
Platform Independent Video/Voice over IP

1. INTRODUCTION

Division of Computer Engineering, CUSAT. 1

Platform Independent Video/Voice over IP

This project is aimed at developing a platform independent video or voice

communication over Internet Protocol. Platform independent Video/Voice over Internet

protocol is implemented by providing user interfaces at different terminals in an Ethernet.

Each of these interfaces consists of components for providing textual, video and voice

communication to the selected user currently logged to the system.

 The main components of the project are following:

 List of users currently logged into the Ethernet

 Text Interfaces for sending text messages to selected user

 A voice-recording feature for recording and sending voice message.

 An interface for recording and playing audio file.

 A video viewing section to view video streams send from the connected user’s

web camera.

Besides the interface component the system requires a voice recording facility

through a microphone and a video recording facility through a web camera.

1.1 Functionality Description:

Whenever we invoke the system, the list of users displays the list of all users

currently logged to the Ethernet. It automatically includes the users who enter the

network during out login period into the list. Selecting any of these users will invoke an

interface designed for communication with the other users. The default mode of

communication is text messaging. Activating other modes of communications like voice

and video will result in a simultaneous communication with the other user in multiple

modes.

Division of Computer Engineering, CUSAT. 2

Platform Independent Video/Voice over IP

2. SYSTEM STUDY

Division of Computer Engineering, CUSAT. 3

Platform Independent Video/Voice over IP

The First phase of software development is system study and analysis. The importance of

system analysis phase is the establishment of the requirements for the system to be

developed and installed. Analyzing the project to understand the complexity forms the

vital part of the system study. Problematic areas are identified and information is

collected. Fast finding or gathering is essential to any analysis of requirements. System

analysis is the system approach to study and solution of problems using computer-based

system. A system is an orderly grouping of independent components linked together

according to a plan to achieve a specific objective. Each component is a part of the total

system and has to do its share of work for the system to achieve the desired goal. This

process is also referred to as life cycle methodology. Different stages of life cycle are:

Recognition of need: One must know what the objective is, before it can

be achieved.

Feasibility study: A test of a system proposal according to its workability

impact and orientation ability to meet user needs and effective use of resource.

Analysis: Analysis is a detailed study of various operations performed by

the system and their relationships within and outside the system.

Design: Here we determine how the output is to be produced and in which

format. Input data and master files have to be designed to meet the requirements

of the proposed output.

Implementation: It is concerned with user training, site preparing and file

conversion. During the final testing user acceptance is tested followed by user

training.

Division of Computer Engineering, CUSAT. 4

Platform Independent Video/Voice over IP

System analysis includes investigation and possible changes to the existing system.

Analysis is used to gain and understanding of the existing system and what is required of

it. At the conclusion of the system analysis there is the system description and set of

requirements for a new system. If there is no such existing system then analysis only

defines the requirements. This new system may build afresh or by changing the existing

system. Development begins by defining a model of the new system and continues this

model to a working system. The model of the system shows what the system must do to

satisfy these requirements. Finally data modes are converted to a database and processed

to user procedures and computer programs

2.1 Existing System

Nowadays, people generally depend upon conventional means of mass information and

entertainment like newspapers, television etc for their share of news, information and

entertainment. These means are by far restrictive and the user can’t exercise his own

choice regarding the type news he wants or the sort of entertainment he likes. He might

not always have access to critical information which might be urgently required for any

activity of his. But with the penetration and awareness of E-connectivity the huge world

of computer based infotainment is thrown open to him/her. The users can now exercise

their own choice regarding what sort of information they want and readily access it. But

they still have to find their stuff on the net. At present there are a very few portals which

offer dedicated customer services. Most of them are of specialized nature and the user has

to go hopping from one site to another to gather what they need in course of their daily

life.

Division of Computer Engineering, CUSAT. 5

Platform Independent Video/Voice over IP

2.2 Limitations of Existing System

• At present there are a very few portals which offer dedicated customer services.

• The data and information provided are not regularly updated and hence might not

be totally reliable

• Also most of the sites are of specialized. Nature and user has to go hopping from

one site to another to gather what they need in course of their daily life.

• The information is spread all over the cyberspace and it often places the user in a

dilemma as to where to find what he wants.

2.3 The proposed system

In the proposed system we plane to bring the services provided by a range of websites

under a single window, thereby saving the user the time and effort required to search

around at numerous sites. Initially the service are planned to be of basic nature which will

cater to the minimum needs of an individual. The portal under consideration will

provide dedicated services in some selected fields to the customer. The data and

information provided would be regularly updated and hence the customer need not worry

about the accuracy and reliability of the data. The portal is proposed to be of general

nature and the visitors can find all information of daily interest under a single roof. This

will save a whole lot of their time and effort. . Considering the hectic lifestyle which most

people have to keep up with in today’s world, saving of time and avoidable effort would

be most welcome.

Division of Computer Engineering, CUSAT. 6

Platform Independent Video/Voice over IP

3. SYSTEM REQUIREMENTS

Division of Computer Engineering, CUSAT. 7

Platform Independent Video/Voice over IP

3.1 Hardware requirements:

 Processor : Pentium IV 850 MHz or above

 Main Memory : 128 MB RAM

 Hard Disk : 20 GB

 Network Interface Card : 100 MB Ethernet Card

 I/O Devices : Web Cam, Head Phone, Keyboard, Mouse,

VGA compatible Monitor

3.2 Software requirements:

 The proposed system will be functional over Internet Protocol implemented

Ethernets. The functionality will be developed using Java 2 standard edition 1.4 and with

java packages like Java Media Framework (JMF) etc.

Language : JAVA

Platform : Windows XP

Division of Computer Engineering, CUSAT. 8

Platform Independent Video/Voice over IP

4. SOFTWARE DESCRIPTION

Division of Computer Engineering, CUSAT. 9

Platform Independent Video/Voice over IP

4.1 JAVA

Java was developed at Sun Microsystems. Work on Java initially began with the goal of

creating a platform-independent language and OS for consumer electronics. The original

intent was to use C++, but as work progressed in this direction, developers identified that

creating their own language would serve them better. The effort towards consumer

electronics led the Java team, then known as First Person Inc., towards developing h/w

and s/w for the delivery of video-on-demand with Time Warner.

Unfortunately (or fortunately for us) Time Warner selected Silicon Graphics as the

vendor for video-on-demand project. This set back left the First Person team with an

interesting piece of s/w (Java) and no market to place it. Eventually, the natural synergies

of the Java language and the www were noticed, and Java found a market.

Today Java is both a programming language and an environment for executing programs

written in Java Language. Unlike traditional compilers, which convert source code into

machine level instructions, the Java compiler translates java source code into instructions

that are interpreted by the runtime Java Virtual Machine. So unlike languages like C and

C++, on which Java is based, Java is an interpreted language.

Java is the first programming language designed from ground up with network

programming in mind. The core API for Java includes classes and interfaces that provide

uniform access to a diverse set of network protocols. As the Internet and network

programming have evolved, Java has maintained its cadence. New APIs and toolkits have

expanded the available options for the Java network programmer.

Division of Computer Engineering, CUSAT. 10

Platform Independent Video/Voice over IP

Why Is Java Interesting?

In one of their early papers about the language, Sun described Java as follows: Java: A

simple, object-oriented, distributed, interpreted, robust, secure, architecture neutral,

portable, high-performance, multithreaded, and dynamic language.

Sun acknowledges that this is quite a string of buzzwords, but the fact is that, for the most

part, they aptly describe the language. In order to understand why Java is so interesting,

let's take a look at the language features behind the buzzwords.

Object-Oriented

Java is an object-oriented programming language. As a programmer, this means that you

focus on the data in your application and methods that manipulate that data, rather than

thinking strictly in terms of procedures. If you're accustomed to procedure-based

programming in C, you may find that you need to change how you design your programs

when you use Java. Once you see how powerful this new paradigm is, however, you'll

quickly adjust to it. In an object-oriented system, a class is a collection of data and

methods that operate on that data. Taken together, the data and methods describe the state

and behavior of an object. Classes are arranged in a hierarchy, so that a subclass can

inherit behavior from its superclass. A class hierarchy always has a root class; this is a

class with very general behavior. Java comes with an extensive set of classes, arranged in

packages, that you can use in your programs. For example, Java provides classes that

create graphical user interface components (the java.awt package), classes that handle

input and output (the java.io package), and classes that support networking functionality

(the java.net package). The Object class (in the java.lang package) serves as the root of

the Java class hierarchy. Unlike C++, Java was designed to be object-oriented from the

ground up. Most things in Java are objects; the primitive numeric, character, and boolean

types are the only exceptions. Strings are represented by objects in Java, as are other

important language constructs like threads. A class is the basic unit of compilation and of

execution in Java; all Java programs are classes. While Java is designed to look like C++,

Division of Computer Engineering, CUSAT. 11

Platform Independent Video/Voice over IP

you'll find that Java removes many of the complexities of that language. If you are a C++

programmer, you'll want to study the object-oriented constructs in Java carefully.

Although the syntax is often similar to C++, the behavior is not nearly so analogous. For

a complete description of the object-oriented features of Java, The object oriented

language used to create executable contents such as applications and applets.

Interpreted

Java is an interpreted language: the Java compiler generates byte-codes for the Java

Virtual Machine (JVM), rather than native machine code. To actually run a Java program,

you use the Java interpreter to execute the compiled byte-codes. Because Java byte-codes

are platform-independent, Java programs can run on any platform that the JVM (the

interpreter and run-time system) has been ported to. In an interpreted environment, the

standard "link" phase of program development pretty much vanishes. If Java has a link

phase at all, it is only the process of loading new classes into the environment, which is

an incremental, lightweight process that occurs at run-time. This is in contrast with the

slower and more cumbersome compile-link-run cycle of languages like C and C++.

Architecture Neutral and Portable

Because Java programs are compiled to an architecture neutral byte-code format, a Java

application can run on any system, as long as that system implements the Java Virtual

Machine. This is a particularly important for applications distributed over the Internet or

other heterogeneous networks. But the architecture neutral approach is useful beyond the

scope of network-based applications. As an application developer in today's software

market, you probably want to develop versions of your application that can run on PCs,

Macs, and UNIX workstations. With multiple flavors of UNIX, Windows 95, and

Windows NT on the PC, and the new PowerPC Macintosh, it is becoming increasingly

difficult to produce software for all of the possible platforms. If you write your

application in Java, however, it can run on all platforms. The fact that Java is interpreted

and defines a standard, architecture neutral, byte-code format is one big part of being

portable. But Java goes even further, by making sure that there are no "implementation-

dependent" aspects of the language specification. For example, Java explicitly specifies

Division of Computer Engineering, CUSAT. 12

Platform Independent Video/Voice over IP

the size of each of the primitive data types, as well as its arithmetic behavior. This differs

from C, for example, in which an int type can be 16, 32, or 64 bits long depending on the

platform. While it is technically possible to write non-portable programs in Java, it is

relatively easy to avoid the few platform-dependencies that are exposed by the Java API

and write truly portable or "pure" Java programs. Sun's new "100% Pure Java" program

helps developers ensure (and certify) that their code is portable. Programmers need only

to make simple efforts to avoid non-portable pitfalls in order to live up to Sun's

trademarked motto "Write Once, Run Anywhere."

Dynamic and Distributed

Java is a dynamic language. Any Java class can be loaded into a running Java interpreter

at any time. These dynamically loaded classes can then be dynamically instantiated.

Native code libraries can also be dynamically loaded. Classes in Java are represented by

the Class class; you can dynamically obtain information about a class at run-time. This is

especially true in Java 1.1, with the addition of the Reflection API. Java is also called a

distributed language. This means, simply, that it provides a lot of high-level support for

networking. For example, the URL class and OArelated classes in the java.net package

make it almost as easy to read a remote file or resource as it is to read a local file.

Similarly, in Java 1.1, the Remote Method Invocation (RMI) API allows a Java program

to invoke methods of remote Java objects, as if they were local objects. (Java also

provides traditional lower-level networking support, including datagrams and stream-

based connections through sockets.) The distributed nature of Java really shines when

combined with its dynamic class loading capabilities. Together, these features make it

possible for a Java interpreter to download and run code from across the Internet. (As

we'll see below, Java implements strong security measures to be sure that this can be done

safely.) This is what happens when a Web browser downloads and runs a Java applet, for

example. Scenarios can be more complicated than this, however. Imagine a multi-media

word processor written in Java. When this program is asked to display some type of data

that it has never encountered before, it might dynamically download a class from the

network that can parse the data, and then dynamically download another class (probably a

Java "bean") that can display the data within a compound document. A program like this

Division of Computer Engineering, CUSAT. 13

Platform Independent Video/Voice over IP

uses distributed resources on the network to dynamically grow and adapt to the needs of

its user.

Simple

Java is a simple language. The Java designers were trying to create a language that a

programmer could learn quickly, so the number of language constructs has been kept

relatively small. Another design goal was to make the language look familiar to a

majority of programmers, for ease of migration. If you are a C or C++ programmer, you'll

find that Java uses many of the same language constructs as C and C++. In order to keep

the language both small and familiar, the Java designers removed a number of features

available in C and C++. These features are mostly ones that led to poor programming

practices or were rarely used. For example, Java does not support the goto statement;

instead, it provides labeled break and continue statements and exception handling. Java

does not use header files and it eliminates the C preprocessor. Because Java is object-

oriented, C constructs like struct and union have been removed. Java also eliminates the

operator overloading and multiple inheritance features of C++. Perhaps the most

important simplification, however, is that Java does not use pointers. Pointers are one of

the most bug-prone aspects of C and C++ programming. Since Java does not have

structures, and arrays and strings are objects, there's no need for pointers. Java

automatically handles the referencing and dereferencing of objects for you. Java also

implements automatic garbage collection, so you don't have to worry about memory

management issues. All of this frees you from having to worry about dangling pointers,

invalid pointer references, and memory leaks, so you can spend your time developing the

functionality of your programs. If it sounds like Java has gutted C and C++, leaving only

a shell of a programming language, hold off on that judgment for a bit, Java is actually a

full-featured and very elegant language.

