Through messages only inter –node communication is possible,The BG/L ASIC supports five different networks.

· Torus

· Tree

· Ethernet

· JTAG

· Global interrupts

2.2.1 TORUS:

The main communication network for point-to-point messages is a three-dimensional torus. The topology is a three-dimensional torus constructed with point-to-point, serial links between routers embedded within the Blue Gene/L ASICs. Therefore, each ASIC have six nearest-neighbor connections, some of which may traverse relatively long cables. The target hardware bandwidth for each torus link is 175MB/sec in each direction. The 64K nodes are organized into a partitionable 64x32x32 three-dimensional torus. The torus and the tree networks are memory mapped devices. Processors send and receive packets by explicitly writing to (and reading from) special memory addresses that act as FIFOs. These reads and writes use the 128-bit SIMD registers. The I/O nodes are not part of the torus network.

[image: image2.png]

Figure: Basic architecture of the torus router

2.2.2 TREES:

I/O and compute nodes share the tree network. Tree packets are the main mechanism for communication between I/O and compute nodes. The tree network is a token-based network with two VCs. Packets are non-blocking across VCs. Setting programmable control registers flexibly controls the operation of the tree. In its simplest form, packets going up towards the root of the tree can be either point-to-point or combining. Point-to-point packets are used, for example, when a compute node needs to communicate with its I/O node. The tree module, shown in Figure 6, is equipped with an integer ALU for combining incoming packets and forwarding the resulting packet. Packets can be combined using bit-wise operations such as XOR or integer operations such as ADD/MAX for a variety of data widths. To do a floating-point sum reduction on the tree requires potentially two round trips on the tree. In the first trip each processor submits the exponents for a max reduction. In the second trip, the mantissas are appropriately shifted to correspond to the common exponent as computed on the first trip and then fed into the tree for an integer sum reduction. Alternatively, converting the floating-point numbers to their 2048-bit integer representations, thus requiring only a single pass through the tree network can perform double precision floating-point operations.

[image: image3.png]
2.2.3 ETHERNET:

Only I/O nodes are attached to the Gbit/s Ethernet network, giving 1024x1Gbit/s links to external file servers. Linux cluster or SP system that resides outside the Blue Gene/L core. The service nodes communicate with the computational core through the IDo chips. The current packaging contains one IDo chip per node board and another one per midplane. The IDo chips are 25MHz FPGAs that receive commands from the service nodes using raw UDP packets over a trusted private 100 Mbit/s Ethernet control network.

2.2.4 JTAG:

The JTAG protocol is used for reading and writing to any address of the 16 KB SRAMs in the BG/L chips.

[image: image4.png]
Figure: Outline of the Blue Gene/L system software.
2.3 Hardware Technologies for petascale computing

Grouping hardware technologies for achieving petaflop/s computing performance into five main categories we have: Conventional technologies, Processing in-memory (PIM) designs, Designs based on super conducting processor technology ,Special purpose hardware designs Schemes that use the aggregate computing power of Web-distributed processors Technologies currently available or that are expected to be available in the near future. Thus, we don’t discuss designs based on spectulative technologies, such as quantum6 or macromolecular7 computing, although they might be important in the long run.

2.4 Special Purpose hardware

Researchers on the Grape project at the University of Tokyo have designed and built a family of special-purpose attached processors for performing the gravitational force computations that form the inner loop of N-body simulation problems. The computational astrophysics community has extensively used Grape processors for N-body gravitational simulations. A Grape-4 system consisting of 1,692 processors, each with a peak speed of 640 Mflop/s, was completed in June 1995 and has a peak speed of 1.08 Tflop/s.14 In 1999, a Grape-5 system won a Gordon Bell Award in the performance per dollar category, achieving$7.3 per Mflop/s on a tree-code astrophysical simulation. A Grape-6 system is planned for completionin 2001 and is expected to have a performance of about 200 Tflop/s. A 1-Pflop/s Grape system is planned for completion by 2003.

Chapter 3:Blue Gene System Software

Addressing the challenges of scalability and complexity posed by BG/L we have developed the system software architecture presented here. This architecture is described in detail in this section.

3.1 System Software for the I/O Nodes

The Linux kernel that executes in the I/O nodes is based on a standard distribution for PowerPC 440GP processors. Although Blue Gene/L uses

standard PPC 440 cores, the overall chip and card design required changes in the booting sequence, interrupt management, memory layout, FPU support, and device drivers of the standard Linux kernel. There is no BIOS in the Blue Gene/L nodes, thus the configuration of a node after power-on and the initial program load (IPL) is initiated by the service nodes through the control network. We modified the interrupt and exception handling code to support Blue Gene/L’s custom Interrupt Controller (BIC).

