Advanced Techniques in RDBMS
      
     INTRODUCTION:  
              DBMS is a Data Base Management system which is collection of interrelated data of different data types arranged in specific order in the form of table.
             Someone once said that the best place to start is at the beginning. With Oracle, that means understanding where the idea of a relational database management system (RDBMS) came from and what a database is—in computer and everyday terms. Even though the material presented here may not be directly tested on the exam, this is assumed knowledge, however, so a quick read is probably a good idea.
            In one form or another, databases have always been around, though their exact shape  was not always easily recognizable. As long as some form of data had to be stored,   there was always a method of storing it.
Databases, in their most simple form, are a mechanism for storing data. The data can be logical, like the values stored in a computer program, or may be physical, like a file or receipt. You probably have databases in existence all around you, but you may not see them as such. For example, the shoebox in which you’ve placed your tax   receipts for the accountant is a database of your annual expenses. When you open a file cabinet and take out a folder, you are accessing a database. The content of the file folder is your data (e.g., your credit card statements, your bank statements, invoices, purchase orders, etc.). The file cabinet and drawers are your data storage mechanisms.  Before the advent of computers, all data was stored in some easily recognizable
physical form. The introduction of computers simply changed the data from a physical   form that you can touch and feel to a digital form that is represented by a series of 1’s and 0’s. Does the information that you display for an expense report on the computer  screen differ greatly from the same information in the hard-copy version of the expense  form? Perhaps the information is laid out differently than on the screen, but the key
elements—who was paid, what amount, how much was the tax, what was the purpose  of the expense, and so on—are all the same.  In looking at a database and its most basic set of characteristics, the following
points hold true:
        • A database stores data. The storage of data can take a physical form, such as
a filing cabinet or a shoebox.
       • Data is composed of logical units of information that have some form of   connection to each other. For example, a genealogical database stores   information on people as they are related to each other (parents, children, etc.). 
       • A database management system (DBMS) provides a method to easily retrieve, add, modify, or remove data. This can be a series of filing cabinets that are   properly indexed, making it easy to find and change what you need, or a   computer program that performs the same function.

The Relational Model of Databases
                        
                           The relational model for database management systems was proposed in the June
1970 issue of Communications of the ACM—the Association of Computing Machinery  journal—by Dr. E.F. Codd, an IBM researcher, in a paper called “A Relational Model  of Data for Large Shared Data Banks.” For its time it was a radical departure from established principles because it stated that tables that have related data need   not know where the related information is physically stored. Unlike previous database models, including the hierarchical and network models, which used the physical   location of a record to relate information between two sets of data, the relational   model stated that data in one table needed to know only the name of the other table   and the value on which it is related. It was not necessary for data in one table to keep   track of the physical storage location of the related information in another.

                       The relational model broke all data down into collections of objects or relations   that store the actual data (i.e., tables). It also introduced a set of operators to act on   the related objects to produce other objects (i.e., join conditions to produce a new   result set). Finally, the model proposed that a set of elements should exist to ensure   data integrity so that the data would be consistent and accurate (i.e., constraints). Codd    proposed a set of twelve rules that would allow designers to determine if the database management system satisfied the requirements of the relational model. Although no   database today satisfies all twelve rules (because the database would run very slowly if   it did, since theory is not always the same as practice), it is generally accepted that any   RDBMS should comply with most of them.  The essence of the relational model is that data is made up of a set of relations.  These relations are implemented as two-dimensional tables with rows and columns   as shown in Figure 1-1. In this example, the Customers table stores information about
clients we deal with—their customer ID, their company name, their address, and so on.  The Orders table stores information about the client orders (but not the order line   items—these are in another table), including the order data, the method of payment,   the order date, and the ship date. The CustomerID column in both tables provides the   relationship between the two tables and is the source of the relation. The tables
themselves are stored in a database that resides on a computer. The physical locations  of the tables need not be known—only their names.
Relational model basics
· Data is viewed as existing in two dimensional tables known as relations
· A relation (table) consists of unique attributes (columns) and tuples (rows)
· Tuples are unique
· Sometimes the value to be inserted into a particular cell may be unknown, or it may have no value. This is represented by a null
· Null is not the same as zero, blank or an empty string
· Relational Database: Any database whose logical organization is based on relational data model.
 RDBMS: A  DBMS that manages the relational database
                     