Robust

Java has been designed for writing highly reliable or robust software. Java certainly

doesn't eliminate the need for software quality assurance; it's still quite possible to write

buggy software in Java. However, Java does eliminate certain types of programming

errors, which makes it considerably easier to write reliable software. Java is a strongly

Division of Computer Engineering, CUSAT. 14

Platform Independent Video/Voice over IP

typed language, which allows for extensive compile-time checking for potential type-

mismatch problems. Java is more strongly typed than C++, which inherits a number of

compile-time laxities from C, especially in the area of function declarations. Java requires

explicit method declarations; it does not support C-style implicit declarations. These

stringent requirements ensure that the compiler can catch method invocation errors,

which leads to more reliable programs. One of the things that makes Java simple is its

lack of pointers and pointer arithmetic. This feature also increases the robustness of Java

programs by abolishing an entire class of pointer-related bugs. Similarly, all accesses to

arrays and strings are checked at run-time to ensure that they are in bounds, eliminating

the possibility of overwriting memory and corrupting data. Casts of objects from one type

to another are also checked at run-time to ensure that they are legal. Finally, and very

importantly, Java's automatic garbage collection prevents memory leaks and other

pernicious bugs related to memory allocation and deallocation. Exception handling is

another feature in Java that makes for more robust programs. An exception is a signal that

some sort of exceptional condition, such as a "file not found" error, has occurred. Using

the try/catch/finally statement, you can group all of your error handling code in one place,

which greatly simplifies the task of error handling and recovery.

Secure

One of the most highly touted aspects of Java is that it's a secure language. This is

especially important because of the distributed nature of Java. Without an assurance of

security, you certainly wouldn't want to download code from a random site on the

Internet and let it run on your computer. Yet this is exactly what people do with Java

applets every day. Java was designed with security in mind, and provides several layers

of security controls that protect against malicious code, and allow users to comfortably

run untrusted programs such as applets. At the lowest level, security goes hand-in-hand

with robustness. As we've already seen, Java programs cannot forge pointers to memory,

or overflow arrays, or read memory outside of the bounds of an array or string. These

features are one of Java's main defenses against malicious code. By totally disallowing

any direct access to memory, an entire huge, messy class of security attacks is ruled out.

Division of Computer Engineering, CUSAT. 15

Platform Independent Video/Voice over IP

The second line of defense against malicious code is the byte-code verification process

that the Java interpreter performs on any untrusted code it loads. These verification steps

ensure that the code is well-formed--that it doesn't overflow or underflow the stack or

contain illegal byte-codes, for example. If the byte-code verification step was skipped,

inadvertently corrupted or maliciously crafted byte-codes might be able to take advantage

of implementation weaknesses in a Java interpreter. Another layer of security protection

is commonly referred to as the "sandbox model": untrusted code is placed in a "sandbox,"

where it can play safely, without doing any damage to the "real world," or full Java

environment. When an applet, or other untrusted code, is running in the sandbox, there

are a number of restrictions on what it can do. The most obvious of these restrictions is

that it has no access whatsoever to the local file system. There are a number of other

restrictions in the sandbox as well. These restrictions are enforced by a Security Manager

class. The model works because all of the core Java classes that perform sensitive

operations, such as file system access, first ask permission of the currently installed

Security Manager. If the call is being made, directly or indirectly, by untrusted code, the

security manager throws an exception, and the operation is not permitted. Finally, in Java

1.1, there is another possible solution to the problem of security. By attaching a digital

signature to Java code, the origin of that code can be established in a cryptographically

secure and unforgeable way. If you have specified that you trust a person or organization,

then code that bears the digital signature of that trusted entity is trusted, even when

loaded over the network, and may be run without the restrictions of the sandbox model.

Of course, security isn't a black-and-white thing. Just as a program can never be

guaranteed to be 100% bug-free, no language or environment can be guaranteed 100%

secure. With that said, however, Java does seem to offer a practical level of security for

most applications. It anticipates and defends against most of the techniques that have

historically been used to trick software into misbehaving, and it has been intensely

scrutinized by security experts and hackers alike. Some security holes were found in early

versions of Java, but these flaws were fixed almost as soon as they were found, and it

seems reasonable to expect that any future holes will be fixed just as quickly.

High-Performance

Division of Computer Engineering, CUSAT. 16

Platform Independent Video/Voice over IP

Java is an interpreted language, so it is never going to be as fast as a compiled language

like C. Java 1.0 was said to be about 20 times slower than C. Java 1.1 is nearly twice as

fast as Java 1.0, however, so it might be reasonable to say that compiled C code runs ten

times as fast as interpreted Java byte-codes. But before you throw up your arms in

disgust, be aware that this speed is more than adequate to run interactive, GUI and

network-based applications, where the application is often idle, waiting for the user to do

something, or waiting for data from the network. Furthermore, the speed-critical sections

of the Java run-time environment, that do things like string concatenation and

comparison, are implemented with efficient native code. As a further performance boost,

many Java interpreters now include "just in time" compilers that can translate Java byte-

codes into machine code for a particular CPU at run-time. The Java byte-code format was

designed with these "just in time" compilers in mind, so the process of generating

machine code is fairly efficient and it produces reasonably good code. In fact, Sun claims

that the performance of byte-codes converted to machine code is nearly as good as native

C or C++. If you are willing to sacrifice code portability to gain speed, you can also write

portions of your program in C or C++ and use Java native methods to interface with this

native code. When you are considering performance, it's important to remember where

Java falls in the spectrum of available programming languages. At one end of the

spectrum, there are high-level, fully-interpreted scripting languages such as Tcl and the

UNIX shells. These languages are great for prototyping and they are highly portable, but

they are also very slow. At the other end of the spectrum, you have low-level compiled

languages like C and C++. These languages offer high performance, but they suffer in

terms of reliability and portability. Java falls in the middle of the spectrum. The

performance of Java's interpreted byte-codes is much better than the high-level scripting

languages (even Perl), but it still offers the simplicity and portability of those languages.

Multithreaded

In a GUI-based network application such as a Web browser, it's easy to imagine multiple

things going on at the same time. A user could be listening to an audio clip while she is

scrolling a page, and in the background the browser is downloading an image. Java is a

multithreaded language; it provides support for multiple threads of execution (sometimes

Division of Computer Engineering, CUSAT. 17

Platform Independent Video/Voice over IP

called lightweight processes) that can handle different tasks. An important benefit of

multithreading is that it improves the interactive performance of graphical applications

for the user. If you have tried working with threads in C or C++, you know that it can be

quite difficult. Java makes programming with threads much easier, by providing built-in

anguage support for threads. The java.lang package provides a Thread class that supports

methods to start and stop threads and set thread priorities, among other things. The Java

language syntax also supports threads directly with the synchronized keyword. This

keyword makes it extremely easy to mark sections of code or entire methods that should

only be run by a single thread at a time. While threads are "wizard-level" stuff in C and

C++, their use is commonplace in Java. Because Java makes threads so easy to use, the

Java class libraries require their use in a number of places. For example, any applet that

performs animation does so with a thread. Similarly, Java does not support asynchronous,

non-blocking I/O with notification through signals or interrupts--you must instead create

a thread that blocks on every I/O channel you are interested in.

Java Runtime Environment

The runtime environment used to execute the code. It is made up of the java

language and java virtual machine. It is portable and it is platform neutral.

Java tools

It is used by the developers to create java code. They include java compiler, java

interpreter, classes, libraries and applet viewer.

Java Application

Applications are programs written in java to carry out certain tasks on stand alone

local computer. Execution of a stand alone program involves two steps.

Compiling the source code into byte code using javac.

Executing byte code program using java interpreter.

Java Applets

Division of Computer Engineering, CUSAT. 18

Platform Independent Video/Voice over IP

Java applets are pieces of java code that are embedded in HTML document using

the applet tag. When the browser encounters such code it automatically download it and

execute it.

Java Virtual Machine

It is a specification to which java codes must be written. All java code is to be

compiled to be used in this nonexistent virtual machine. Writing the code which compiles

in JVM ensures platform independence.

 ADVANTAGES OF JAVA

Java is Robust

Robust programs are those reliable programs which are unlikely to fail even under

the most unlikely conditions. Many languages like C do not have this feature because

they are relaxed in terms of type checking in terms of programming errors. Java is strict

about type declarations and does not allow automatic typecasting. Also it uses a pointer

model that does not overwrite memory or corrupt data.

Java is secure

Java allows creation of virus-free, tamper free systems to be created. It ensures

security in the following ways.

Pointers and memory allocations are removed during compile time.

All byte codes are verified by the interpreter before executing.

All Java applets are treated as untrusted code executing in trusted environment.

Because Java was written to support distributed applications over the computer networks,

it can be used with a variety of CPU and operating system architectures. To achieve this

goal a compiler was created that produces architecture-neutral object files from Java

code.

Java is portable

Java byte code will be executed on any computer that has Java run time

environment. The portability is achieved in the following ways.

Java primitive data types and the behavior of arithmetic operations on these data types

are explicitly specified.

Division of Computer Engineering, CUSAT. 19

Platform Independent Video/Voice over IP

The Java libraries include portable interfaces for each platform on which the run time

environment is available.

The entire Java system itself is portable.

Java is small

Because java was designed to run on small computers, java system is relatively

small for a programming language. It can run efficiently on PCs with 4 MB RAM or

more. The java interpreter takes up only a few hundred kilo bytes.

Java is garbage collected

Java programs don’t have to worry about memory management. The Java system

has a built in program called the garbage collector, which scans the memory and

automatically frees the memory chunks that are not in use.

Java is dynamic

Fundamentally distributed computer environments must be dynamic. Java is

capable of dynamically linking new libraries, methods and instance variables as it goes

without breaking and without concern.

Division of Computer Engineering, CUSAT. 20

Platform Independent Video/Voice over IP

4.2 J2EE

Distributed Multitiered Applications

The J2EE platform uses a distributed multitiered application model for enterprise

applications. Application logic is divided into components according to function, and the

various application components that make up a J2EE application are installed on different

machines depending on the tier in the multitiered J2EE environment to which the

application component belongs. Figure 1-1 shows two multitiered J2EE applications

divided into the tiers described in the following list. The J2EE application parts shown in

Figure 1-1 are presented in J2EE Components.

• Client-tier components run on the client machine.

• Web-tier components run on the J2EE server.

• Business-tier components run on the J2EE server.

• Enterprise information system (EIS)-tier software runs on the EIS server.

Although a J2EE application can consist of the three or four tiers shown in Figure 1-1,

J2EE multitiered applications are generally considered to be three-tiered applications

because they are distributed over three locations: client machines, the J2EE server

machine, and the database or legacy machines at the back end. Three-tiered applications

that run in this way extend the standard two-tiered client and server model by placing a

multithreaded application server between the client application and back-end storage.

Division of Computer Engineering, CUSAT. 21

Platform Independent Video/Voice over IP

 Figure 1-1 Multitiered Applications

J2EE Components

J2EE applications are made up of components. A J2EE component is a self-contained

functional software unit that is assembled into a J2EE application with its related classes

and files and that communicates with other components. The J2EE specification defines

the following J2EE components:

• Application clients and applets are components that run on the client.

• Java Servlet and JavaServer Pages (JSP) technology components are web

components that run on the server.

• Enterprise JavaBeans (EJB) components (enterprise beans) are business

components that run on the server.

Division of Computer Engineering, CUSAT. 22

Platform Independent Video/Voice over IP

J2EE components are written in the Java programming language and are compiled in the

same way as any program in the language. The difference between J2EE components and

"standard" Java classes is that J2EE components are assembled into a J2EE application,

are verified to be well formed and in compliance with the J2EE specification, and are

deployed to production, where they are run and managed by the J2EE server.

J2EE Clients

A J2EE client can be a web client or an application client.

Web Clients

A web client consists of two parts: (1) dynamic web pages containing various types of

markup language (HTML, XML, and so on), which are generated by web components

running in the web tier, and (2) a web browser, which renders the pages received from the

server.

A web client is sometimes called a thin client. Thin clients usually do not query

databases, execute complex business rules, or connect to legacy applications. When you

use a thin client, such heavyweight operations are off-loaded to enterprise beans

executing on the J2EE server, where they can leverage the security, speed, services, and

reliability of J2EE server-side technologies.

Applets

A web page received from the web tier can include an embedded applet. An applet is a

small client application written in the Java programming language that executes in the

Java virtual machine installed in the web browser. However, client systems will likely

need the Java Plug-in and possibly a security policy file in order for the applet to

successfully execute in the web browser.

Web components are the preferred API for creating a web client program because no

plug-ins or security policy files are needed on the client systems. Also, web components

enable cleaner and more modular application design because they provide a way to

Division of Computer Engineering, CUSAT. 23

Platform Independent Video/Voice over IP

separate applications programming from web page design. Personnel involved in web

page design thus do not need to understand Java programming language syntax to do

their jobs.

Application Clients

An application client runs on a client machine and provides a way for users to handle

tasks that require a richer user interface than can be provided by a markup language. It

typically has a graphical user interface (GUI) created from the Swing or the Abstract

Window Toolkit (AWT) API, but a command-line interface is certainly possible.

Application clients directly access enterprise beans running in the business tier. However,

if application requirements warrant it, an application client can open an HTTP connection

to establish communication with a servlet running in the web tier.

The JavaBeans Component Architecture

The server and client tiers might also include components based on the JavaBeans

component architecture (JavaBeans components) to manage the data flow between an

application client or applet and components running on the J2EE server, or between

server components and a database. JavaBeans components are not considered J2EE

components by the J2EE specification.

JavaBeans components have properties and have get and set methods for accessing the

properties. JavaBeans components used in this way are typically simple in design and

implementation but should conform to the naming and design conventions outlined in the

JavaBeans component architecture.

J2EE Server Communications

Figure 1-2 shows the various elements that can make up the client tier. The client

communicates with the business tier running on the J2EE server either directly or, as in

the case of a client running in a browser, by going through JSP pages or servlets running

in the web tier.

Division of Computer Engineering, CUSAT. 24

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview2.html#wp79786

Platform Independent Video/Voice over IP

Your J2EE application uses a thin browser-based client or thick application client. In

deciding which one to use, you should be aware of the trade-offs between keeping

functionality on the client and close to the user (thick client) and off-loading as much

functionality as possible to the server (thin client). The more functionality you off-load to

the server, the easier it is to distribute, deploy, and manage the application; however,

keeping more functionality on the client can make for a better perceived user experience.

Figure 1-2 Server Communications

Web Components

J2EE web components are either servlets or pages created using JSP technology (JSP

pages). Servlets are Java programming language classes that dynamically process

requests and construct responses. JSP pages are text-based documents that execute as

servlets but allow a more natural approach to creating static content.

Static HTML pages and applets are bundled with web components during application

assembly but are not considered web components by the J2EE specification. Server-side

utility classes can also be bundled with web components and, like HTML pages, are not

considered web components.

As shown in Figure 1-3, the web tier, like the client tier, might include a JavaBeans

component to manage the user input and send that input to enterprise beans running in the

business tier for processing.

Division of Computer Engineering, CUSAT. 25

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview2.html#wp83971

Platform Independent Video/Voice over IP

Business Components

Business code, which is logic that solves or meets the needs of a particular business

domain such as banking, retail, or finance, is handled by enterprise beans running in the

business tier. Figure 1-4 shows how an enterprise bean receives data from client

programs, processes it (if necessary), and sends it to the enterprise information system

tier for storage. An enterprise bean also retrieves data from storage, processes it (if

necessary), and sends it back to the client program.

