Java Annotations: An Introduction
Annotation-based Java development is certainly one of the most notable recent development trends. Annotation-based development relieves Java developers from the pain of cumbersome configuration. First introduced in Java 5.0, annotations are one of the features in that JDK version that shifted the responsibility for writing boilerplate Java code from the programmer to the compiler. When the source code is free of boilerplate code, it becomes easier to maintain. The resulting code is also less likely to contain bugs.
Java annotations are one of the main ease-of-development features introduced in JDK 5. Annotations are like meta-tags that you can add to your code and apply to package declarations, type declarations, constructors, methods, fields, parameters and variables. They provide a helpful way to indicate whether your methods are dependent on other methods, whether they are incomplete, whether your classes have references to other classes, and so on.
Quoting from Oracle's official site, "It [annotation-based development] lets us avoid writing boilerplate code under many circumstances by enabling tools to generate it from annotations in the source code. This leads to a declarative programming style where the programmer says what should be done and tools emit the code to do it."
Simply speaking, an annotation is a mechanism for associating a meta-tag with program elements and allowing the compiler or the VM to extract program behaviors from these annotated elements and generate interdependent code when necessary.
In the first part of this three-article series, I'll describe some basics of Java annotations, their benefits, as well as provide some example usages.

Java Annotations Basics
There are two things you need to consider with annotations. One is the "annotation" itself; another is the "annotation type." An annotation is the meta-tag that you will use in your code to give it some life. Annotation type is used for defining an annotation. You will use it when you want to create your own custom annotation. The type is the actual construct used, and the annotation is the specific usage of that type.
An annotation type definition takes an "at" (@) sign, followed by the interface keyword plus the annotation name. On the other hand, an annotation takes the form of an "at" sign (@), followed by the annotation type. This is simplest form of annotation. Additionally, you can put data within parenthesis after the annotation name. An example of each can be seen below:

Example to Define an Annotation (Annotation Type)
public @interface MyAnnotation {
 String doSomething();
}
Example to Annotate Your Code (Annotation)
MyAnnotation (doSomething="What to do")
public void mymethod() {

}
Java Annotation Types
There are three annotation types:
· Marker: Marker type annotations have no elements, except the annotation name itself.
Example:
public @interface MyAnnotation {
}
Usage:
@MyAnnotation
public void mymethod() {

}
· Single-Element: Single-element, or single-value type, annotations provide a single piece of data only. This can be represented with a data=value pair or, simply with the value (a shortcut syntax) only, within parenthesis.

Example:
public @interface MyAnnotation
{
 String doSomething();
}
Usage:
@MyAnnotation ("What to do")
public void mymethod() {

}
· Full-value or multi-value: Full-value type annotations have multiple data members. Therefore, you must use a full data=value parameter syntax for each member.

Example:
public @interface MyAnnotation {
 String doSomething();
 int count; String date();
}
Usage:
@MyAnnotation (doSomething="What to do", count=1,
 date="09-09-2005")
public void mymethod() {

}
Rules of Thumb for Defining Java Annotation Types
Here are some rules-of-thumb when defining an annotation type:
1. Annotation declaration should start with an 'at' sign like @, following with an interface keyword, following with the annotation name.
2. Method declarations should not have any parameters.
3. Method declarations should not have any throws clauses.
4. Return types of the method should be one of the following:
· primitives
· String
· Class
· enum
· array of the above types
Java Annotation Types
There are two types of annotations available with JDK5:
· Simple annotations: These are the basic types supplied with Tiger, which you can use to annotate your code only; you cannot use those to create a custom annotation type.
· Meta annotations: These are the annotation types designed for annotating annotation-type declarations. Simply speaking, these are called the annotations-of-annotations.