The implementation of the kernel MMU remaps the tree and torus FIFOs to user space. We support the new EMAC4 Gigabit Ethernet controller. We also updated the kernel to save and restore the double FPU registers in each context switch. The nodes in the Blue Gene/L machine are diskless, thus the initial root file system is provided by a ramdisk linked against the Linux kernel. The ram disk contains shells, simple utilities, shared libraries, and network clients such as ftp and nfs. Because of the non-coherent L1 caches, the current version of Linux runs on one of the 440 cores, while the second CPU is captured at boot time in an infinite loop. We an investigating two main strategies to effectively use the second CPU in the I/O nodes: SMP mode and virtual mode. We have successfully compiled a SMP version of the kernel, after implementing all the required interprocessor communications mechanisms, because the BG/L’s BIC is not [2] compliant. In this mode, the TLB entries for the L1 cache are disabled in kernel mode and processes have affinity to one CPU.

 Forking a process in a different CPU requires additional parameters to the system call. The performance and effectiveness of this solution is still an open issue. A second, more promising mode of operation runs Linux in one of the CPUs, while the second CPU is the core of a virtual network card. In this scenario, the tree and torus FIFOs are not visible to the Linux kernel. Transfers between the two CPUs appear as virtual DMA transfers. We are also investigating support for large pages. The standard PPC 440 embedded processors handle all TLB misses in software. Although the average number of instructions required to handle these misses has significantly decreased, it has been shown that larger pages improve performance

[image: image5.png]
3.2 System Software for the Compute Nodes

The “Blue Gene/L Run Time Supervisor” (BLRTS) is a custom kernel that runs on the compute nodes of a Blue Gene/L machine. BLRTS provides a simple, flat, fixed-size 256MB address space, with no paging, accomplishing a role similar to [2] The kernel and application program share the same address space, with the kernel residing in protected memory at address 0 and the application program image loaded above, followed by its heap and stack. The kernel protects itself by appropriately programming the PowerPC MMU. Physical resources (torus, tree, mutexes, barriers, scratchpad) are partitioned between application and kernel. In the current implementation, the entire torus network is mapped into user space to obtain better communication efficiency, while one of the two tree channels is made available to the kernel and user applications.

BLRTS presents a familiar POSIX interface: we have ported the GNU Glibc runtime library and provided support for basic file I/O operations through system calls. Multi-processing services (such as fork and exec) are meaningless in single process kernel and have not been implemented. Program launch, termination, and file I/O is accomplished via messages passed between the compute node and its I/O node over the tree network, using a point-to-point packet addressing mode.

 This functionality is provided by a daemon called CIOD (Console I/O Daemon) running in the I/O nodes. CIOD provides job control and I/O management on behalf of all the compute nodes in the processing set. Under normal operation, all messaging between CIOD and BLRTS is synchronous: all file I/O operations are blocking on the application side.We used the CIOD in two scenarios:

1. Driven by a console shell (called CIOMAN), used mostly for simulation and testing purposes. The user is provided with a restricted set of commands: run, kill, Ps, set and unset environment variables. The shell distributes the commands to all the CIODs running in the simulation, which in turn take the appropriate actions for their compute nodes.

2. Driven by a job scheduler (such as LoadLeveler) through a special interface that implements the same protocol as the one defined for CIOMAN and CIOD.

We are investigating a range of compute modes for our custom kernel. In heater mode, one CPU executes both user and network code, while the other CPU remains idle. This mode will be the mode of operation of the initial prototypes, but it is unlikely to be used afterwards.

 In co-processor mode, the application runs in a single, non-preempt able thread of execution on the main processor (CPU 0). The coprocessor (CPU 1) is used as a torus device off-load engine that runs as part of a user-level application library, communicating with the main processor through a non-cached region of shared memory. In symmetric mode, both CPUs run applications and users are responsible for explicitly handling cache coherence. In virtual node mode we provide support for two independent processes in a node. The system then looks like a machine with 128K nodes.