Figure 1-3 Web Tier and J2EE Applications

Figure 1-4 Business and EIS Tiers

There are three kinds of enterprise beans: session beans, entity beans, and message-driven

beans. A session bean represents a transient conversation with a client. When the client

finishes executing, the session bean and its data are gone. In contrast, an entity bean

represents persistent data stored in one row of a database table. If the client terminates or

Division of Computer Engineering, CUSAT. 26

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview2.html#wp79816

Platform Independent Video/Voice over IP

if the server shuts down, the underlying services ensure that the entity bean data is saved.

A message-driven bean combines features of a session bean and a Java Message Service

(JMS) message listener, allowing a business component to receive JMS messages

asynchronously.

Enterprise Information System Tier

The enterprise information system tier handles EIS software and includes enterprise

infrastructure systems such as enterprise resource planning (ERP), mainframe transaction

processing, database systems, and other legacy information systems. For example, J2EE

application components might need access to enterprise information systems for database

connectivity.

J2EE Containers

Normally, thin-client multitiered applications are hard to write because they involve

many lines of intricate code to handle transaction and state management, multithreading,

resource pooling, and other complex low-level details. The component-based and

platform-independent J2EE architecture makes J2EE applications easy to write because

business logic is organized into reusable components. In addition, the J2EE server

provides underlying services in the form of a container for every component type.

Because you do not have to develop these services yourself, you are free to concentrate

on solving the business problem at hand.

Container Services

Containers are the interface between a component and the low-level platform-specific

functionality that supports the component. Before a web component, enterprise bean, or

application client component can be executed, it must be assembled into a J2EE module

and deployed into its container.

Division of Computer Engineering, CUSAT. 27

Platform Independent Video/Voice over IP

The assembly process involves specifying container settings for each component in the

J2EE application and for the J2EE application itself. Container settings customize the

underlying support provided by the J2EE server, including services such as security,

transaction management, Java Naming and Directory Interface (JNDI) lookups, and

remote connectivity. Here are some of the highlights:

• The J2EE security model lets you configure a web component or enterprise bean

so that system resources are accessed only by authorized users.

• The J2EE transaction model lets you specify relationships among methods that

make up a single transaction so that all methods in one transaction are treated as a

single unit.

• JNDI lookup services provide a unified interface to multiple naming and directory

services in the enterprise so that application components can access naming and

directory services.

• The J2EE remote connectivity model manages low-level communications

between clients and enterprise beans. After an enterprise bean is created, a client

invokes methods on it as if it were in the same virtual machine.

Because the J2EE architecture provides configurable services, application components

within the same J2EE application can behave differently based on where they are

deployed. For example, an enterprise bean can have security settings that allow it a

certain level of access to database data in one production environment and another level

of database access in another production environment.

The container also manages nonconfigurable services such as enterprise bean and servlet

life cycles, database connection resource pooling, data persistence, and access to the

J2EE platform APIs. Although data persistence is a nonconfigurable service, the J2EE

architecture lets you override container-managed persistence by including the appropriate

code in your enterprise bean implementation when you want more control than the

default container-managed persistence provides. For example, you might use bean-

managed persistence to implement your own finder (search) methods or to create a

customized database cache.

Division of Computer Engineering, CUSAT. 28

Platform Independent Video/Voice over IP

Container Types

The deployment process installs J2EE application components in the J2EE containers

illustrated in Figure 1-5.

Figure 1-5 J2EE Server and Containers

J2EE server

The runtime portion of a J2EE product. A J2EE server provides EJB and web

containers.

Enterprise JavaBeans (EJB) container

Manages the execution of enterprise beans for J2EE applications. Enterprise beans

and their container run on the J2EE server.

Web container

Manages the execution of JSP page and servlet components for J2EE applications.

Web components and their container run on the J2EE server.

Application client container

Division of Computer Engineering, CUSAT. 29

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview3.html#wp79854

Platform Independent Video/Voice over IP

Manages the execution of application client components. Application clients and

their container run on the client.

Applet container

Manages the execution of applets. Consists of a web browser and Java Plug-in

running on the client together.

Web Services Support

Web services are web-based enterprise applications that use open, XML-based standards

and transport protocols to exchange data with calling clients. The J2EE platform provides

the XML APIs and tools you need to quickly design, develop, test, and deploy web

services and clients that fully interoperate with other web services and clients running on

Java-based or non-Java-based platforms.

To write web services and clients with the J2EE XML APIs, all you do is pass parameter

data to the method calls and process the data returned; or for document-oriented web

services, you send documents containing the service data back and forth. No low-level

programming is needed because the XML API implementations do the work of

translating the application data to and from an XML-based data stream that is sent over

the standardized XML-based transport protocols. These XML-based standards and

protocols are introduced in the following sections.

The translation of data to a standardized XML-based data stream is what makes web

services and clients written with the J2EE XML APIs fully interoperable. This does not

necessarily mean that the data being transported includes XML tags because the

transported data can itself be plain text, XML data, or any kind of binary data such as

audio, video, maps, program files, computer-aided design (CAD) documents and the like.

Division of Computer Engineering, CUSAT. 30

Platform Independent Video/Voice over IP

The next section introduces XML and explains how parties doing business can use XML

tags and schemas to exchange data in a meaningful way.

XML

XML is a cross-platform, extensible, text-based standard for representing data. When

XML data is exchanged between parties, the parties are free to create their own tags to

describe the data, set up schemas to specify which tags can be used in a particular kind of

XML document, and use XML stylesheets to manage the display and handling of the

data.

For example, a web service can use XML and a schema to produce price lists, and

companies that receive the price lists and schema can have their own stylesheets to

handle the data in a way that best suits their needs. Here are examples:

• One company might put XML pricing information through a program to

translate the XML to HTML so that it can post the price lists to its intranet.

• A partner company might put the XML pricing information through a tool

to create a marketing presentation.

• Another company might read the XML pricing information into an

application for processing.

SOAP Transport Protocol

Client requests and web service responses are transmitted as Simple Object Access

Protocol (SOAP) messages over HTTP to enable a completely interoperable exchange

between clients and web services, all running on different platforms and at various

locations on the Internet. HTTP is a familiar request-and response standard for sending

messages over the Internet, and SOAP is an XML-based protocol that follows the HTTP

request-and-response model.

The SOAP portion of a transported message handles the following:

Division of Computer Engineering, CUSAT. 31

Platform Independent Video/Voice over IP

• Defines an XML-based envelope to describe what is in the message and

how to process the message

• Includes XML-based encoding rules to express instances of application-

defined data types within the message

• Defines an XML-based convention for representing the request to the

remote service and the resulting response

WSDL Standard Format

The Web Services Description Language (WSDL) is a standardized XML format for

describing network services. The description includes the name of the service, the

location of the service, and ways to communicate with the service. WSDL service

descriptions can be stored in registries or published on the web (or both). The Sun Java

System Application Server Platform Edition 8 provides a tool for generating the WSDL

specification of a web service that uses remote procedure calls to communicate with

clients.

UDDI and ebXML Standard Formats

Other XML-based standards, such as Universal Description, Discovery and Integration

(UDDI) and ebXML, make it possible for businesses to publish information on the

Internet about their products and web services, where the information can be readily and

globally accessed by clients who want to do business.

Packaging Applications

A J2EE application is delivered in an Enterprise Archive (EAR) file, a standard Java

Archive (JAR) file with an .ear extension. Using EAR files and modules makes it

possible to assemble a number of different J2EE applications using some of the same

components. No extra coding is needed; it is only a matter of assembling (or packaging)

various J2EE modules into J2EE EAR files.

Division of Computer Engineering, CUSAT. 32

Platform Independent Video/Voice over IP

An EAR file (see Figure 1-6) contains J2EE modules and deployment descriptors. A

deployment descriptor is an XML document with an .xml extension that describes the

deployment settings of an application, a module, or a component. Because deployment

descriptor information is declarative, it can be changed without the need to modify the

source code. At runtime, the J2EE server reads the deployment descriptor and acts upon

the application, module, or component accordingly.

There are two types of deployment descriptors: J2EE and runtime. A J2EE deployment

descriptor is defined by a J2EE specification and can be used to configure deployment

settings on any J2EE-compliant implementation. A runtime deployment descriptor is used

to configure J2EE implementation-specific parameters. For example, the Sun Java

System Application Server Platform Edition 8 runtime deployment descriptor contains

information such as the context root of a web application, the mapping of portable names

of an application's resources to the server's resources, and Application Server

implementation-specific parameters, such as caching directives. The Application Server

runtime deployment descriptors are named sun-moduleType.xml and are located in the

same directory as the J2EE deployment descriptor.

Figure 1-6 EAR File Structure

A J2EE module consists of one or more J2EE components for the same container type

and one component deployment descriptor of that type. An enterprise bean module

deployment descriptor, for example, declares transaction attributes and security

authorizations for an enterprise bean. A J2EE module without an application deployment

Division of Computer Engineering, CUSAT. 33

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview5.html#wp86299

Platform Independent Video/Voice over IP

descriptor can be deployed as a stand-alone module. The four types of J2EE modules are

as follows:

• EJB modules, which contain class files for enterprise beans and an EJB

deployment descriptor. EJB modules are packaged as JAR files with a .jar

extension.

• Web modules, which contain servlet class files, JSP files, supporting class

files, GIF and HTML files, and a web application deployment descriptor.

Web modules are packaged as JAR files with a .war (web archive)

extension.

• Application client modules, which contain class files and an application

client deployment descriptor. Application client modules are packaged as

JAR files with a .jar extension.

• Resource adapter modules, which contain all Java interfaces, classes,

native libraries, and other documentation, along with the resource adapter

deployment descriptor. Together, these implement the Connector

architecture (see J2EE Connector Architecture) for a particular EIS.

Resource adapter modules are packaged as JAR files with an .rar (resource

adapter archive) extension.

Development Roles

Reusable modules make it possible to divide the application development and

deployment process into distinct roles so that different people or companies can perform

different parts of the process.

The first two roles involve purchasing and installing the J2EE product and tools. After

software is purchased and installed, J2EE components can be developed by application

component providers, assembled by application assemblers, and deployed by application

deployers. In a large organization, each of these roles might be executed by different

individuals or teams. This division of labor works because each of the earlier roles

outputs a portable file that is the input for a subsequent role. For example, in the

Division of Computer Engineering, CUSAT. 34

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview7.html#wp80338

Platform Independent Video/Voice over IP

application component development phase, an enterprise bean software developer

delivers EJB JAR files. In the application assembly role, another developer combines

these EJB JAR files into a J2EE application and saves it in an EAR file. In the application

deployment role, a system administrator at the customer site uses the EAR file to install

the J2EE application into a J2EE server.

The different roles are not always executed by different people. If you work for a small

company, for example, or if you are prototyping a sample application, you might perform

the tasks in every phase.

J2EE Product Provider

The J2EE product provider is the company that designs and makes available for purchase

the J2EE platform APIs, and other features defined in the J2EE specification. Product

providers are typically operating system, database system, application server, or web

server vendors who implement the J2EE platform according to the Java 2 Platform,

Enterprise Edition specification.

Tool Provider

The tool provider is the company or person who creates development, assembly, and

packaging tools used by component providers, assemblers, and deployers.

Application Component Provider

The application component provider is the company or person who creates web

components, enterprise beans, applets, or application clients for use in J2EE applications.

Enterprise Bean Developer

An enterprise bean developer performs the following tasks to deliver an EJB JAR file that

contains the enterprise bean(s):

• Writes and compiles the source code

Division of Computer Engineering, CUSAT. 35

Platform Independent Video/Voice over IP

• Specifies the deployment descriptor

• Packages the .class files and deployment descriptor into the EJB JAR file

Web Component Developer

A web component developer performs the following tasks to deliver a WAR file

containing the web component(s):

• Writes and compiles servlet source code

• Writes JSP and HTML files

• Specifies the deployment descriptor

• Packages the .class, .jsp, and.html files and deployment descriptor into the

WAR file

Application Client Developer

An application client developer performs the following tasks to deliver a JAR file

containing the application client:

• Writes and compiles the source code

• Specifies the deployment descriptor for the client

• Packages the .class files and deployment descriptor into the JAR file

Application Assembler

The application assembler is the company or person who receives application modules

from component providers and assembles them into a J2EE application EAR file. The

assembler or deployer can edit the deployment descriptor directly or can use tools that

correctly add XML tags according to interactive selections. A software developer

performs the following tasks to deliver an EAR file containing the J2EE application:

• Assembles EJB JAR and WAR files created in the previous phases into a

J2EE application (EAR) file

• Specifies the deployment descriptor for the J2EE application

Division of Computer Engineering, CUSAT. 36

Platform Independent Video/Voice over IP

• Verifies that the contents of the EAR file are well formed and comply with

the J2EE specification

Application Deployer and Administrator

The application deployer and administrator is the company or person who configures and

deploys the J2EE application, administers the computing and networking infrastructure

where J2EE applications run, and oversees the runtime environment. Duties include such

things as setting transaction controls and security attributes and specifying connections to

databases.

During configuration, the deployer follows instructions supplied by the application

component provider to resolve external dependencies, specify security settings, and

assign transaction attributes. During installation, the deployer moves the application

components to the server and generates the container-specific classes and interfaces.

A deployer or system administrator performs the following tasks to install and configure

a J2EE application:

• Adds the J2EE application (EAR) file created in the preceding phase to the

J2EE server

• Configures the J2EE application for the operational environment by

modifying the deployment descriptor of the J2EE application

• Verifies that the contents of the EAR file are well formed and comply with

the J2EE specification

• Deploys (installs) the J2EE application EAR file into the J2EE server

J2EE 1.4 APIs

Figure 1-7 illustrates the availability of the J2EE 1.4 platform APIs in each J2EE

container type. The following sections give a brief summary of the technologies required

by the J2EE platform and the J2SE enterprise APIs that would be used in J2EE

applications.

Division of Computer Engineering, CUSAT. 37

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview7.html#wp84734

Platform Independent Video/Voice over IP

Figure 1-7 J2EE Platform APIs

Enterprise JavaBeans Technology

An Enterprise JavaBeans (EJB) component, or enterprise bean, is a body of code

having fields and methods to implement modules of business logic. You can think of an

enterprise bean as a building block that can be used alone or with other enterprise beans

to execute business logic on the J2EE server.