                      The benefit of Internet Computing, that is universally accessible information, is also one of the
greatest causes of concern for those whose job it is to administer the web site. That is, the web site   must scale to meet the requirements of the increased user community and also ensure that only those   authorized to see the information can do so.  User satisfaction for a web site is determined not only by the information served, but also by the   speed at which it is delivered. If the site is unable to serve information in a timely manner due to   increased load, users are less likely to use the site. Therefore it is extremely important that the
underlying architecture scales to meet the user expectations. In addition, it is often the case that user authorization is defined not only by the privileges on the data   itself (that is, database object level privilege) but also the functions performed on it. As access to a   web document is through the use of its Uniform Resource Locator (URL), knowledge of the URL   allows access to any unprotected document. To combat this, most web servers allow for the   securing of the directory in which the documents may be found but are unable to secure individual   files within that directory. The use of CGI executables to serve up dynamic pages has allowed  many organizations to personalize the users’ view of the available information. These complex CGI   coding techniques have not really addressed the issue of application-level security. Hence, it has been difficult for most web sites or information Portals to implement much more than the most   rudimentary of security models.
This paper focuses on the security and scaleability issues faced by system administrators when  implementing a centralized reporting infrastructure. Specifically, it looks at the functionality available   within the Oracle Reports Server to address these issues, and indicates the tasks required to   implement it. It does not cover the design of the Reports Server and assumes a basic understanding   of the architecture and the methods required to implement it.
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HARDWARE SPECIFICS
                           At the time of writing, the disk drives used in database servers do not vary much   with regard to their performance characteristics. They run at 10,000 or 15,000  rotations per minute and the average seek time is 3 or 4 ms. Our suggested  estimate for an average random read from a disk drive (10 ms)—including drivequeuing and the transfer time from the server cache to the pool—is applicable  for all current disk systems. The time for a sequential read, on the other hand, varies according to the configuration.It depends not only on the bandwidth of the connection (and eventual contention), but also on the degree of parallelism that takes place. RAID stripingprovides potential for parallel read ahead for a single thread. It is strongly recommended  that the sequential read speed in an environment is measured before  using our suggested figure of 0.1 ms per 4K page (refer to Chapter 6).  In addition to the I/O time estimates, the cost of disk space and memory  influences index design.  Local disk drives provide physical data storage without the additional function   provided by disk servers (such as fault tolerance, read and write cache,
striping, and so forth), for a very low price. Disk servers are computers with several processors and a large amount of  memory. The most advanced disk servers are fault tolerant: All essential components  are duplicated, and the software supports a fast transfer of operations to  a spare unit. A high-performance fault tolerant disk server with a few terabytes  may cost $2 million. The cost per gigabyte, then, is in the order of U.S.$500  (purchase price) or U.S.$50 per month (outsourced hardware).  Both local disks and disk servers employ industry-standard disk drives. The  largest drives lead to the lowest cost per gigabyte; for example, a 145-GB drive  costs much less than eight 18-GB drives. Unfortunately, they also imply much  longer queuing times than smaller drives with a given access density (I/Os per  gigabyte per second). The cost of memory has been reduced dramatically over the last few years as  well. A gigabyte of random access memory (RAM) for Intel servers (Windows  and Linux) now costs about $500 while the price for RISC (proprietary UNIX and
Linux) and mainframe servers (z/OS and Linux) is on the order of U.S.$10,000  per gigabyte. With 32-bit addressing, the maximum size of a database buffer pool  might be a gigabyte (with Windows servers, for example), and a few gigabytes  for mainframes that have several address spaces for multiple buffer pools. Over  the next few years, 64-bit addressing, which permits much larger buffer pools,  will probably become the norm. If the price for memory (RAM) keeps falling,  database buffer pools of 100 gigabytes or more will then be common.  The price for the read cache of disk servers is comparable to that of RISC
server memory. The main reason for buying a 64-GB read cache instead of  64 GB of server memory is the inability of 32-bit software to exploit 64 GB for  buffer pools.  Throughout this book, we will use the following cost assumptions:  CPU time $1000 per hour, based on 250 mips per processor
Memory $1000 per gigabyte per month
Disk space $50 per gigabyte per month
These are the possible current values for outsourced mainframe installations. Each designer should, of course, ascertain his or her own values, which may be  very much lower than the above.