3.3 System Management Software

The control infrastructure is a critical component of our design. It provides a separation between execution mechanisms in the BG/L core and policy decisions in external nodes. Local node operating systems (Linux for I/O nodes and BLRTS for compute nodes) implement services and are responsible for local decisions that do not affect overall operation of the machine. A “global operating system” makes all global and collective decisions and interfaces with external policy modules (e.g., LoadLeveler) and performs a variety of system management services, including: (i) machine booting, (ii) system monitoring, and (iii) job launching. In our implementation, the global OS runs on external service nodes. Each BG/L mid plane is controlled by one Midplane Management and Control System (MMCS) process which provides two paths into the Blue Gene/L complex: a custom control library to access the restricted JTAG network and directly manipulate Blue Gene/L nodes; and sockets over the Gbit/s Ethernet network to manage the nodes on a booted partition. The custom control library can perform: – low level hardware operations such as: turn on power supplies, monitor temperature sensors and fans, and react accordingly (i.e. shut down a machine if temperature exceeds some threshold), configure and initialize IDo, Link and BG/L chips, – read and write configuration registers, SRAM and reset the cores of a BG/L chip. As mentioned in [2], these operations can be performed with no code executing in the nodes, which permits machine initialization and boot, nonintrusive access to performance counters and post-mortem debugging.

This path into the core is used for control only; for security and reliability reasons, it is not made visible to applications running in the BG/L nodes. On the other hand, the architected path through the functional Gbit/s Ethernet is used for application I/O, checkpoints, and job launch. We chose to maintain the entire state of the global operating system using standard database technology. Databases naturally provide scalability, reliability, security, portability, logging, and robustness. The database contains static state and dynamic. Therefore, the database is not just a repository for read-only configuration information, but also an interface for all the visible state of a machine. External entities can manipulate this state by invoking stored procedures and database triggers, which in turn invoke functions in the MMCS processes. Machine Initialization and Booting. The boot process for a node consists of the following steps: first, a small boot loader is directly written into the (compute or I/O) node memory by the service nodes using the JTAG control network. This boot loader loads a much larger boot image into the memory of the node through a custom JTAG mailbox protocol. We use one boot image for all the compute nodes and another boot image for all the I/O nodes. The boot image for the compute nodes contains the code for the compute node kernel, and is approximately 64 kB in size. The boot image for the I/O nodes contains the code for the Linux operating system (approximately 2 MB in size) and the image of a ramdisk that contains the root file system for the I/O node. After an I/O node boots, it can mount additional file systems from external file servers. Since the same boot image is used for each node, additional node specific configuration information (such as torus coordinates, tree addresses, MAC or IP addresses) must be loaded. We call this information the personality of a node. In the I/O nodes, the personality is exposed to user processes through an entry in the proc file system. BLRTS implements a system call to request the node’s personality. System Monitoring in Blue Gene/L is accomplished through a combination of I/O node and service node functionality. Each I/O node is a full Linux machine and uses.Linux services to generate system logs.

 A complementary monitoring service for Blue Gene/L is implemented by the service node through the control network. Device information, such as fan speeds and power supply voltages, can be obtained directly by the service node through the control network. The compute and I/O nodes use a communication protocol to report events that can be logged or acted upon by the service node. This approach establishes a completely separate monitoring service that is independent of any other infrastructure in the system. Therefore, it can be used even in the case of many system-wide failures to retrieve important information. Job Execution is also accomplished through a combination of I/O nodes and service node functionality. When submitting a job for execution in Blue Gene/L, the user specfies the desired shape and size of the partition to execute that job. The scheduler selects a set of compute nodes to form the partition. The compute (and corresponding I/O) nodes selected by the scheduler are configured into a partition by the service node using the control network. We have developed techniques for efficient allocation of nodes in a toroidal machine that are applicable to Blue Gene/L. Once a partition is created, a job can be launched through the I/O nodes in that partition using CIOD as explained before.

3.4 Compiler and Run-time Support

Blue Gene/L presents a familiar programming model and a standard set of tools. We have ported the GNU toolchain (binutils, gcc, glibc and gdb) to Blue Gene/L and set it up as a cross-compilation environment. There are two cross-targets: Linux for I/O nodes and BLRTS for compute nodes. IBM’s XL compiler suite is also being ported to provide advanced optimization support for languages like Fortran90 and C++.

3.5 Communication Infrastructure

The Blue Gene/L communication software architecture is organized into three layers:

The packet layer is a thin software library that allows access to network hardware; the message layer provides a low-latency, high bandwidth point-to-point message delivery system; MPI is the user level communication library.