As mentioned earlier, there are three kinds of enterprise beans: session beans, entity

beans, and message-driven beans. Enterprise beans often interact with databases. One of

the benefits of entity beans is that you do not have to write any SQL code or use the

JDBC API (see JDBC API) directly to perform database access operations; the EJB

container handles this for you. However, if you override the default container-managed

persistence for any reason, you will need to use the JDBC API. Also, if you choose to

have a session bean access the database, you must use the JDBC API.

Division of Computer Engineering, CUSAT. 38

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview7.html#wp86455

Platform Independent Video/Voice over IP

Java Servlet Technology

Java servlet technology lets you define HTTP-specific servlet classes. A servlet class

extends the capabilities of servers that host applications that are accessed by way of a

request-response programming model. Although servlets can respond to any type of

request, they are commonly used to extend the applications hosted by web servers.

JavaServer Pages Technology

JavaServer Pages (JSP) technology lets you put snippets of servlet code directly into

a text-based document. A JSP page is a text-based document that contains two types of

text: static data (which can be expressed in any text-based format such as HTML, WML,

and XML) and JSP elements, which determine how the page constructs dynamic content.

Java Message Service API

The Java Message Service (JMS) API is a messaging standard that allows J2EE

application components to create, send, receive, and read messages. It enables distributed

communication that is loosely coupled, reliable, and asynchronous.

Java Transaction API

The Java Transaction API (JTA) provides a standard interface for demarcating

transactions. The J2EE architecture provides a default auto commit to handle transaction

commits and rollbacks. An auto commit means that any other applications that are

viewing data will see the updated data after each database read or write operation.

However, if your application performs two separate database access operations that

depend on each other, you will want to use the JTA API to demarcate where the entire

transaction, including both operations, begins, rolls back, and commits.

JavaMail API

J2EE applications use the JavaMail API to send email notifications. The JavaMail API

has two parts: an application-level interface used by the application components to send

Division of Computer Engineering, CUSAT. 39

Platform Independent Video/Voice over IP

mail, and a service provider interface. The J2EE platform includes JavaMail with a

service provider that allows application components to send Internet mail.

JavaBeans Activation Framework

The JavaBeans Activation Framework (JAF) is included because JavaMail uses it. JAF

provides standard services to determine the type of an arbitrary piece of data, encapsulate

access to it, discover the operations available on it, and create the appropriate JavaBeans

component to perform those operations.

Java API for XML Processing

The Java API for XML Processing (JAXP) supports the processing of XML documents

using Document Object Model (DOM), Simple API for XML (SAX), and Extensible

Stylesheet Language Transformations (XSLT). JAXP enables applications to parse and

transform XML documents independent of a particular XML processing implementation.

JAXP also provides namespace support, which lets you work with schemas that might

otherwise have naming conflicts. Designed to be flexible, JAXP lets you use any XML-

compliant parser or XSL processor from within your application and supports the W3C

schema..

Java API for XML-Based RPC

The Java API for XML-based RPC (JAX-RPC) uses the SOAP standard and HTTP, so

client programs can make XML-based remote procedure calls (RPCs) over the Internet.

JAX-RPC also supports WSDL, so you can import and export WSDL documents. With

JAX-RPC and a WSDL, you can easily interoperate with clients and services running on

Java-based or non-Java-based platforms such as .NET. For example, based on the WSDL

document, a Visual Basic .NET client can be configured to use a web service

implemented in Java technology, or a web service can be configured to recognize a Visual

Basic .NET client.

Division of Computer Engineering, CUSAT. 40

Platform Independent Video/Voice over IP

JAX-RPC relies on the HTTP transport protocol. Taking that a step further, JAX-RPC lets

you create service applications that combine HTTP with a Java technology version of the

Secure Socket Layer (SSL) and Transport Layer Security (TLS) protocols to establish

basic or mutual authentication. SSL and TLS ensure message integrity by providing data

encryption with client and server authentication capabilities.

Authentication is a measured way to verify whether a party is eligible and able to access

certain information as a way to protect against the fraudulent use of a system or the

fraudulent transmission of information. Information transported across the Internet is

especially vulnerable to being intercepted and misused, so it's very important to configure

a JAX-RPC web service to protect data in transit.

SOAP with Attachments API for Java

The SOAP with Attachments API for Java (SAAJ) is a low-level API on which JAX-RPC

depends. SAAJ enables the production and consumption of messages that conform to the

SOAP 1.1 specification and SOAP with Attachments note. Most developers do not use

the SAAJ API, instead using the higher-level JAX-RPC API.

Java API for XML Registries

The Java API for XML Registries (JAXR) lets you access business and general-purpose

registries over the web. JAXR supports the ebXML Registry and Repository standards

and the emerging UDDI specifications. By using JAXR, developers can learn a single

API and gain access to both of these important registry technologies.

Additionally, businesses can submit material to be shared and search for material that

others have submitted. Standards groups have developed schemas for particular kinds of

XML documents; two businesses might, for example, agree to use the schema for their

industry's standard purchase order form. Because the schema is stored in a standard

business registry, both parties can use JAXR to access it.

Division of Computer Engineering, CUSAT. 41

Platform Independent Video/Voice over IP

J2EE Connector Architecture

The J2EE Connector architecture is used by J2EE tools vendors and system integrators to

create resource adapters that support access to enterprise information systems that can be

plugged in to any J2EE product. A resource adapter is a software component that allows

J2EE application components to access and interact with the underlying resource

manager of the EIS. Because a resource adapter is specific to its resource manager,

typically there is a different resource adapter for each type of database or enterprise

information system.

The J2EE Connector architecture also provides a performance-oriented, secure, scalable,

and message-based transactional integration of J2EE-based web services with existing

EISs that can be either synchronous or asynchronous. Existing applications and EISs

integrated through the J2EE Connector architecture into the J2EE platform can be

exposed as XML-based web services by using JAX-RPC and J2EE component models.

Thus JAX-RPC and the J2EE Connector architecture are complementary technologies for

enterprise application integration (EAI) and end-to-end business integration.

JDBC API

The JDBC API lets you invoke SQL commands from Java programming language

methods. You use the JDBC API in an enterprise bean when you override the default

container-managed persistence or have a session bean access the database. With

container-managed persistence, database access operations are handled by the container,

and your enterprise bean implementation contains no JDBC code or SQL commands. You

can also use the JDBC API from a servlet or a JSP page to access the database directly

without going through an enterprise bean.

The JDBC API has two parts: an application-level interface used by the application

components to access a database, and a service provider interface to attach a JDBC driver

to the J2EE platform.

Division of Computer Engineering, CUSAT. 42

Platform Independent Video/Voice over IP

Java Naming and Directory Interface

The Java Naming and Directory Interface (JNDI) provides naming and directory

functionality. It provides applications with methods for performing standard directory

operations, such as associating attributes with objects and searching for objects using

their attributes. Using JNDI, a J2EE application can store and retrieve any type of named

Java object.

J2EE naming services provide application clients, enterprise beans, and web components

with access to a JNDI naming environment. A naming environment allows a component

to be customized without the need to access or change the component's source code. A

container implements the component's environment and provides it to the component as a

JNDI naming context.

A J2EE component locates its environment naming context using JNDI interfaces. A

component creates a javax.naming.InitialContext object and looks up the environment

naming context in InitialContext under the name java:comp/env. A component's naming

environment is stored directly in the environment naming context or in any of its direct or

indirect subcontexts.

A J2EE component can access named system-provided and user-defined objects. The

names of system-provided objects, such as JTA UserTransaction objects, are stored in the

environment naming context, java:comp/env. The J2EE platform allows a component to

name user-defined objects, such as enterprise beans, environment entries, JDBC

DataSource objects, and message connections. An object should be named within a

subcontext of the naming environment according to the type of the object. For example,

enterprise beans are named within the subcontext java:comp/env/ejb, and JDBC

DataSource references in the subcontext java:comp/env/jdbc.

Because JNDI is independent of any specific implementation, applications can use JNDI

to access multiple naming and directory services, including existing naming and directory

services such as LDAP, NDS, DNS, and NIS. This allows J2EE applications to coexist

with legacy applications and systems.

Division of Computer Engineering, CUSAT. 43

Platform Independent Video/Voice over IP

Java Authentication and Authorization Service

The Java Authentication and Authorization Service (JAAS) provides a way for a J2EE

application to authenticate and authorize a specific user or group of users to run it.

JAAS is a Java programing language version of the standard Pluggable Authentication

Module (PAM) framework, which extends the Java 2 Platform security architecture to

support user-based authorization.

Simplified Systems Integration

The J2EE platform is a platform-independent, full systems integration solution that

creates an open marketplace in which every vendor can sell to every customer. Such a

marketplace encourages vendors to compete, not by trying to lock customers into their

technologies but instead by trying to outdo each other in providing products and services

that benefit customers, such as better performance, better tools, or better customer

support.

The J2EE APIs enable systems and applications integration through the following:

• Unified application model across tiers with enterprise beans

• Simplified request-and-response mechanism with JSP pages and servlets

• Reliable security model with JAAS

• XML-based data interchange integration with JAXP, SAAJ, and JAX-RPC

• Simplified interoperability with the J2EE Connector architecture

• Easy database connectivity with the JDBC API

• Enterprise application integration with message-driven beans and JMS,

JTA, and JNDI

Sun Java System Application Server Platform Edition 8

The Sun Java System Application Server Platform Edition 8 is a fully compliant

implementation of the J2EE 1.4 platform. In addition to supporting all the APIs described

in the previous sections, the Application Server includes a number of J2EE technologies

Division of Computer Engineering, CUSAT. 44

Platform Independent Video/Voice over IP

and tools that are not part of the J2EE 1.4 platform but are provided as a convenience to

the developer.

This section briefly summarizes the technologies and tools that make up the Application

Server, and instructions for starting and stopping the Application Server, starting the

Admin Console, starting deploytool, and starting and stopping the Derby database server.

Other chapters explain how to use the remaining tools.

Technologies

The Application Server includes two user interface technologies--JavaServer Pages

Standard Tag Library and JavaServer Faces--that are built on and used in conjunction

with the J2EE 1.4 platform technologies Java servlet and JavaServer Pages.

JavaServer Pages Standard Tag Library

The JavaServer Pages Standard Tag Library (JSTL) encapsulates core functionality

common to many JSP applications. Instead of mixing tags from numerous vendors in

your JSP applications, you employ a single, standard set of tags. This standardization

allows you to deploy your applications on any JSP container that supports JSTL and

makes it more likely that the implementation of the tags is optimized.

JSTL has iterator and conditional tags for handling flow control, tags for manipulating

XML documents, internationalization tags, tags for accessing databases using SQL, and

commonly used functions.

JavaServer Faces

JavaServer Faces technology is a user interface framework for building web applications.

The main components of JavaServer Faces technology are as follows:

• A GUI component framework.

• A flexible model for rendering components in different kinds of HTML or

different markup languages and technologies. A Renderer object generates

Division of Computer Engineering, CUSAT. 45

Platform Independent Video/Voice over IP

the markup to render the component and converts the data stored in a

model object to types that can be represented in a view.

• A standard RenderKit for generating HTML/4.01 markup.

The following features support the GUI components:

• Input validation

• Event handling

• Data conversion between model objects and components

• Managed model object creation

• Page navigation configuration

All this functionality is available via standard Java APIs and XML-based configuration

files.

Tools

The Application Server contains the tools listed in Table 1-1. Basic usage information for

many of the tools appears throughout the tutorial.

Table 1-1 Application Server Tools

Component Description

Admin

Console

A web-based GUI Application Server administration utility. Used to stop

the Application Server and manage users, resources, and applications.

asadmin
A command-line Application Server administration utility. Used to start and

stop the Application Server and manage users, resources, and applications.

asant

A portable command-line build tool that is an extension of the Ant tool

developed by the Apache Software Foundation. asant contains additional

tasks that interact with the Application Server administration utility.

appclient
A command-line tool that launches the application client container and

invokes the client application packaged in the application client JAR file.

capture-

schema

A command-line tool to extract schema information from a database,

producing a schema file that the Application Server can use for container-

managed persistence.

Division of Computer Engineering, CUSAT. 46

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/Overview8.html#wp84405

Platform Independent Video/Voice over IP

deploytool
A GUI tool to package applications, generate deployment descriptors, and

deploy applications on the Application Server.

package-

appclient

A command-line tool to package the application client container libraries

and JAR files.

Derby

database
A copy of the open source Derby database server.

verifier A command-line tool to validate J2EE deployment descriptors.

wscompile
A command-line tool to generate stubs, ties, serializers, and WSDL files

used in JAX-RPC clients and services.

Web Applications

A web application is a dynamic extension of a web or application server. There are two

types of web applications:

• Presentation-oriented: A presentation-oriented web application generates

interactive web pages containing various types of markup language

(HTML, XML, and so on) and dynamic content in response to requests.

• Service-oriented: A service-oriented web application implements the

endpoint of a web service. Presentation-oriented applications are often

clients of service-oriented web applications

In the Java 2 platform, web components provide the dynamic extension capabilities for a

web server. Web components are either Java servlets, JSP pages, or web service

endpoints. The interaction between a web client and a web application is illustrated in

Figure 3-1. The client sends an HTTP request to the web server. A web server that

implements Java Servlet and JavaServer Pages technology converts the request into an

HTTPServletRequest object. This object is delivered to a web component, which can

interact with JavaBeans components or a database to generate dynamic content. The web

component can then generate an HTTPServletResponse or it can pass the request to

another web component. Eventually a web component generates a HTTPServletResponse

object. The web server converts this object to an HTTP response and returns it to the

client.

Division of Computer Engineering, CUSAT. 47

Platform Independent Video/Voice over IP

Figure 3-1 Java Web Application Request Handling

Servlets are Java programming language classes that dynamically process requests and

construct responses. JSP pages are text-based documents that execute as servlets but

allow a more natural approach to creating static content. Although servlets and JSP pages

can be used interchangeably, each has its own strengths. Servlets are best suited for

service-oriented applications (web service endpoints are implemented as servlets) and the

control functions of a presentation-oriented application, such as dispatching requests and

handling nontextual data. JSP pages are more appropriate for generating text-based

markup such as HTML, Scalable Vector Graphics (SVG), Wireless Markup Language

(WML), and XML.

Since the introduction of Java Servlet and JSP technology, additional Java technologies

and frameworks for building interactive web applications have been developed. These

technologies and their relationships are illustrated in Figure 3-2.

Division of Computer Engineering, CUSAT. 48

Platform Independent Video/Voice over IP

Figure 3-2 Java Web Application Technologies

Notice that Java Servlet technology is the foundation of all the web application

technologies. Each technology adds a level of abstraction that makes web application

prototyping and development faster and the web applications themselves more

maintainable, scalable, and robust.

Web components are supported by the services of a runtime platform called a web

container. A web container provides services such as request dispatching, security,

concurrency, and life-cycle management. It also gives web components access to APIs

such as naming, transactions, and email.