DBMS SPECIFICS

Pages:
                     The size of the table pages sets an upper limit to the length of table rows.  Normally, a table row must fit in one table page; an index row must fit in one leaf page. If the average length of the rows in a table is more than one third of  the page size, space utilization suffers. Only one row with 2100 bytes fits in a 4K page, for instance. The problem of unusable space is more pronounced with  indexes. As new index rows must be placed in a leaf page according to the index  key value, the leaf pages of many indexes should have free space for a few index  rows, after load and reorganization. Therefore, index rows that are longer than  20% of the leaf  page may result in poor space utilization and frequent leaf page  splits. We have much more to say about this in Chapter 11.  With current disks, one rotation takes 4 ms (15,000 rpm) or 6 ms (10,000rpm). As the capacity of a track is normally greater than 100 kilobytes (kb), the time for a random read is roughly the same for 2K, 4K, and 8K pages. It is essential, however, that the stripe size on RAID disks is large enough for one page; otherwise, more than one disk drive may have to be accessed to read a single page. In most environments today, sequential processing brings several pages into the buffer pool with one I/O operation—several pages may be transferred with one rotation, for instance. The page size does not then make a big difference in
the performance of sequential reads. SQL Server 2000 uses a single page size for both tables and indexes: 8K.  The maximum length of an index row is 900 bytes.  Oracle uses the term block instead of page. The allowed values for  BLOCK SIZE are 2K, 4K, 8K, 16K, 32K, and 64K, but some operating  systems may limit this choice. The maximum length of an index row is 40%  of BLOCK SIZE. In the interests of simplicity, we trust Oracle readers will  forgive us if we use the term page throughout this book.  DB2 for z/OS supports 4K, 8K, 16K, and 32K pages for tables but only 4K  pages for indexes. The maximum length for index rows is 255 bytes in V7, but  this becomes 2000 bytes in V8.  DB2 for LUW allows page sizes of 4K, 8K, 16K, and 32K for both tables and indexes. The upper limit for the index row length is 1024 bytes.

Table Clustering:
                             Normally a table page contains rows from a single table only. Oracle provides an option to interleave rows from several related tables; this is similar to storing a hierarchical IMS database record with several segment types. An insurance  policy, for instance, may have rows in five tables. The policy number would be  the primary key in one table and a foreign key in the other four tables. When  all the rows relating to a policy are interleaved in one table, they might all fit in  one page; the number of table I/Os required to read all the data for one policy  will then be only one, whereas it would otherwise have been five. On the other
hand, as older readers may remember, interleaving rows from many tables may  create problems in other areas.  





Index Rows:
                          The maximum number of columns in an index varies across the current DBMSs:  SQL Server 16, Oracle 32, DB2 for z/OS 64, and DB2 for LUW 16  Indexing variable-length columns have limitations in some products. If only  fixed-length index rows are supported, the DBMS may pad an index column to  the maximum length. As variable-length columns are becoming more common  (because of JAVA, for instance)—even in environments in which they were rarely  used in the past—support for variable-length index columns (and index rows) is  now the norm in the latest releases. DB2 for z/OS, for instance, has full support
for variable-length index columns in V8.  Normally, all columns copied to an index form the index key, which determines  the order of the index entries. In unique indexes, an index entry is the same  as an index row. With nonunique indexes, there is an entry for each distinct value  of the index key together with a pointer for each of the duplicate table rows; this pointer chain is normally ordered by the address of the table row. DB2 for LUW,
for instance, allows nonkey columns at the end of an index row. In addition to the  above, each index entry requires a certain amount of control information, used, for example, to chain the entries in key sequence; throughout this book, this control information will be assumed, for the purpose of determining the number
of index rows per page, to be about 10 bytes in length.