 The packet layer simplifies access to the Blue Gene/L network hardware. The packet layer abstracts FIFO's and devices control registers into torus and tree devices and presents an API consisting of essentially three functions: initialization, packet send and packet receive. The packet layer provides a mechanism to use the network hardware but doesn’t impose any policies on its use. Hardware restrictions, such as the 256 byte limit on packet size and the 16 byte alignment requirements on packet buffers, are not abstracted by the packet layer and thus are reflected by the API. All packet layer send and receive operations are non-blocking, leaving it up to the higher layers to implement synchronous, blocking and/or interrupt driven communication models. In its current implementation the packet layer is stateless. The message layer is a simple active message system built on top of

the torus packet layer, which allows the transmission of arbitrary messages among torus nodes. It is designed to enable the implementation of MPI point-to-point send/receive operations. It has the following characteristics:

No packet retransmission protocol. The Blue Gene/L network hardware is completely reliable, and thus a packet retransmission system (such as a sliding window protocol) is unnecessary. This allows for stateless virtual connections between pairs of nodes, greatly enhancing scalability.

3.5.1 Packetizing and alignment.

The packet layer requires data to be sent in 256 byte chunks aligned at 16 byte boundaries. Thus the message layer deals with the packetizing and re-alignment of message data. Re-alignment of packet data typically entails memory-to-memory copies.

3.5.2 Packet ordering.

Packets on the torus network can arrive out of order, which makes message re-assembly at the receiver non-trivial. For packets belonging to the same message, the message layer is able to handle their arrival in any order. To restore order for packets belonging to different messages, the sender assigns ascending numbers to individual messages sent out to the same peer.Cache coherence and processor use policy. The expected performance of the message layer is influenced by the way in which the two processors are used.

Co-processor mode is the only one that effectively overlaps computation and communication. This mode is expected to yield better bandwidth, but slightly higher latency, than the others. MPI: Blue Gene/L is designed primarily to run [3] workloads. We are in the process of porting [3] currently under development at Argonne National Laboratories, to the Blue Gene/L hardware. MPICH2 has a modular architecture. The Blue Gene/L port leaves the code structure of MPICH2 intact, but adds a number of plug-in modules: Point-to-point messages. The most important addition of the Blue Gene/L port is an implementation of ADI3, the MPICH2 Abstract Device Interface. A thin layer of code transforms e.g. MPI Request objects and MPI Send function calls into calls into sequences of message layer function calls and callbacks. Process management. The MPICH2 process management primitives are documented in. Process management is split into two parts: a process management interface (PMI), called from within the MPI library, and a set of process managers (PM) which are responsible for starting up/shutting down MPI jobs and implementing the PMI functions. MPICH2 includes a number of process managers (PM) suited for clusters of general purpose workstations. The Blue Gene/L process manager makes full use of its hierarchical system management software, including the CIOD processes running on the I/O nodes, to start up and shut down MPI jobs.

 The Blue Gene/L system management software is explicitly designed to deal with the scalability problem inherent in starting, synchronizing and killing 65,536 MPI processes. Optimized collectives. The default implementation of MPI collective operations in MPICH2 generates sequences of point-to-point messages. This implementation is oblivious of the underlying physical topology of the torus and tree networks. In Blue Gene/L optimized collective operations can be implemented for communicators whose physical layouts conform to certain properties. The tours hardware can be used to efficiently implement broadcasts on contiguous 1, 2 and 3 dimensional meshes, using a feature of the torus that allows depositing a packet on every node it traverses. The collectives best suited for this involve broadcast in some form.

 The tree hardware can be used for almost every collective that is executed on the MPI COMM WORLD communicator, including reduction operations. Integer operand reductions are directly supported by hardware. The tree using separate reduction phases for the mantissa and the exponent can also implement IEEE compliant floating-point reductions.

 Non MPI COMM WORLD collectives can also be implemented using the tree, but care must be taken to ensure deadlock free operation. The tree is a locally class routed network, with packets belonging to one of a small number of classes and tree nodes making local decisions about routing. The tree network guarantees deadlockfree simultaneous delivery of no more than two class routes. One of these routes is used for control and file I/O purposes; the other is available for use by collectives.