Certain aspects of web application behavior can be configured when the application is

installed, or deployed, to the web container. The configuration information is maintained

in a text file in XML format called a web application deployment descriptor (DD). A DD

must conform to the schema described in the Java Servlet Specification.

Most web applications use the HTTP protocol, and support for HTTP is a major aspect of

web components.

This chapter gives a brief overview of the activities involved in developing web

applications. First we summarize the web application life cycle. Then we describe how to

package and deploy very simple web applications on the Application Server. We move on

to configuring web applications and discuss how to specify the most commonly used

configuration parameters. We then introduce an example--Duke's Bookstore--that we use

to illustrate all the J2EE web-tier technologies and we describe how to set up the shared

Division of Computer Engineering, CUSAT. 49

Platform Independent Video/Voice over IP

components of this example. Finally we discuss how to access databases from web

applications a

Web Application Life Cycle

A web application consists of web components, static resource files such as images, and

helper classes and libraries. The web container provides many supporting services that

enhance the capabilities of web components and make them easier to develop. However,

because a web application must take these services into account, the process for creating

and running a web application is different from that of traditional stand-alone Java

classes. The process for creating, deploying, and executing a web application can be

summarized as follows:

1. Develop the web component code.

2. Develop the web application deployment descriptor.

3. Compile the web application components and helper classes referenced by

the components.

4. Optionally package the application into a deployable unit.

5. Deploy the application into a web container.

Access a URL that references the web application. Configuring Web Applications

Web applications are configured via elements contained in the web application

deployment descriptor. The deploytool utility generates the descriptor when you create a

WAR and adds elements when you create web components and associated classes. You

can modify the elements via the inspectors associated with the WAR.

The following sections give a brief introduction to the web application features you will

usually want to configure.

In the following sections, examples demonstrate procedures for configuring the Hello,

World application. If Hello, World does not use a specific configuration feature, the

section gives references to other examples that illustrate how to specify the deployment

Division of Computer Engineering, CUSAT. 50

Platform Independent Video/Voice over IP

descriptor element and describes generic procedures for specifying the feature using

deploytool. Extended examples that demonstrate how to use deploytool appear in later

tutorial chapters.

Servlets

This first chapter answers the question "What is a Servlet?", shows typical uses for

Servlets, compares Servlets to CGI programs and explains the basics of the Servlet

architecture and the Servlet lifecycle. It also gives a quick introduction to HTTP and its

implementation in the HttpServlet class.

Servlets are modules of Java code that run in a server application (hence the name

"Servlets", similar to "Applets" on the client side) to answer client requests. Servlets are

not tied to a specific client-server protocol but they are most commonly used with HTTP

and the word "Servlet" is often used in the meaning of "HTTP Servlet".

Servlets make use of the Java standard extension classes in the packages javax.servlet

(the basic Servlet framework) and javax.servlet.http (extensions of the Servlet framework

for Servlets that answer HTTP requests). Since Servlets are written in the highly portable

Java language and follow a standard framework, they provide a means to create

sophisticated server extensions in a server and operating system independent way.

Typical uses for HTTP Servlets include:

• Processing and/or storing data submitted by an HTML form.

• Providing dynamic content, e.g. returning the results of a database query to the

client.

• Managing state information on top of the stateless HTTP, e.g. for an online

shopping cart system which manages shopping carts for many concurrent

customers and maps every request to the right customer.

Division of Computer Engineering, CUSAT. 51

Platform Independent Video/Voice over IP

Servlets vs. CGI

The traditional way of adding functionality to a Web Server is the Common Gateway

Interface (CGI), a language-independent interface that allows a server to start an external

process which gets information about a request through environment variables, the

command line and its standard input stream and writes response data to its standard

output stream. Each request is answered in a separate process by a separate instance of

the CGI program, or CGI script (as it is often called because CGI programs are usually

written in interpreted languages like Perl).

Servlets have several advantages over CGI:

• A Servlet does not run in a separate process. This removes the overhead of

creating a new process for each request.

• A Servlet stays in memory between requests. A CGI program (and probably also

an extensive runtime system or interpreter) needs to be loaded and started for each

CGI request.

• There is only a single instance which answers all requests concurrently. This saves

memory and allows a Servlet to easily manage persistent data.

• A Servlet can be run by a Servlet Engine in a restrictive Sandbox (just like an

Applet runs in a Web Browser's Sandbox) which allows secure use of untrusted

and potentially harmful Servlets.

The Basic Servlet Architecture

A Servlet, in its most general form, is an instance of a class which implements the

javax.servlet.Servlet interface. Most Servlets, however, extend one of the standard

implementations of that interface, namely javax.servlet.GenericServlet and

javax.servlet.http.HttpServlet. In this tutorial we'll be discussing only HTTP Servlets

which extend the javax.servlet.http.HttpServlet class.

Division of Computer Engineering, CUSAT. 52

Platform Independent Video/Voice over IP

In order to initialize a Servlet, a server application loads the Servlet class (and probably

other classes which are referenced by the Servlet) and creates an instance by calling the

no-args constructor. Then it calls the Servlet's init(ServletConfig config) method. The

Servlet should performe one-time setup procedures in this method and store the

ServletConfig object so that it can be retrieved later by calling the Servlet's

getServletConfig() method. This is handled by GenericServlet. Servlets which extend

GenericServlet (or its subclass HttpServlet) should call super.init(config) at the beginning

of the init method to make use of this feature. The ServletConfig object contains Servlet

parameters and a reference to the Servlet's ServletContext. The init method is guaranteed

to be called only once during the Servlet's lifecycle. It does not need to be thread-safe

because the service method will not be called until the call to init returns.

When the Servlet is initialized, its service(ServletRequest req, ServletResponse res)

method is called for every request to the Servlet. The method is called concurrently (i.e.

multiple threads may call this method at the same time) so it should be implemented in a

thread-safe manner.

When the Servlet needs to be unloaded (e.g. because a new version should be loaded or

the server is shutting down) the destroy() method is called. There may still be threads that

execute the service method when destroy is called, so destroy has to be thread-safe. All

resources which were allocated in init should be released in destroy. This method is

guaranteed to be called only once during the Servlet's lifecycle.

Division of Computer Engineering, CUSAT. 53

Platform Independent Video/Voice over IP

HTTP

Before we can start writing the first Servlet, we need to know some basics of HTTP

("HyperText Transfer Protocol"), the protocol which is used by a WWW client (e.g. a

browser) to send a request to a Web Server.

HTTP is a request-response oriented protocol. An HTTP request consists of a request

method, a URI, header fields and a body (which can be empty). An HTTP response

contains a result code and again header fields and a body.

The service method of HttpServlet dispatches a request to different Java methods for

different HTTP request methods. It recognizes the standard HTTP/1.1 methods and

should not be overridden in subclasses unless you need to implement additional methods.

The recognized methods are GET, HEAD, PUT, POST, DELETE, OPTIONS and

TRACE. Other methods are answered with a Bad Request HTTP error. An HTTP method

XXX is dispatched to a Java method doXxx, e.g. GET -> doGet. All these methods expect

the parameters "(HttpServletRequest req, HttpServletResponse res)". The methods

doOptions and doTrace have suitable default implementations and are usually not

overridden. The HEAD method (which is supposed to return the same header lines that a

GET method would return, but doesn't include a body) is performed by calling doGet and

ignoring any output that is written by this method. That leaves us with the methods

doGet, doPut, doPost and doDelete whose default implementations in HttpServlet return

a Bad Request HTTP error. A subclass of HttpServlet overrides one or more of these

methods to provide a meaningful implementation.

The request data is passed to all methods through the first argument of type

HttpServletRequest (which is a subclass of the more general ServletRequest class). The

response can be created with methods of the second argument of type

HttpServletResponse (a subclass of ServletResponse).

When you request a URL in a Web Browser, the GET method is used for the request. A

GET request does not have a body (i.e. the body is empty). The response should contain a

body with the response data and header fields which describe the body (especially

Division of Computer Engineering, CUSAT. 54

Platform Independent Video/Voice over IP

Content-Type and Content-Encoding). When you send an HTML form, either GET or

POST can be used. With a GET request the parameters are encoded in the URL, with a

POST request they are transmited in the body. HTML editors and upload tools use PUT

requests to upload resources to a Web Server and DELETE requests to delete resources.

The Servlet Environment

This chapter shows how to access resources of the Web Server and communicate with

Servlets and other kinds of active resources (e.g. JSP documents, CGI programs). The

examples in this chapter are often only fragments of Java source code and not necessarily

complete Servlets.

Inter Servlet Communication

This section shows how to

• call a method of another Servlet

Servlets are not alone in a Web Server. They have access to other Servlets in the same

Servlet Context (usually a Servlet directory), represented by an instance of

javax.servlet.ServletContext. The ServletContext is available through the ServletConfig

object's getServletContext method.

A Servlet can get a list of all other Servlets in the Servlet Context by calling

getServletNames on the ServletContext object. A Servlet for a known name (probably

obtained through getServletNames) is returned by getServlet. Note that this method can

throw a ServletException because it may need to load and initialize the requested Servlet

if this was not already done.

After obtaining the reference to another Servlet that Servlet's methods can be called.

Methods which are not declared in javax.servlet.Servlet but in a subclass thereof can be

called by casting the returned object to the required class type.

Division of Computer Engineering, CUSAT. 55

http://www.novocode.com/doc/servlet-essentials/appendix.html#a_d_CGI
http://www.novocode.com/doc/servlet-essentials/appendix.html#a_d_JSP

Platform Independent Video/Voice over IP

Note that in Java the identity of a class is not only defined by the class name but also by

the ClassLoader by which it was loaded. Web servers usually load each Servlet with a

different class loader. This is necessary to reload Servlets on the fly because single

classes cannot be replaced in the running JVM. Only a ClassLoader object with all loaded

classes can be replaced.

This means that classes which are loaded by a Servlet class loader cannot be used for

inter-Servlet communication. A class literal FooServlet (as used in a type cast like

"FooServlet foo = (FooServlet)context.getServlet("FooServlet")") which is used in class

BarServlet is different from the class literal FooServlet as used in FooServlet itself.

A way to overcome this problem is using a superclass or an interface which is loaded by

the system loader and thus shared by all Servlets. In a Web Server which is written in

Java those classes are usually located in the class path (as defined by the CLASSPATH

environment variable).

Communication with Active Server Resources

This section shows how to

• call another Servlet (or any other kind of active resource) to process a

request

A Servlet can make a request to an active resource on the web server just like a client can

(by requesting a URL). The Servlet API supports a more direct way of accessing server

resources from within a Servlet which is running in the server than opening a socket

connection back to the server. A Servlet can either hand off a request to a different

resource or include the response which is created by that resource in its own response. It

is also possible to supply user-defined data when calling an active resource which

provides for an elegant way of doing inter-Servlet communication.

In the doGet method we first check for the existence of the item argument. If it is present

(second branch of the if statement) the Servlet is responding with an HTML document in

Division of Computer Engineering, CUSAT. 56

http://www.novocode.com/doc/servlet-essentials/appendix.html#a_d_JVM

Platform Independent Video/Voice over IP

the usual way. In the middle of the document the response body of the ItemServlet is

included by asking the ItemServlet's RequestDispatcher (whis is obtained through the

ServletContext) to perform that operation.

If no item attribute was specified, the request is delegated to the ErrorServlet in a similar

way. Note that this time we are using the RequestDispatcher's forward method (instead of

include). This method can be called only once and only if neither getOutputStream nor

getWriter has been called, but it allows the included Servlet to set headers and the

response code (which is required to create a proper HTTP error response message).

The ItemServlet gets its item argument from the query string. That way it can also be

accessed directly via an HTTP request, but argument values have to be represented as url-

encoded strings (which is no problem in this case). The ErrorServlet takes an exception

argument of type java.lang.Exception which is provided as a request attribute. The

ErrorServlet uses the ServletRequest method getAttribute to read the attribute.

Note that a server which supports load balancing could run the Servlets on different

JVMs. All custom request attributes should be serializable to allow them to be moved

from one JVM to another.

Accessing Passive Server Resources

This section shows how to

• access a resource in the server's document tree

Passive server resources (e.g. static HTML pages which are stored in local files) are not

accessed with RequestDispatcher objects. The ServletContext method getResource(String

path) returns a URL object for a resource specified by a local URI (e.g. "/" for the server's

document root) which can be used to examine the resource.

If you only want to read the resource's body you can directly ask the ServletContext for

an InputStream with the getResourceAsStream(String path) method.

Division of Computer Engineering, CUSAT. 57

Platform Independent Video/Voice over IP

Accessing Servlet Resources

This section shows how to

• access resources which belong to a Servlet

A Servlet may need to access additional resources like configuration files whose locations

should not need to be specified in init parameters. Those resources can be accessed with

the methods getResource(String name) and getResourceAsStream(String name) of the

java.lang.Class object which represents the Servlet's class.

Example. The following code gets an InputStream for a configuration file named

myservlet.cfg which resides in the same directory as the class in which the code is

executed:

InputStream confIn =

 getClass().getResourceAsStream("myservlet.cfg");

Note that the Servlet engine's Servlet class loader must implement the getResource and

getResourceAsStream methods in order for this to work. This may not be the case with

all Servlet engines.

Sharing Servlet Resources

This section shows how to

• share data between Servlets

Version 2.1 of the Servlet API offers a new way of sharing named objects between all the

Servlets in a Servlet context (and also other contexts, as you'll see below) by binding the

objects to the ServletContext object which is shared by several Servlets.

Division of Computer Engineering, CUSAT. 58

Platform Independent Video/Voice over IP

The ServletContext class has several methods for accessing the shared objects:

• public void setAttribute(String name, Object object) adds a new object or

replaces an old object by the specified name. The attribute name should

follow the same naming convention as a package name (e.g. a Servlet

com.foo.fooservlet.FooServlet could have an attribute

com.foo.fooservlet.bar).

Just like a custom ServletRequest attribute, an object which is stored as a

ServletContext attribute should also be serializable to allow attributes to be

shared by Servlets which are running in different JVMs on different machines in a

load-balancing server environment.

• public Object getAttribute(String name) returns the named object or null if

the attribute does not exist.

In addition to the user-defined attributes there may also be predefined attributes

which are specific to the Servlet engine and provide additional information about

a Servlet(Context)'s environment.

• public Enumeration getAttributeNames() returns an Enumeration of the

names of all available attributes.

• public void removeAttribute(String name) removes the attribute with the

specified name if it exists.

The separation of Servlets into Servlet contexts depends on the Servlet engine. The

ServletContext object of a Servlet with a known local URI can be retrieved with the

method public ServletContext getContext(String uripath) of the Servlet's own

ServletContext. This method returns null if there is no Servlet for the specified path or if

this Servlet is not allowed to get the ServletContext for the specified path due to security

restrictions.