Table Rows:
                                 We have already seen that some DBMSs, for instance, DB2 for z/OS, DB2  for LUW, Informix, and Ingres, support a clustering index, which affects the  placement of inserted table rows. The objective is to keep the order of the table  rows as close as possible to the order of the rows in the clustering index. If there is no clustering index, the inserted table rows are placed in the last page of the table or to any table page that has enough free space. Some DBMSs, for example, Oracle and SQL Server, do not support a clustering index that influences the choice of table page for an inserted table row. However, with any DBMS, the table rows can be maintained in the required order by reorganizing the table frequently; by reading the rows via a particular index (the index that determines the required order) before the reload or by sorting the
unloaded rows before the reload. Oracle and SQL Server provide an option for storing the table rows in the
index as shown in the next section. More information is provided in Chapter 12.

Index-Only Tables:
                                   If the rows in a table are not too long, it may be desirable to copy all the columns  into an index to make SELECTs faster. The table is then somewhat redundant. Some DBMSs have the option of avoiding the need for the table. The leaf pages of one of the indexes then effectively contain the table rows.
In Oracle, this option is called an index-organized table, and the index containing the table rows is called the primary index. In SQL Server, the table rows are stored in an index created with the option CLUSTERED. In both cases, the  other indexes (called secondary indexes in Oracle and unclustered indexes in SQL Server) point to the index that contains the table rows. The obvious advantage of index-only tables is a saving in disk space. In addition, INSERTs, UPDATEs, and DELETEs are a little faster because there is one less page to modify. There are, however, disadvantages relating to the other indexes. If these point to the table row using a direct pointer (containing the leaf page number), a leaf  page split in the primary (clustered) index causes a large number of disk I/Os for the other indexes. Any update to the primary index key that moves the index row, forces the DBMS to update the index rows pointing to the displaced index row. This is why SQL Server, for instance, now uses the key of the primary index as the pointer to the clustered index. This eliminates the leaf page split overhead, but the unclustered indexes become larger if the clustered index has a long key itself. Furthermore, any access via a nonclustered index goes through two sets of nonleaf pages; first, those of the unclustered index and then those of the clustered index. This overhead is not a major issue as long as the nonleaf pages stay in the buffer pool. The techniques presented in this book apply equally well to index-only tables, although the diagrams always show the presence of the table. If index-only tables are being used, the primary (clustered) table should be considered as a clustering index that is fat for all SELECTs. This last statement may not become clear until Chapter 4 has been considered. The order of the index rows is determined by the index key. The other columns are nonkey columns. Note that in SQL Server the clustered index does not have to be the primary key index. However, to reduce pointer maintenance, it is a common practice to choose an index whose key is not updated, such as a primary or a candidate key index. In most indexes (the nonkey column option will be discussed later), all index columns make up the key, so it may be difficult to find other indexes in which no key column is updated.

Page Adjacency:
                                                 Are the logically adjacent pages (such as leaf page 1 and leaf page 2) physically adjacent on disk? Sequential read would be very fast if they are In some older DBMSs, such as SQL/DS and the early versions of SQL Server, the pages of an index or table could be spread all over a large file. The only difference in the performance of random and sequential read was then due to the fact that a number of logically adjacent rows resided in the same page (level 1 in Fig. 2.10). Reading the next page required a random I/O. If there are
Level 1 automatic
If 10 rows per 4K page, then I/O time = 1 ms per row
Level 2 support by DBMS or disk system
May reduce sequential I/O time per row to 0.1 ms
Level 3 support by Disk Server
May reduce sequential I/O time per row to 0.01 ms 
10 rows per page and a random I/O takes 10 ms, the I/O time for a sequential read is then 1 ms per row. SQL Server allocates space for indexes and tables in chunks of eight 8K pages. DB2 for z/OS allocates space in extents; an extent may consist of many megabytes, all pages of a medium-size index or table often residing in one extent. The logically adjacent pages are then physically next to each other. In Oracle (and several other systems) the placement of pages depends on file options chosen. Many databases are now stored on RAID 5 or RAID 10 disks. RAID5 provides

striping with redundancy. RAID 10, actually RAID 1 + RAID 0, provides

striping with mirroring.