[image: image6.png]
Chapter 4: Blue Gene/L Simulation Environment

The first hardware prototypes of the Blue Gene/L ASIC are targeted to become operational in mid-2003. To support the development of system software before hardware is available, we have implemented an architecturally accurate, full system simulator for the Blue Gene/L machine. The node simulator, called bglsim , is built using techniques described in. Each component of the BG/L ASIC is modeled separately with the desired degree of accuracy, trading accuracy for performance. In our simulation environment, we model the functionality of processor instructions. That is, each instruction correctly changes the visible architectural state, while it takes one cycle to execute. We also model memory system behavior (cache, scratch-pad, and main memory) and all the Blue Gene/L specific devices: tree, torus, JTAG, device control registers, etc. A bglsim process boots the Linux kernel for the I/O nodes and BLRTS for the compute nodes. Applications run on top of these kernels, under user control.

When running on 1.2 GHz Pentium III machine, bglsim simulates an entire BG/L chip at approximately 2 million simulated instructions per second – a slow-down of about 1000 compared to the real hardware. By comparison, a VHDL simulator with hardware acceleration has a slow-down of. As an example, booting Linux takes 30 seconds on bglsim , 7 hours on the hardware accelerated VHDL simulator and more that 20 days on the software VHDL simulator. Large Blue Gene/L system is simulated using one bglsim process per node, as shown in Figure 3. The bglsim processes run on different workstations and communicate through a custom message passing library (CommFabric), which simulates the connectivity within the system and outside. Additionally, different components of the system are simulated by separate processes that also link in CommFabric. Examples are: the IDo chip simulator, a functional simulator of an IDo chip that translates packets between the virtual JTAG network and Ethernet; the Tapdaemon and EthernetGateway processes to provide the Linux kernels in the simulated I/O nodes with connectivity to the outside network, allowing users to mount external file-systems and connect using telnet, ftp, etc. We use this environment to develop our communication infrastructure, the control infrastructure and we have successfully executed the MPI NAS Parallel.

Chapter 5:Trends in Performance of SuperComputer

The scientific computing field has seen rapid changes in vendors, architectures, technologies, and system usagein last 50 yrs. However, despite all these changes, the longterm evolution of performance seems to remain steady and continuous. Moore’s Law is often cited in this context. If we plot the peak performance of the leading supercomputers over the last five decades we see that this law holds well for almost the complete lifespan of modern computing—on average, performance increases by two orders of magnitude every decade.3 To provide a better basis for statistics on highperformance computers, a group of researchers initiated the Top500 list,4 which reports the sites with the 500 most powerful computer systems installed.

The best Linpack benchmark performance5 achieved is used as a performance measure in ranking the computers. The Top500 list has been updated twice a year since June 1993. Although many aspects of the HPC market change over time, the evolution of performance seems to follow empirical laws, such as Moore’s Law. The Top500 data provides an ideal basis to verify an observation like this. Looking at the computing power of the individual machines in the Top500—and the evolution of the total installed performance—we can plot the performance of the systems at positions one, 10, 100 and 500 in the list, as well as the total accumulated performance. In Figure 2, the curve of position 500 shows an average increase by a factor of two per year.

Chapter 6:Programming methodologies for petascale computing

Many of the lessons learned in the HTMT project are likely to be incorporated in first generation petaflop computers—a multithreaded execution model and sophisticated context management are approaches that might be necessary to provide hardware and system level software support. These approaches could help control the impact of latency across multiple levels of hierarchical memory. Thus, although a petaflop computer might have a global name space, the application programmer. The main programming methodologies likely to be used on petascale systems will be

• A data parallel programming language, such as HPF, for very regular computations.

• Explicit message passing (using, for example, MPI) between sequential processes, primarily to ease porting of legacy parallel applications to the petascale system. In this case, an MPI process would be entirely virtual and correspond to a bundle of threads.

• Explicit multithreading to get acceptable performance on less regular computations.

Given the requirements of high concurrency and latency tolerance, highly tuned software libraries and advanced problem-solving environments are important in achieving high performance and scalability on petascale computers. Clearly, the observation that applications with a high degree of parallelism and data locality perform best on high-performance computers will be even truer for a petascale system characterized by a deep memory hierarchy. It is also often the case that to achieve good performance on an HPC system, a programming style must be adopted that closely matches the system’s execution model. Compilers should be able to extract concurrent threads for regular computations, but a class of less regular computations must be programmed with explicit threads to get good performance. It might also be necessary for application programmers to bundle groups of threads that access the same memory resources Into strands in a hierarchical way that reflects the hierarchical memory’s physical structure. Optimized library routines will probably need to be programmed in this way. IBM’s proposed Blue Gene uses massive parallelism to achieve petaop/s performance. Therefore, it can be based on a less radical design than the HTMT machine, although it still uses onchip memory and multithreading to support a high-bandwidth, low-latency communication path from processor to memory. Blue Gene is intended for use in computational biology applications, such as protein folding, and will contain on the order of one million processor–memory pairs. Its basic building block will be a chip that contains an array of processor–memory pairs and interchip communication logic. These chips will be connected into a 3D mesh.