Division of Computer Engineering, CUSAT. 59

http://www.novocode.com/doc/servlet-essentials/appendix.html#a_d_JVM

Platform Independent Video/Voice over IP

JAVA Server PagesTM

The Java Server PagesTM (JSP) technology provides a simplified, fast way to create web

pages that display dynamically-generated content. JSP technology was designed to make

it easier and faster to build web-based applications that work with a wide variety of web

servers, application servers, browsers and development tools.

This paper provides an overview of the JSP technology, describing the background in

which it was developed and the overall goals for the technology. It also describes the key

components of a JavaTM technology-based page, in the context of a simple example.

Developing Web-based Applications: A Background.

In its short history, the Worldwide Web has evolved from a network of basically static

information displays to a mechanism for trading stocks and buying books. There seems to

be almost no limit to the possible uses for web-based clients in diverse applications.

Applications that can make use of browser-based clients have several advantages over

traditional client/server based applications. These include nearly unlimited client access

and greatly simplified application deployment and management. (To update an

application, a developer only needs to change one server-based program, not thousands of

client-installed applications.) As a result, the software industry is moving quickly toward

building multi-tiered applications using browser-based clients.

These increasingly sophisticated web-based applications require changes in development

technology. Static HTML is fine for displaying relatively static content; the challenge has

been creating interactive web-based applications, in which the content of the page is

based on a user request or system status, not pre-defined text.

An early solution to this problem was the CGI-BIN interface; developers wrote individual

programs to this interface, and web-based applications called the programs through the

web server. This solution has significant scalability problems -- each new CGI request

launches a new process on the server. If multiple users access the program concurrently,

Division of Computer Engineering, CUSAT. 60

Platform Independent Video/Voice over IP

these processes consume all of the web server's available resources and the performance

slows to a grind.

Individual web server vendors have tried to simplify web application development

providing "plug-ins" and APIs for their servers. These solutions are web-server specific,

and don't address the problem across multiple vendor solutions. For example, Microsoft's

Active Server PagesTM (ASP) technology makes it easier to create dynamic content on a

web page, but only works with Microsoft IIS or Personal Web Server.

Other solutions exist, but they are not necessarily easy for the average page designer to

deploy. Technologies such as Java Servlets, for example, make it easier to write server-

based code using the Java programming language for interactive applications. A Java

Servlet is a Java technology-based program that runs on the server (as opposed to an

applet, which runs on the browser). Developers can write Servlets that take an HTTP

request from the web browser, generate the response dynamically (possibly querying

databases to fulfill the request) and then send a response containing an HTML or XML

document to the browser.

Using this approach, the entire page must be composed in the Java Servlet. If a developer

or web master wanted to tune the appearance of the page, they would have to edit and

recompile the Java Servlet, even if the logic were already working. With this approach,

generating pages with dynamic content still requires application development expertise.

What is needed, clearly, is an industry-wide solution for creating pages with dynamically-

generated content. This solution should address the limitations of current alternatives by:

Working on any web or application server Separating the application logic from the

appearance of the page Allowing fast development and testing Simplifying the process of

developing interactive web-based applications.

The JavaServer Pages (JSP) technology was designed to fit this need. The JSP

specification is the result of extensive industry cooperation between vendors of web

servers, application servers, transactional systems, and development tools. Sun

Microsystems developed the specification to integrate with and leverage existing

Division of Computer Engineering, CUSAT. 61

Platform Independent Video/Voice over IP

expertise and tools support for the Java programming environment, such as Java Servlets

and JavaBeansTM. The result is a new approach to developing web-based applications that

extends powerful capabilities to page designers using component-based application logic.

The JavaServer Pages Technology Approach to Web Application Development

In developing the JSP specification, Sun Microsystems worked with a number of leading

web server, application server and development tool vendors, as well as a diverse and

experienced development community. The result is an approach that balances portability

with ease-of-use for application and page developers.

JSP technology speeds the development of dynamic web pages in a number of ways:

Separating content generation from presentation

Using JSP technology, web page developers use HTML or XML tags to design and

format the results page. They use JSP tags or scriptlets to generate the dynamic content

(the content that changes according to the request, such as requested account information

or the price of a specific bottle of wine). The logic that generates the content is

encapsulated in tags and JavaBeans components and tied together in scriptlets, all of

which are executed on the server side. If the core logic is encapsulated in tags and beans,

then other individuals, such as web masters and page designers, can edit the JSP page

without affecting the generation of the content.

On the server, a JSP engine interprets JSP tags and scriptlets, generates content (for

example, by accessing JavaBeans components, accessing a database with JDBCTM

technology, or including files), and sends the results back in the form of an HTML (or

XML) page to the browser. This helps authors protect proprietary code while ensuring

complete portability for any HTML-based web browser.

 Emphasizing reusable components

Most JSP pages rely on reusable, cross-platform components (JavaBeans or Enterprise

JavaBeansTM components) to perform the more complex processing required of the

Division of Computer Engineering, CUSAT. 62

Platform Independent Video/Voice over IP

application. Developers can share and exchange components that perform common

operations, or make them available to larger user or customer communities. The

component-based approach speeds overall development and lets organizations leverage

their existing expertise and development efforts for optimal results.

Simplifying page development with tags

Web page developers are not always programmers familiar with scripting languages. The

JavaServer Pages technology encapsulates much of the functionality required for

dynamic content generation in easy-to-use, JSP-specific XML tags. Standard JSP tags can

access and instantiate JavaBeans components, set or retrieve bean attributes, download

applets, and perform other functions that are otherwise more difficult and time-

consuming to code.

The JSP technology is extensible through the development of customized tag libraries.

Over time, third-party developers and others will create their own tag libraries for

common functions. This lets web page developers work with familiar tools and

constructs, such as tags, to perform sophisticated functions.

The JSP technology integrates easily into a variety of application architectures,

leveraging existing tools and skills, and scaling to support enterprise-wide distributed

applications. As part of the Java technology-enabled family, and an integral part of the

Java 2, Enterprise Edition architecture, the JSP technology can support highly complex

web-based applications.

Because the native scripting language for JSP pages is based on the Java programming

language, and because all JSP pages are compiled into Java Servlets, JSP pages have all

of the benefits of Java technology, including robust memory management and security.

As part of the Java platform, JSP shares the Write Once, Run AnywhereTM characteristics

of the Java programming language. As more vendors add JSP support to their products,

you can use servers and tools of your choice, changing tools or servers without affecting

current applications.

Division of Computer Engineering, CUSAT. 63

Platform Independent Video/Voice over IP

When integrated with the Java 2 Platform, Enterprise Edition (J2EE) and Enterprise

JavaBeans technology, JSP pages will provide enterprise-class scalability and

performance necessary for deploying web-based applications across the virtual enterprise.

What Does a JSP Page Look Like?

A JSP page looks like a standard HTML or XML page, with additional elements that the

JSP engine processes and strips out. Typically, the JSP elements create text that is inserted

into the results page.

The JSP technology is best described using an example. The following JSP page is very

simple; it prints the day of the month and the year, and welcomes you with either "Good

Morning" or "Good Afternoon," depending on the time of day.

The page combines ordinary HTML with a number of JSP elements: Calls to a clock

JavaBean component An inclusion of an external file (for copyright information) JSP

expressions and scriptlets

<HTML>

<%@ page language=="java" imports=="com.wombat.JSP.*" %>

<H1>Welcome</H1>

<P>Today is </P>

<jsp:useBean id=="clock" class=="calendar.jspCalendar" />

Day: <%==clock.getDayOfMonth() %>

Year: <%==clock.getYear() %>

<% if (Calendar.getInstance().get(Calendar.AM_PM) ==== Calendar.AM) { %>

Good Morning

<% } else { %>

Good Afternoon

<% } %>

Division of Computer Engineering, CUSAT. 64

Platform Independent Video/Voice over IP

<%@ include file=="copyright.html" %>

</HTML>

The page includes the following components:

A JSP directive passes information to the JSP engine. In this case, the first line indicates

the location of some Java programming language extensions to be accessible from this

page. Directives are enclosed in <%@ and %> markers.

Fixed template data: Any tags that the JSP engine does not recognize it passes on with

the results page. Typically, these will be HTML or XML tags. This includes the

Unordered List and H1 tags in the example above.

JSP actions, or tags: These are typically implemented as standard tags or customized

tags, and have an XML tag syntax. In the example, the jsp:useBean tag instantiates the

Clock JavaBean on the server.

An expression: The JSP engine evaluates anything between <%== and %> markers. In

the List Items above, the values of the Day and Year attributes of the Clock bean are

returned as a string and inserted as output in the JSP file. In the example above, the first

list item will be the day of the year, and the second item the year.

A scriptlet is a small script that performs functions not supported by tags or ties

everything together. The native scripting language for JSP 1.0 software is based on the

Java programming language. The scriptlet in the above sample determines whether it is

AM or PM and greets the user accordingly (for daytime users, at any rate).

The example may be trivial, but the technology is not. Businesses can encapsulate critical

processing in server-side Beans, and web developers can easily access that information,

using familiar syntax and tools. Java-based scriptlets provide a flexible way to perform

other functions, without requiring extensive scripting. The page as a whole is legible and

comprehensible, making it easier to spot or prevent problems and to share work.

Division of Computer Engineering, CUSAT. 65

Platform Independent Video/Voice over IP

A few of these components are described in more detail below.

JSP Directives

JSP pages use JSP directives to pass instructions to the JSP engine. These may include the

following:

JSP page directives communicate page-specific information, such as buffer and thread

information or error handling.

Language directives specify the scripting language, along with any extensions.

The include directive (shown in the example above) can be used to include an external

document in the page. A good example is a copyright file or company information, file --

it is easier to maintain this file in one central location and include it in several pages than

to update it in each JSP page. However, the included file can also be another JSP file.

A taglib directive indicates a library of custom tags that the page can invoke.

JSP Tags

Most JSP processing will be implemented through JSP-specific XML-based tags. JSP 1.0

includes a number of standard tags, referred to as the core tags. These include:

jsp:useBean: This tag declares the usage of an instance of a JavaBeans component. If the

Bean does not already exist, then the JavaBean component instantiates and registers the

tag.

jsp:setProperty: This sets the value of a property in a Bean.

jsp:getProperty: This tag gets the value of a Bean instance property, converts it to a string,

and puts It in the implicit object "out".

jsp:include:

Division of Computer Engineering, CUSAT. 66

Platform Independent Video/Voice over IP

jsp:forward:

The 1.1 release will include additional standard tags.

The advantage of tags is that they are easy to use and share between applications. The

real power of a tag-based syntax comes with the development of custom tag libraries, in

which tool vendors or others can create and distribute tags for specific purposes.

Scripting Elements

JSP pages can includes include small scripts, called scriptlets, in a page. A scriplet is a

code fragment, executed at request time processing. Scriptlets may be combined with

static elements on the page (as in the example above) to create a dynamically-generated

page.

Scripts are delineated within <% and %> markers. Anything within those markers will be

evaluated by the scripting language engine, in our example the Java virtual machine on

the host.

The JSP specification supports all of the usual script elements, including expressions and

declarations.

Application Models for JSP Pages

A JSP page is executed by a JSP engine, which is installed in a web server or a JSP-

enabled application server. The JSP engine receives requests from a client to a JSP page,

and generates responses from the JSP page to the client.

JSP pages are typically compiled into Java Servlets. Java Servlets are a standard Java

extension, described in more detail at www.java.sun.com. The page developer has access

to the complete Java application environment, with all of the scalability and portability of

the Java technology-enabled family.

Division of Computer Engineering, CUSAT. 67

Platform Independent Video/Voice over IP

When a JSP page is first called, if it does not yet exist, it is compiled into a Java Servlet

class and stored in the server memory. This enables very fast responses for subsequent

calls to that page. (This avoids the CGI-bin problem of spawning a new processes for

each HTTP request, or the runtime parsing required by server-side includes.)

JSP pages may be included in a number of different application architectures or models.

JSP pages may be used in combination with different protocols, components and formats.

The following sections describe a few of the possibilities.

A Simple Application

In a simple implementation, the browser directly invokes a JSP page, which itself

generates the requested content (perhaps invoking JDBC to get information directly from

a database). The JSP page can call JDBC or Java BlendTM components to generate results,

and creates standard HTML that it sends back to the browser as a result.

This model basically replaces the CGI-BIN concept with a JSP page (compiled as a Java

Servlet). This method has the following advantages:

It is simple and fast to program The page author can easily generate dynamic content

based on the request and state of the resources.

This architecture works well for many applications, but it does not scale for a large

number of simultaneous Web-based clients accessing scarce enterprise resources, since

each must establish or share a connection to the content resource in question. For

example, if the JSP page accesses a database, it may generate many connections to the

database, which can affect the database performance.

Division of Computer Engineering, CUSAT. 68

Platform Independent Video/Voice over IP

A Flexible Application with Java Servlets

In another possible configuration, the Web-based client may make a request directly to a

Java Servlet, which actually generates the dynamic content, wraps the results into a result

bean and invokes the JSP page. The JSP page accesses the dynamic content from the bean

and sends the results (as HTML) to the browser.

This approach creates more reusable components that can be shared between

applications, and may be implemented as part of a larger application. It still has

scalability issues in terms of handling connections to enterprise resources, such as

databases.

Scalable Processing with Enterprise JavaBeans Technology

The JSP page can also act as a middle tier within an Enterprise JavaBeans (EJB)

architecture. In this case, the JSP page interacts with back end resources via an Enterprise

JavaBeans component.

The EJB component manages access to the back end resources, which provides scalable

performance for high numbers of concurrent users. For e-commerce or other applications,

the EJB manages transactions and underlying security. This simplifies the JSP page itself.

This model will be supported by the Java 2 Enterprise Edition (J2EE) platform.

Division of Computer Engineering, CUSAT. 69

Platform Independent Video/Voice over IP

Integrating XML Technology in JSP Pages

JSP pages can be used to generate both XML and HTML pages.

For simple XML generation, developers can include XML tags and static template

portions of the JSP page. For dynamic XML generation, use server-based Beans and

customized tags that generate XML output.

JSP pages are not incompatible with XML tools. Although Sun designed the JSP

specification so that JSP pages would be easy to author, even by hand, the JSP

specification also provides a mechanism for creating an XML version of any JSP page. In

this way, XML tools can author and manipulate JSP pages.