                       The terms redundancy and mirroring are defined in the glossary. RAID striping means storing the first stripe of a table or index (e.g., 32K) on drive 1, the second stripe on drive 2, and so on. This obviously balances the load on a set of drives, but how does it affect sequential performance? Surprisingly, the effect
may be positive. Let us consider a full table scan where the table pages are striped over seven drives. The disk server may now read ahead from seven drives in parallel. When the DBMS asks for the next set of pages, they are likely to be already in the read cache of the disk server. This combination of prefetch activity may bring the I/O time down to 0.1 ms per 4K page (level 3 in Fig. 2.10). The 0.1-ms figure is achievable with fast channels and a disk server that is able to detect that a file is being processed sequentially.
Alternatives to B-tree Indexes

Bitmap Indexes:
                         Bitmap indexes consist of a bitmap (bit vector) for each distinct column value. Each bitmap has one bit for every row in the table. The bit is on if the related row has the value represented by the bitmap.
Bitmap indexes make it feasible to perform queries with complex and unpredictable compound predicates against a large table. This is because ANDing and ORing (covered in Chapters 6 and 10) bitmap indexes is very fast, even when there are hundreds of millions of table rows. The corresponding operation with B-tree indexes requires collecting a large number of pointers and sorting large pointer sets. On the other hand a B-tree index, containing the appropriate columns, eliminates table access. This is important because random I/Os to a large table are very slow (about 10 ms). With a bitmap index, the table rows must be accessed unless
the SELECT list contains only COUNTs. Therefore, the total execution time using a bitmap index may be much longer than with a tailored, (fat) B-tree index. Bitmap indexes should be used when the following conditions are true:
1. The number of possible predicate combinations is so large that designing
adequate B-tree indexes is not feasible.
2. The simple predicates have a high filter factor (considered in Chapter 3),
but the compound predicate (WHERE clause) has a low filter factor—or
the SELECT list contains COUNTs only.
3. The updates are batched (no lock contention).

Hashing:	
                              Hashing—or randomizing—is a fast way to retrieve a single table row whose primary key value is known. When the row is stored, the table page is chosen by using a randomizer, which converts the primary key value into a page number between 1 and N. If that page is already full, the row is placed in another page, chained to the home page. When a SELECT . . . WHERE PK = :PK is issued, the randomizer is used again to determine the home page number. The row is either found in that page or by following the chain that starts on that page. Randomizers were commonly used in nonrelational DBMSs such as IMS and IDMS. When the area size (N) was right—corresponding to about 70% space utilization, the number of I/Os to retrieve a record could have been as low as 1.1, which was very low compared to an index (a three-level index at that
time could require two I/Os—plus a third to access the record itself). However, the space utilizations required constant monitoring and adjustments. When many records were added, the overflow chains grew and the number of I/Os increased dramatically. Furthermore, range predicates were not supported. Oracle provides
an option for the conversion of a primary key value to a database page number by hashing.

Many Meanings of Cluster:
                               Cluster is a term that is widely used throughout relational literature. It is also a source of much confusion because its meaning varies from product to product. In DB2 (z/OS, LUW, VM, and VSE), a clustering index refers to an index that defines the home page for a table row being inserted. An index is clustered if there is a high correlation between the order of the index rows and the table rows. A table can have only one clustering index but, at a given point in time, several  indexes may be clustered. The CLUSTERRATIO of an index is a measure of the correlation between the order of the index rows and the table rows. It is used by the optimizer to estimate I/O times. DB2 tables normally have a clustering index. In SQL Server, the index that stores the table rows is called clustered; a clustered index is only defined if an index-only table is required. The other indexes (SQL Server term: nonclustered indexes) point to the clustered index. In Oracle, the word cluster is used for the option to interleave table rows (clustered tables). It has nothing to do with the clustering index that we have taken to determine the sequence of the table rows. DB2 for LUW V8 has an option called multidimensional clustering; this enables related rows to be grouped together. Refer to Chapter 13 for more details.
Important:
               In the diagrams throughout this book, C is used to mark the index that defines the home page for a table row that is being inserted. In our calculations, the table rows are assumed to be in that same order. For a product that does not support a clustering index in this sense, the order of the table rows is determined when reorganizing and reloading the table.
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