The Three Simple Java Annotations
· October 14, 2005
· By M. M. Islam Chisty
· Bio »
· Send Email »
· More Articles »
Simple Java Annotations
There are only three types of simple annotations provided by JDK5. They are:
· Override
· Deprecated
· Suppresswarnings
It's important to note that JDK5 (in other words, Tiger) actually does not have many built-in annotations; rather, it allows core Java the ability to support the annotation feature. The charter for JSR-175 strictly dictated it was to define a metadata facility. It was left to the programmers to write custom annotation types and to other JSRs to write a set of standard annotation types. The following sections will describe each simple annotation in more depth, along with examples.
The Override Annotation
An override annotation indicates that the annotated method is required to override a method in a super class. If a method with this annotation does not override its super-class's method, the compiler will generate an error. Example 1 demonstrates the override annotation:
Java Annotation Example 1
public class Test_Override {
@Override
public String toString() {
 return super.toString() +
 " Testing annotation name: 'Override'";
}
}
What happens if a spelling mistake occurs with the method name? For example, if you change the name of the toString method to "tostring" and compile the code, you will get something like the following:
Compiling 1 source file to D:tempNew Folder (2)
 TestJavaApplication1buildclasses
D:tempNew Folder (2)TestJavaApplication1srctest
 myannotationTest_Override.java:24: method does not override
 a method from its superclass
@Override
1 error
BUILD FAILED (total time: 0 seconds)
The Deprecated Annotation
This annotation indicates that when a deprecated program element is used, the compiler should warn you about it. Example 2 shows you the deprecated annotation.
Java Annotation Example 2
First, create a class with the deprecated method as follows:
public class Test_Deprecated {
 @Deprecated
 public void doSomething() {
 System.out.println("Testing annotation name: 'Deprecated'");
 }
}
Next, try to invoke this method from another class:
public class TestAnnotations {
 public static void main(String arg[]) throws Exception {
 new TestAnnotations();
 }
 public TestAnnotations() {
 Test_Deprecated t2=new Test_Deprecated();
 t2.doSomething();
}
The doSomething() method in this example is declared as a deprecated method. Therefore, this method should not be used when this class is instantiated by other classes. If you compile Test_Deprecated.java, no warning messages will be generated by the compiler. But, if you try to compile TestAnnotations.java where the deprecated method is used, you will see something like this:
Compiling 1 source file to D:tempNew Folder
(2)TestJavaApplication1buildclasses
D:tempNew Folder
(2)TestJavaApplication1srctestmyannotation
 TestAnnotations.java:27:
warning: [deprecation] doSomething() in
test.myannotation.Test_Deprecated has been deprecated
t2.doSomething();
1 warning
The Suppresswarnings Annotation
This annotation indicates that compiler warnings should be shielded in the annotated element and all of its sub-elements. The set of warnings suppressed in an element is the superset of the warnings in all of its containing sub-elements. As an example, if you annotate a class to suppress one warning and one of its methods to suppress another warning, both warnings will be suppressed at the method level only. See Example 3 for the suppresswarnings annotation.
Java Annotation Example 3
public class TestAnnotations {
 public static void main(String arg[]) throws Exception {
 new TestAnnotations().doSomeTestNow();
 }
 @SuppressWarnings({"deprecation"})
 public void doSomeTestNow() {
 Test_Deprecated t2 = new Test_Deprecated();
 t2.doSomething();
 }
}
In this example, you are suppressing the deprecation warning for the method listing shown in Example 2. Because the method is suppressed, you are unlikely to view the "deprecation" warning any more.
Note: It is a good idea to use this annotation at the most deeply nested element where it is effective. Therefore, if you want to suppress a warning in a particular method, you should annotate that method rather than its class.
Meta-Annotations (Java Annotation Types)
Meta-annotations, which are actually known as the annotations of annotations, contain four types. These are:
· Target
· Retention
· Documented
· Inherited
The Target Annotation
The target annotation indicates the targeted elements of a class in which the annotation type will be applicable. It contains the following enumerated types as its value:
· @Target(ElementType.TYPE)—can be applied to any element of a class
· @Target(ElementType.FIELD)—can be applied to a field or property
· @Target(ElementType.METHOD)—can be applied to a method level annotation
· @Target(ElementType.PARAMETER)—can be applied to the parameters of a method
· @Target(ElementType.CONSTRUCTOR)—can be applied to constructors
· @Target(ElementType.LOCAL_VARIABLE)—can be applied to local variables
· @Target(ElementType.ANNOTATION_TYPE)—indicates that the declared type itself is an annotation type
Example 4 demonstrates the target annotation:
Java Annotation Example 4
First, define an annotation named Test_Target with @Target metadata, as follows:
@Target(ElementType.METHOD)
public @interface Test_Target {
 public String doTestTarget();
}
Next, create a class that will use the Test_Target annotation:
public class TestAnnotations {
 public static void main(String arg[]) {
 new TestAnnotations().doTestTarget();
 }
 @Test_Target(doTestTarget="Hello World !")
 public void doTestTarget() {
 System.out.printf("Testing Target annotation");
 }
}
The @Target(ElementType.METHOD) indicates that this annotation type can be used to annotate only at the method levels. If you compile the preceding code, no warning messages will be shown. Now, if you declare a String variable and apply your newly created annotation, what will happen? Let me demonstrate this as follows:
public class TestAnnotations {
 @Test_Target(doTestTarget="Hello World !")
 private String str;
 public static void main(String arg[]) {
 new TestAnnotations().doTestTarget();
 }
 public void doTestTarget() {
 System.out.printf("Testing Target annotation");
 }
}
The only change you can see from above is that the annotation declaration is shifted from method-level to field-level, which is not correct. Because you have defined your annotation @Test_Target to be applicable only at method-level, if you try to compile this class, you are likely to get something like this:
"TestAnnotations.java":
D:R_AND_DTestAnnotationsrctestmyannotation
 TestAnnotations.java:16:
annotation type not applicable to this kind of declaration at line
16, column 0
@Test_Target(doTestTarget="Hello World !")
^
Error in javac compilation