You can use JSP pages with XML-based tools by converting JSP tags and elements to

their XML-compatible equivalents. For example, a scriptlet can be included within <%

and %>, or within the XML-based tags <jsp:scriptlet> and </jsp:scriptlet>. In fact, it is

possible to convert a JSP page into an XML page by following a few simple steps,

including:

adding a JSP root element converting elements and directives into XML-compatible

equivalents creating CDATA elements for all other (typically non-JSP) elements on the

page

With this XML-compatible alternative approach, page designers creating HTML pages

still have an easy-to-use environment for quickly creating dynamic web pages, while

XML-based tools and services can integrate JSP pages and work with JSP-compliant

servers.

The Future for JSP Technology

JSP technology is designed to be an open, extensible standard for building dynamic web

pages. Developers will use JSP pages to create portable web applications that can run

Division of Computer Engineering, CUSAT. 70

Platform Independent Video/Voice over IP

with different web and application servers for different markets, using whatever

authoring tools fit their market and their needs.

By working with a consortium of industry leaders, Sun has ensured that the JSP

specification is open and portable. You should be able to author JSP pages anywhere and

deploy them anywhere, using any client and server platforms. Over time, tool vendors

and others will extend the functionality of the platform by providing customized tag

libraries for specialized functions.

4.3 Packages

Packages are containers for classes that are used to keep the class name space

compartmentalized. The package is both a naming and visibility control mechanism. We

can define classes inside a package that are not accessible by code outside the package.

Java Media Framework (JMF)

The Java Media Framework API (JMF) enables audio, video and other time-based media

to be added to applications and applets built on Java technology. This optional package,

which can capture, playback, stream, and transcode multiple media formats, extends the

Java 2 Platform, Standard Edition (J2SE) for multimedia developers by providing a

powerful toolkit to develop scalable, cross-platform technology.

JMF 1.0

The JMF API is being developed in stages. JMF 1.0, also known as the "Java Media

Player", is the first release of the JMF API and concentrates on media "playback", that is

the synchronization, control, processing, and presentation of compressed streaming and

stored time-based media, such as audio, video and MIDI. Sun released two reference

implementations of JMF 1.0 for Windows and Solaris.

Division of Computer Engineering, CUSAT. 71

Platform Independent Video/Voice over IP

 JMF 1.1

This is a dot release which added two version of JMF written entirely in the Java

programming language, allowing JMF to be used on all JDK 1.1 Java Compatible

systems. Note this is not a new API release; the same JMF 1.0 API was used for both

JMF 1.0 and 1.1 implementations from Sun Microsystems, Inc.

JMF 2.0

JMF 2.0 is the second release of the JMF API. Where JMF 1.0 and 1.1 provide a versatile

player for time-based media, JMF 2.0 features media capture, streaming, transcoding, a

pluggable codec architecture, and greater control over media data so that developers can

make greater customizations and optimizations.

Sun and IBM worked together to define the API and release three sample

implementations of JMF 2.0: one written entirely in the Java programming language, and

optimized versions for Solaris/SPARC and Windows.

JMF 2.1

This is a dot release which added SunRay and Linux support, increased support with

open standard RTP-based video servers such as Apple's Quicktime Streaming Server and

Sun's MCSS, and many bug fixes and optimizations.

Note this is not a new API release; the same JMF 2.0 API was used for both JMF 2.0 and

2.1 implementations from Sun Microsystems, Inc.

JMF 2.1.1

This is dot dot release contains new features and optimizations, including:

• Improved RTP API

Division of Computer Engineering, CUSAT. 72

Platform Independent Video/Voice over IP

• Support for H.263/1998 (RFC 2429) - now can interoperate with Darwin based

RTSP servers.

• Direct Audio Renderer and Capturer

• Performance enhancements with new Java compilers

• JMF Customizer added to all JMF versions

• HTTPS, JAWT, UNC pathnames support

• Numerous bug fixes and optimizations

JMF 2.1.1 supports a wide array of media types, including

• protocols: FILE, HTTP, FTP, RTP

• audio: AIFF, AU, AVI, GSM, MIDI, MP2, MP3*, QT, RMF, WAV

• video: AVI, MPEG-1, QT, H.261, H.263

• other: Hot Media

*MP3 is supported only on the Windows platform.

JMF 2.1.1 will run on Windows 95/98/NT 4.0/2000, Solaris/SPARC, and any Java

Compatible platforms. The pure Java version of JMF 2.1.1 will now run on Apple's MRJ

2.1.4; however there are a/v synchronization problems since Apple added a 6 second

audio buffer to that MRJ.

RTP/RTSP streaming servers work with JMF 2.1.1

JMF 2.1.1 has been tested and is interoperable with the following tools and applications:

• Apple QuickTime Streaming Server - Apple Computer, Inc.
Commercial RTP server for the Mac platform

• Darwin Streaming Server - Apple Computer, Inc.
Public Source RTP server for the Linux, Solaris and other platforms

• ShowMe TV - Sun Microsystems
Commercial RTP server/client for Solaris/SPARC

Division of Computer Engineering, CUSAT. 73

Platform Independent Video/Voice over IP

• Media Central Streaming Server - Sun Microsystems
High capicity, commercial RTP server for Solaris/SPARC

• vat/vic - Lawrence Berkeley Labs
Publically available audio and video RTP tools
Runs on most Unix systems & Windows

JMF Registry

JMF 2.1.1 maintains a registry of available plug-in, package prefixes and other settings in

a file called jmf properties. This is a binary file and should only be modified using the

provided JMFRegistry application. This application is a part of the JMF 2.1.1 jmf.jar file

and can be run as "java JMFRegistry". It requires that you have Swing-1.1 in your

CLASSPATH (or you can use JDK 1.2 or later).

JMF 2.1.1 RTP/RTSP

RTP

RTP is the Real-time Transport Protocol. Here is an excerpt from the RTP specification:

"RTP provides end-to-end network transport functions suitable for applications

transmitting real-time data, such as audio, video or simulated data, over multicast or

unicast network services. RTP does not address resource reservation and does not

guarantee quality-of-service for real-time services. The data transport is augmented by a

control protocol (RTCP) to allow monitoring of the data delivery in a manner scalable to

large multicast networks, and to provide minimal control and identification functionality.

RTP and RTCP are designed to be independent of the underlying transport and network

layers". For further information please refer to RFC 1889: RTP: A Transport Protocol for

Real-Time Applications.

Division of Computer Engineering, CUSAT. 74

Platform Independent Video/Voice over IP

RTSP

RTSP is the Real Time Streaming Protocol. It is an application-level protocol for control

over the delivery of real-time data, such as audio and video. Sources of data can include

both live feed and stored clips. RTSP is the equivalent of the TV remote control for media

streams. You can start and stop streams on the server side (video on demand type of

applications). For furthur information please refer to RFC 2326: Real Time Streaming

Protocol (RTSP).

Features of RTP supported by JMF

JMF supports both transmission and reception of media over RTP for a variety of media

formats. It also fully supports RTCP. Besides, JMF implements the "RTP Profile for

Audio and Video Conferences with Minimal Control", RTP/AVP. The front end GUI

application, JMStudio can be used as a standalone application to transmit and receive

RTP streams.

Features of RTSP supported by JMF

 JMF supports RTSP on the client side for reception and playback. The RTSP protocol

stack is built into the player which can be accessed through the Manager.createPlayer()

interface with an RTSP media locator. JMF interoperates with other standard-based RTSP

servers.

Swing (Java)

Swing is a GUI toolkit for Java. Swing is one part of the Java Foundation Classes (JFC).

Swing includes graphical user interface (GUI) widgets such as text boxes, buttons, split-

panes, and tables.

Division of Computer Engineering, CUSAT. 75

Platform Independent Video/Voice over IP

Swing widgets provide more sophisticated GUI components than the earlier Abstract

Windowing Toolkit. Since they are written in pure Java, they run the same on all

platforms, unlike the AWT which is tied to the underlying platform's windowing system.

Swing supports pluggable look and feel – not by using the native platform's facilities, but

by roughly emulating them. This means you can get any supported look and feel on any

platform. The disadvantage of lightweight components is possibly slower execution. The

advantage is uniform behavior on all platforms.

History

The Internet Foundation Classes (IFC) were a graphics library for Java originally

developed by Netscape Communications Corporation and first released on December 16,

1996.

On April 2, 1996, Sun Microsystems and Netscape Communications Corporation

announced their intention to combine IFC with other technologies to form the Java

Foundation Classes. In addition to the components originally provided by IFC, Swing

introduced a mechanism that allowed the look and feel of every component in an

application to be altered without making substantial changes to the application code. The

introduction of support for a pluggable look and feel allowed Swing components to

emulate the appearance of native components while still retaining the benefits of platform

independence.

Originally distributed as a separately downloadable library, Swing has been included as

part of the Java Standard Edition since release 1.2. The Swing classes are contained in the

javax.swing package hierarchy.

Relationship to AWT

Since early versions of Java, a portion of the Abstract Windowing Toolkit (AWT) has

provided platform independent APIs for user interface components. In AWT, each

component is rendered and controlled by a native peer component specific to the

underlying windowing system.

Division of Computer Engineering, CUSAT. 76

Platform Independent Video/Voice over IP

By contrast, Swing components are often described as lightweight because they do not

require allocation of native resources in the operating system's windowing toolkit. The

AWT components are referred to as heavyweight components.

Much of the Swing API is generally a complementary extension of the AWT rather than a

direct replacement. In fact, every Swing lightweight interface ultimately exists within an

AWT heavyweight component because all of the top-level components in Swing (JApplet,

JDialog, JFrame, and JWrindow) extend an AWT top-level container. The core rendering

functionality used by Swing to draw its lightweight components is provided by Java2D, a

part of AWT. However, the use of lightweight and heavyweight components within the

same window is generally discouraged due to Z-order incompatibilities.

Relationship to SWT

The Standard Widget Toolkit (SWT) is a competing toolkit originally developed by IBM

and now maintained by the Eclipse Foundation. SWT's implementation has more in

common with the heavyweight components of AWT. This confers benefits such as more

accurate fidelity with the underlying native windowing toolkit, at the cost of an increased

exposure to the native resources in the programming model.

The advent of SWT has given rise to a great deal of division among Java desktop

developers with many strongly favouring either SWT or Swing. A renewed focus on

Swing look and feel fidelity with the native windowing toolkit in the approaching Java

SE 6 release (as of 2006) is probably a direct result of this.

Division of Computer Engineering, CUSAT. 77

Platform Independent Video/Voice over IP

Example

The following is a Hello World program using Swing.

package helloworld;

import javax.swing.JFrame;

import javax.swing.JLabel;

public final class HelloWorld extends JFrame {

 private HelloWorld() {

 setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE);

 add(new JLabel("Hello, World!"));

 pack();

 setLocationRelativeTo(null);

 }

 public static void main(String[] args) {

 new HelloWorld().setVisible(true);

 }

}

Division of Computer Engineering, CUSAT. 78

Platform Independent Video/Voice over IP

5. SYSTEM DESIGN

Division of Computer Engineering, CUSAT. 79

Platform Independent Video/Voice over IP

The most creative and challenging phase of the system life cycle is system design.

The term design describes a final system and the process by which it is developed. It

refers to the technical specifications that will be applied in implementing the candidate

system. It also includes the construction of programs and program testing.

The first step in system designing is to determine how the output is to be produced and in

what format. Samples of the output and input are also presented. In the second step, input

data and master files are to be designed to meet requirement of the proposed output. The

processing phases are handled through program construction and testing, including a list

of the programs needed to meet the system’s objectives and complete documentation.

Finally details related to justification of the system and an estimate of the impact of the

candidate system on the user and the organization are documented and evaluated by

management as a step towards implementation. The final report prior to the

implementation phase includes procedure flow chart, record layouts, and a workable plan

for implementing the candidate system.

System design has two phases:

1. Logical and

2. Physical.

The logical design reviews the present physical system, prepares the input and output and

also prepares a logical design walk-through. We have to deal with how to take entries

required and whether and how to process the user data. Also we have to deal with how to

present the data in an informative and appealing format. This design also involves the

methodology to store, modify and retrieve data from the database as per the requirement.

 Physical design maps out the details of the physical system, plans the system

implementations, devices a test and implementation plan and new hardware and software.

We have to decide how and where to store the input data and how to process it so as to

present it to the user in an easy, informative and attractive manner. A major step in the

Division of Computer Engineering, CUSAT. 80

Platform Independent Video/Voice over IP

design is the preparation of input and output reports in a form acceptable to the user. In

this a data entry operator can feed the relevant details asked by the system for a particular

task as input. The system will store the data in computer files and can be processed when

needed.

5.1 Input Design

The input design is one of the important tasks in the software development, since it helps

to reduce the user’s work and select the correct data entry. The software includes various

screens, which helps to accept the correct entry The administrator-gathered and user-

entered inputs are converted into a computer-based format. It also includes determining

the record media, method of input, speed of capture, and entry into the screen. Inputs to

the system has to be both through the movement of the mouse and also via the keyboard.

The frame/pages requested can be viewed on a Cathode Ray Tube (CRT) screen since the

system under development is a general Web Portal the data input is to be done from the

Administrative account.

Login Form:

 It provides security to the system. This allows users to use the system, by
entering username and IP address.

5.2 Output Design

 Output is the most important and direct source in information to the consumer and

Administrator. Intelligent output design will improve the systems relationship with user

and help in decision making.The output is designed in such a way that it is attractive,

convenient and informative. As the outputs are the most important sources of

information to the user, better design should improve the user’s relationship with us.

Division of Computer Engineering, CUSAT. 81

Platform Independent Video/Voice over IP

Capturing still images, videos and sound enhances the appearance and attractiveness of

the output. The output is Pleasing to the user and conveys information in an appealing

manner. The output has to be such that the user shall find the required information easily.

Unnecessary clutter is avoided except for a few features which are required to improve

appearance.

The output is provided in a categorized manner. Items of similar nature are grouped

together. For instance in the News field, there can be several subcategories like Politics,

Sports, Business and so on. The features which users might be more interested in are

highlighted in separate columns along the sides of the page. We have provided following

interfaces for output purposes:

 Interface for the Group Conversation Window

 Interface for the Private Messaging.

 Interface for recording and playing audio file.

5.3 Module wise Description

This project has the following modules.

They are:

 Text Module

 Audio Module

 Video Module

 Recorder Player Module

The functions of each module are as follows.

Division of Computer Engineering, CUSAT. 82

Platform Independent Video/Voice over IP

5.3.1 Text Module

In this module we have provided user with the facility to send text messages to any

other online user. We have provided the facility of private messaging between two

users as well as the user can have conference with more than one users.

5.3.2 Audio Module

In this module we have provided user with the facility to have audio conversation

with any other online user. The user can have audio chat using their microphones.

5.3.3 Video Module

In this module we have provided user with the facility to have video conversation

with any other online user. The users can capture live video pictures using web cams

and send it in the form of streams to the other user.