6.1 New algorithms for petascale computing

Computations that possess insufficient inherent parallelism are not well suited for petascale systems. Therefore, a premium is placed on algorithms that are regular in structure but that may have a higher operation count over more irregular algorithms with a lower operation count. Dense matrix computations, such as those the Lapack software library provides, 20 optimized to exploit data locality are an example of regular computations that should perform well on a petascale system. The accuracy and ability of numerical methods for petascale computations are also important issues because some algorithms can suffer significant losses of numerical precision. Thus, slower but more accurate and stable algorithms are favored over faster but less accurate and stable ones. To this end, hardware support for 128-bit arithmetic is desirable, and interval- based algorithms may play a more important role on future petascale systems than they do on current high-performance machines. Interval arithmetic provides a means of tracking errors in a computation, such as initial errors and uncertainties in the input data, errors in analytic approximations, and rounding error. Instead of being represented by a single floating-point number, each quantity is represented by a lower and upper bound within which it is guaranteed to lie. The interval representation, therefore, provides rigorous accuracy information about a solution that is absent in the point representation. The advent of petascale computing systems might promote the adoption of completely new methods to solve certain problems. For example, cellular automata are highly parallel, are very “Slower but more accurate and stable algorithms are favored over faster but less accurate and stable ones”. Regular in structure, can handle complex geometries, and are numerically stable, and so are well suited to petascale computing. CA provides an interesting and powerful alternative to classical techniques for solving partial differential equations. Their power derives from the fact that their algorithm dynamics mimic (at an abstract level) the fine-grain dynamics of the actual physical system, permitting the emergence of macroscopic phenomenology from microscopic mechanisms. Thus, complex collective global behavior can arise from simple components obeying simple local interaction rules.

CA algorithms are well suited for applications involving nonequilibrium and dynamical processes. The use of CA on future types of “programmable matter” computers is discussed elsewhere21—such computers can deliver enormous computational power and are ideal platforms for CA-based algorithms. Thus, on the five-to-10-year timescale, CA will play an increasing role in the simulation of physical (and social) phenomena. Another aspect of software development for A Petascale system is the ability to automatically tune a library of numerical routines for optimal performance on a particular architecture. The Automatic Tuned Linear Algebra Software project exemplifies this concept.22 Atlas is an approach for the automatic generation and optimization of numerical software for computers with deep memory Hierarchies and pipelined functional units. With Atlas, numerical routines are developed with a large design space spanned by many tunable parameters, such as blocking size, loop nesting permutations, loop unrolling depths, pipelining strategies, register allocations, and instruction schedules. When Atlas is first installed on a new platform, a set of runs automatically determines the optimal parameter values for that platform, which are then used in subsequent uses of the code. We could apply this idea to other application areas, in addition to numerical linear algebra, and extend it to develop

numerical software that can dynamically explore its computational environment and intelligently adapt to it as resource availability changes. In general, a multithreaded execution model implies that the application developer does not have control over the detailed order of arithmetic operations (such control would incur a large performance Cost). Thus, numerical reproducibility, which is already difficult to achieve with current

architectures, will be lost. A corollary of this is that for certain problems, it will be impossible to predict a priori which solution method will perform best or converge at all.

 An example is the iterative solution of linear systems for which the matrix is nonsymmetrical, indefinite, or both. In such cases, an “algorithmic bombardment” approach can help. The idea here is to concurrently apply several methods for solving a problem in the hope that at least one will converge to the solution. 23 A related approach is to apply a fast, but unreliable, method first and then to check a posteriori if any problem occurred in the solution. If so, we use a slower method to fix the problem.

 These poly-algorithmic approaches can be available for application developers either as black boxes or with varying degrees of control over the methods used.

Chapter 7:Validating the architecture with application programs

A wide variety of scientific applications, including many from DOE’s NNSA

Laboratories, have been used to assist in the design of BlueGene/L’s hardware and Software. Blue Gene/L’s unique features are especially appealing for ASCI-scale scientific applications.