he Retention Annotation
The retention annotation indicates where and how long annotations with this type are to be retained. There are three values:
· RetentionPolicy.SOURCE—Annotations with this type will be by retained only at the source level and will be ignored by the compiler
· RetentionPolicy.CLASS—Annotations with this type will be by retained by the compiler at compile time, but will be ignored by the VM
· RetentionPolicy.RUNTIME—Annotations with this type will be retained by the VM so they can be read only at run-time
Example 5 shows you the RetentionPolicy.RUNTIME value in action:
Java Annotation Example 5
@Retention(RetentionPolicy.RUNTIME)
public @interface Test_Retention {
 String doTestRetention();
}
In this example, the @Retention(RetentionPolicy.RUNTIME) annotation indicates that your Test_Retention annotation is to be retained by the VM so that it can be read reflectively at run-time.
The Documented Annotation
The documented annotation indicates that an annotation with this type should be documented by the javadoc tool. By default, annotations are not included in javadoc. But if @Documented is used, it then will be processed by javadoc-like tools and the annotation type information will also be included in the generated document. Example 6 demonstrates using @Documented further:
Java Annotation Example 6
@Documented
public @interface Test_Documented {
 String doTestDocument();
}
Next, update your TestAnnotations class as follows:
public class TestAnnotations {
 public static void main(String arg[]) {
 new TestAnnotations().doSomeTestRetention();
 new TestAnnotations().doSomeTestDocumented();
 }
 @Test_Retention (doTestRetention="Hello retention test")
 public void doSomeTestRetention() {
 System.out.printf("Testing annotation 'Retention'");
 }
 @Test_Documented(doTestDocument="Hello document")
 public void doSomeTestDocumented() {
 System.out.printf("Testing annotation 'Documented'");
 }
}
Now, if you run the javadoc command and view the generated TestAnnotations.html file, you will see something like Figure 1.
[image: http://www.developer.com/img/2005/10/MChristy.gif]
Figure 1
As you can see from the screenshot, there is no annotation-type information for the doSomeTestRetention() method. But, this description is provided for the doSomeTestDocumented() method. This is because of the @Documented tag attached with your Test_Documented annotation. Your earlier annotation Test_Retention did not include this tag.
The Inherited Annotation
This is a bit of a complex annotation type. It indicates that the annotated class with this type is automatically inherited. More specifically, if you define an annotation with the @Inherited tag, then annotate a class with your annotation, and finally extend the class in a subclass, all properties of the parent class will be inherited into its subclass. With Example 7, you will get an idea about the benefits of using the @Inherited tag.
Java Annotation Example 7
First, define your annotation:
@Inherited
 public @interface myParentObject {
 boolean isInherited() default true;
 String doSomething() default "Do what?";
 }
Next, annotate a class with your annotation:
@myParentObject
public Class myChildObject {
 }
As you can see, you do not have to define the interface methods inside the implementing class. These are automatically inherited because of using the @Inherited tag. What would happen if you define the implementing class in old-fashioned Java-style? Take a look at this—defining the implementation class in an old-style-java way:
public class myChildObject implements myParentObject {
 public boolean isInherited() {
 return false;
 }
 public String doSomething() {
 return "";
 }
 public boolean equals(Object obj) {
 return false;
 }
 public int hashCode() {
 return 0;
 }
 public String toString() {
 return "";
 }
 public Class annotationType() {
 return null;
 }
}
Do you see the difference? You can see that you will have to implement all the methods that the parent interface owns. Besides the isInherited() and doSomething() methods from myParentObject, you will have to implement the equals(), toString(), and hasCode() methods of java.lang.Object and also the annotationType() method of java.lang.annotation.Annotation class. It does not matter whether you want to implement these methods or not; you will have to include these in your inherited object.
image1.gif