 The global barrier and combining trees will vastly improve the scalability and performance of widely-used collective operations, such as MPI _Barrier and MPI_Allreduce. Our analysis shows that a large majority of scientific applications such as SPPM (simplified piecewise-parabolic method), Sweep3D (discrete ordinates neutron transport using wavefronts), SMG2000 (semicoarsening multigrid solver), SPHOT (Monte Carlo photon transport), SAMRAI (Structured Adaptive Mesh Refinement Application Infrastructure) and UMT2K (3D deterministic multigroup, photon transport code for unstructured meshes) use these collective operations to calculate the size of simulation timesteps and validate physical conservation properties of the simulated system. Most applications use MPI's nonblocking point-to-point messaging operations to allow concurrency between computation and communication; BG/L's distinct communication and computation processors will allow the computation processor to transfer overhead for messaging to the communication processor. In addition, we have identified several important applications whose high flops/loads ratio and alternating compute/communicate behavior will allow effective use of the second floating-point unit in each node. We are continuing to study application performance through tracing and simulation analysis, and will analyze the actual hardware as it becomes available. The results of analysis performed with collaborators at the San Diego Supercomputer Center and Cal Tech’s Center for Advanced Computing Research will be reported elsewhere.

Chapter 8: Blue Gene science applications development

To carry out the scientific research into the mechanisms behind protein folding announced in December 1999, development of a molecular simulation application kernel targeted for massively parallel architectures is underway. For additional information about the science application portion of the BlueGene project. This application development effort serves multiple purposes: (1) it is the application platform for the Blue Gene Science programs. (2) It serves as a prototyping platform for research into application frameworks suitable for cellular architectures. (3) It provides an application perspective in close contact with the hardware and systems software development teams.

One of the motivations for the use of massive computational power in the study of protein folding and dynamics is to obtain a microscopic view of the thermodynamics and kinetics of the folding process. Being able to simulate longer and longer time-scales is the key challenge. Thus the focus for application scalability is on improving the speed of execution for a fixed size system by utilizing additional CPUs. Efficient domain decomposition and utilization of the high performance interconnect networks on BG/L (both torus and tree) are the keys to maximizing application scalability. To provide an environment to allow exploration of algorithmic alternatives, the applications group has focused on understanding the logical limits to concurrency within the application, structuring the application architecture to support the finest grained concurrency possible, and to logically separate parallel communications from straight line serial computation. With this separation and the identification of key communications patterns used widely in molecular simulation, it is possible for domain experts in molecular simulation to modify detailed behavior of the application without having to deal with the complexity of the parallel communications environment as well.

 Key computational kernels derived from the molecular simulation application have been used to characterize and drive improvements in the floating-point code generation of the compiler being developed for the BG/L platform. As additional tools and actual hardware become available, the effects of cache hierarchy and communications architecture can be explored in detail for the application.

Chapter 9: Conclusion

Blue Gene/L is the first of a new series of high performance machines being developed at IBM Research. The hardware plans for the machine are complete and the first small prototypes will be available in late 2003. We have presented a software system that can scale up to the demands of the Blue Gene/L hardware. We have also described the simulation environment that we are using to develop and validate this software system. Using the simulation environment, we are able to demonstrate a complete and functional system software environment before hardware becomes available. Nevertheless, evaluating scalability and performance of the complete system still requires hardware availability. Many of the implementation details will likely change as we gain experience with the real hardware.

Bibliography

 [1] “An Overview of the Blue Gene /L System Software Organization”, 5 5 George Alm’asi, Ralph Bellofatto, Jos´e Brunheroto , C¢alin Cas¸caval , Jos´e G. Casta˜nos , Luis Ceze , Paul Crumley , C. Christopher Erway , Joseph Gagliano , Derek Lieber , Xavier Martorell , Jos´e E. Moreira , Alda Sanomiya , and Karin Strauss

[2] “High Performance Computing-The Quest for Petascale Computing”, Jack J. Dongarra, David W. Walker

[3] “An Overview of Blue Gene/L Supercomputer”, W Barrett, C Engel, B Drehmel, B Hilgart, D Hill, F Kasemkhani, D Krolak, CT Li, T Liebsch, J Marcella, A Muff, A Okomo, M Rouse, A Schram, M Tubbs, G Ulsh, C Wait, J Wittrup
_1124345036