5.3.4 Recorder-Player Module

This module provides the facility to record voice from microphone and store it as an

audio file. The user can also specify the different formats into which to record the

audio file like wave, aifc, au etc. The user has been given options to start and end

the recording.

The player module will play the recorded audio file from the path specified by the

user.

Division of Computer Engineering, CUSAT. 83

Platform Independent Video/Voice over IP

5.4 Data Flow Diagrams

As information is moved through the software, it is modified by a series of

transformations. A data flow diagram is a graphical representation that depicts

information flow and the transforms that are applied as data move from input to output.

The data flow diagram may be used to represent a system or software at any level of

abstraction. DFD’s may be portioned into levels that represent increasing information

flow and functional detail.

A level 0 DFD, also called a fundamental system model or a context model,

represents the entire software element as a single bubble with input and output data

indicated by incoming and outgoing arrows respectively. Each of the processes

represented at the level 1 is a sub function of the overall system depicted in the context

model.

Data Flow Diagram is a way of expressing system requirements in a graphical form. It

has the purpose of identifying major transformation that will become programs in system

design. DFD does not supply detailed description of the modules but graphically

describes a system’s data and how the data interact with the system.

A Data Flow Diagram (DFD) or a Bubble chart is a graphical tool for structured analysis,

it was De Marco (1978) and Gane and Sarson (1979) who introduced DFD. DFD models

a system by using external entities from which data flows to a process, which transforms

the data and creates, output-data-flows which go to other processes or external entities or

files. Data in files may also flow to processes as inputs.

There are various symbols used in a DFD. Bubbles represent the processes. Named

arrows indicate the data flow. External entities are represent by rectangles and are

outside the system such as vendors or customers with whom the system interacts. They

either supply or consume data. Entities supplying data are known as sources and those

that consume data are called sinks. Data are stored in a data store by a process in the

system. Each component in a DFD is labeled with a descriptive name. Process names

are further identified with a number. DFD’s can be hierarchically organized, which help

Division of Computer Engineering, CUSAT. 84

Platform Independent Video/Voice over IP

in partitioning and analyzing large systems. As a first step, one Data Flow Diagram can

depict an entire system, which gives the system overview. It is called Context Diagram

of level 0 DFD. The Context Diagram can be further expanded. The successive

expansion of a DFD from the context diagram to those giving more details is known as

leveling of DFD. Thus a top down approach is used, starting with an overview and then

working out the details

The main merit of DFD is that it can provide an overview of what data a system would

process, what transformation of data are done, what files are used, and where the results

flow.

The server application will listen for any new connections from client connections on

port 1000. Any new client connections will be added to an internal stack of client

connections. All client applications will only communicate to the server and not to other

client computers. This ensures that a client system cannot show the remote address of a

particular remote user and results in improved security against other users of the

application.

Figure shows the data flow of the application between the clients and server. Each client

will have a two-way communication link (send and receive) with the server. The server

is responsible for relaying any messages between clients. The server may also log any

events and data to a local file on the server computer.

Figure– Data Flow of Application

Division of Computer Engineering, CUSAT. 85

Platform Independent Video/Voice over IP

5.5 Data Dictionary

A Data Dictionary is a repository of various data flows defined in a DFD. The associated

data dictionary states precisely the structure of each data flow in the DFD. Components

in the structure of a data flow may also be specified in the data dictionary. To define the

data structure various notations of regular expressions are used.

Sl. No Code
Description

1. Login ID User Name
2. Server Address Server’s IP Address
3. Server Port Server’s Port Number

Division of Computer Engineering, CUSAT. 86

Platform Independent Video/Voice over IP

6. SYSTEM IMPLEMENTATION

Division of Computer Engineering, CUSAT. 87

Platform Independent Video/Voice over IP

An important aspect of the system analyst job is to make sure that the design is

implemented to establish standards. Implementation invoices the conversion of basic

application to complete replacement of computer system. It is a process of converting a

new revised system design into an operational one. It is simply a translation of the largest

abstraction into physical realization, using language architecture.

 Implementation includes all the activities that take place to convert the old

system to new System may be totally new, replacing an existing manual or automated

system or it may be a proper implementation essential to provide a reliable system to

meet organizations equipment.

6.1 Implementation Aspect

In the implementation of a computer system to replace a manual system, the

problems encountered are converting files, training users, creating accurate files and

verifying print outs for integrity. Implementation of a new computer system to replace an

existing one is more difficult conversion. If not properly planned, there can be many

problems. Some larger computer systems have taken long years to convert.

Implementation of modified application to replace an existing system using the

same computer is relatively easy to handle provided that there are no major changes in

the file. Implementation is a key stage in achieving a successful new system, because it

usually involves a lot of upheaval in the user department. During the design phase the

product structure, its undergoing data structures, the general algorithms and interfaces

and linkage among the various substructures are established. The algorithms and data

structures developed during design based on requirement specifications were converted to

running programs.

Division of Computer Engineering, CUSAT. 88

Platform Independent Video/Voice over IP

6.2 Post implementation review

After system implementation and user training is complete a review of the system

is usually conducted by the users and the analyst. This is a formal process to determine

how well the system is working. How it has been expected and whether adjustments are

made. The review is also important to gather information for maintenance of the system.

The most fundamental concern during post implementation review is determined whether

the system has met its objectives. The performance level of users is reviewed and

checked whether the system is producing the indented results. The systems output

quality merits special attention. The accuracy of information, the timelessness of

0presentation, completeness and appropriateness of formats etc. Continue to indicate

system quality. In some cases unsuitable system component may found during post

implementation review. The post implementation review not only assesses how well the

current system of design is implemented but also a valuable thought information review.

6.3 Sample Codes

6.3.1 To send voice over LAN(Server Program)

import java.io.File;

import java.io.IOException;

import java.io.*;

import java.net.*;

import javax.sound.sampled.*;

public class Server {

public static void main(String[] args) {

 float sampleRate = 8000.0F; //possible 8000 11025 16000 22050 44100

 int sampleSizeInBits = 16; //possible 8 or 16

 int channels = 1; //1 or 2

Division of Computer Engineering, CUSAT. 89

Platform Independent Video/Voice over IP

 boolean signed = true;

 boolean BigEndian = false;

 AudioFormat audio = new AudioFormat(sampleRate, sampleSizeInBits, channels,

signed, BigEndian);

 try {

 TargetDataLine targetDataLine;

 DataLine.Info dataLineInfo = new DataLine.Info(TargetDataLine.class,audio);

 //targetDataLine = (TargetDataLine) AudioSystem.getLine(dataLineInfo);

 //Wait for a Socket Connection

 ServerSocket server = new ServerSocket(5656);

 while (true) {

 Socket client = server.accept();

 Thread c = new CaptureThread(client, audio, dataLineInfo);

 c.start();

 }

 }

 catch (Exception e) {System.out.println(e);}

 }

}

class CaptureThread extends Thread {

 Socket client;

 TargetDataLine targetDataLine;

 AudioFormat audio;

 DataLine.Info info;

 public CaptureThread(Socket sock, AudioFormat aud, DataLine.Info dataLineInfo) {

 client = sock;

 audio = aud;

 info = dataLineInfo;

 }

Division of Computer Engineering, CUSAT. 90

Platform Independent Video/Voice over IP

 public void run() {

 AudioFileFormat.Type fileType = null;

 fileType = AudioFileFormat.Type.WAVE;

 int numBytesRead = 0;

 byte[] data = new byte[1024];

BufferedOutputStream out = null;

 try {

 out = new BufferedOutputStream(client.getOutputStream());

 } catch (Exception ear) {System.out.println("Bufferedout " + ear);}

 try {

 System.out.println("Got to setting targetDataline");

 targetDataLine = (TargetDataLine) AudioSystem.getLine(info);

 System.out.println(targetDataLine.getBufferSize());

 targetDataLine.open(audio, targetDataLine.getBufferSize());

 System.out.println("Opened The dataLine");

 targetDataLine.start();

 System.out.println("Started TargetData");

 } catch (Exception ex) {System.out.println(ex);}

 while (true) {

 try {

 numBytesRead = targetDataLine.read(data, 0, 1024);

 out.write(data, 0, numBytesRead);

 }

 catch (Exception eat) {System.out.println("Error Stream " + eat);}

 }

 }

 }

Division of Computer Engineering, CUSAT. 91

Platform Independent Video/Voice over IP

6.3.2 To Send Voice Over LAN(Client Program)

import java.io.*;

import javax.sound.sampled.*;

import java.net.*;

public class client {

 //public client() throws Exception{

 public static void main(String[] args) throws Exception {

 boolean thread = false;

 Socket client = new Socket("localhost", 5656);

 //ObjectInputStream in = new ObjectInputStream(new

BufferedInputStream(client.getInputStream()));

 Thread c = new downthread(client);

 c.start();

 }

}

class downthread extends Thread {

Socket client;

boolean thread = true;

public downthread(Socket clt) {

 client = clt;

 }

 public void run() {

 try {

 final int bufSize =16384;

 SourceDataLine line;

 BufferedInputStream playbackInputStream;

 float sampleRate = 8000.0F; //possible 8000 11025 16000 22050 44100

Division of Computer Engineering, CUSAT. 92

Platform Independent Video/Voice over IP

 int sampleSizeInBits = 16; //possible 8 or 16

 int channels = 1; //1 or 2

 boolean signed = true;

 boolean BigEndian = false;

 AudioFormat format = new AudioFormat(sampleRate, sampleSizeInBits,

channels, signed, BigEndian);

 playbackInputStream = new BufferedInputStream(new

AudioInputStream(new BufferedInputStream(client.getInputStream()),

format,564564564));

 DataLine.Info info = new DataLine.Info(SourceDataLine.class, format);

 line = (SourceDataLine) AudioSystem.getLine(info);

 line.open(format, bufSize);

 byte[] data = new byte[1024];

 int numBytesRead = 0;

 line.start();

 while (thread != false) {

 numBytesRead = playbackInputStream.read(data);

 line.write(data, 0, numBytesRead);

 }

 }

 catch (Exception e) {System.out.println(e);}

 }

}

Division of Computer Engineering, CUSAT. 93

Platform Independent Video/Voice over IP

6.3.3 To Capture Video Streams Using Web Cam

import java.io.*;

import javax.media.*;

import javax.media.control.*;

import javax.media.datasink.*;

import javax.media.format.*;

import javax.media.protocol.*;

public class TestQuickCamPro

{

private static boolean debugDeviceList = false;

private static String defaultVideoDeviceName = "Microsoft WDM Image

Capture";

private static String defaultAudioDeviceName = "DirectSoundCapture";

private static String defaultVideoFormatString= "size=176x144, encoding=yuv,

maxdatalength=38016";

private static String defaultAudioFormatString = "linear, 16000.0 hz, 8-bit, mono,

unsigned";

private static CaptureDeviceInfo captureVideoDevice = null;

private static CaptureDeviceInfo captureAudioDevice = null;

private static VideoFormat captureVideoFormat = null;

private static AudioFormat captureAudioFormat = null;

public static void main(String args[])

{

for (int x = 0; x < args.length; x++)

{

if (args[x].toLowerCase().compareTo("-dd") == 0)

debugDeviceList = true;

}

Division of Computer Engineering, CUSAT. 94

Platform Independent Video/Voice over IP

Stdout.log("get list of all media devices ...");

java.util.VectordeviceListVector= CaptureDeviceManager.getDeviceList(null);

if (deviceListVector == null)

{

Stdout.log("... error: media device list vector is null, program

aborted");

System.exit(0);

}

if (deviceListVector.size() == 0)

{

Stdout.log("... error: media device list vector size is 0, program

aborted");

System.exit(0);

}

for (int x = 0; x < deviceListVector.size(); x++)

{

// display device name

CaptureDeviceInfo deviceInfo = (CaptureDeviceInfo)

deviceListVector.elementAt(x);

String deviceInfoText = deviceInfo.getName();

if (debugDeviceList)

Stdout.log("device " + x + ": " + deviceInfoText);

// display device formats

Format deviceFormat[] = deviceInfo.getFormats();

for (int y = 0; y < deviceFormat.length; y++)

{

// serach for default video device

if (captureVideoDevice == null)

if (deviceFormat[y] instanceof VideoFormat)

Division of Computer Engineering, CUSAT. 95

Platform Independent Video/Voice over IP

if

(deviceInfo.getName().indexOf(defaultVideoDeviceName) >= 0)

{

captureVideoDevice = deviceInfo;

Stdout.log(">>> capture video device = " +

deviceInfo.getName());

}

// search for default video format

if (captureVideoDevice == deviceInfo)

if (captureVideoFormat == null)

if

(DeviceInfo.formatToString(deviceFormat[y]).indexOf(defaultVideoFormatString) >= 0)

{

captureVideoFormat = (VideoFormat)

deviceFormat[y];

Stdout.log(">>> capture video format = " +

DeviceInfo.formatToString(deviceFormat[y]));

}

// serach for default audio device

if (captureAudioDevice == null)

if (deviceFormat[y] instanceof AudioFormat)

if

(deviceInfo.getName().indexOf(defaultAudioDeviceName) >= 0)

{

captureAudioDevice = deviceInfo;

Stdout.log(">>> capture audio device = " +

deviceInfo.getName());

}

Division of Computer Engineering, CUSAT. 96

Platform Independent Video/Voice over IP

// search for default audio format

if (captureAudioDevice == deviceInfo)

if (captureAudioFormat == null)

if

(DeviceInfo.formatToString(deviceFormat[y]).indexOf(defaultAudioFormatString) >= 0)

{

captureAudioFormat = (AudioFormat)

deviceFormat[y];

Stdout.log(">>> capture audio format = " +

DeviceInfo.formatToString(deviceFormat[y]));

}

if (debugDeviceList)

Stdout.log(" - format: " +

DeviceInfo.formatToString(deviceFormat[y]));

}

}

Stdout.log("... list completed.");

if (debugDeviceList)

System.exit(0);

MediaLocator videoMediaLocator = captureVideoDevice.getLocator();

DataSource videoDataSource = null;

try

{

videoDataSource =

javax.media.Manager.createDataSource(videoMediaLocator);

}

catch (IOException ie) { Stdout.logAndAbortException(ie); }

catch (NoDataSourceException nse)

{ Stdout.logAndAbortException(nse); }

Division of Computer Engineering, CUSAT. 97

Platform Independent Video/Voice over IP

if (! DeviceInfo.setFormat(videoDataSource, captureVideoFormat))

{

Stdout.log("Error: unable to set video format - program aborted");

System.exit(0);

}

MediaLocator audioMediaLocator = captureAudioDevice.getLocator();

DataSource audioDataSource = null;

try

{

audioDataSource =

javax.media.Manager.createDataSource(audioMediaLocator);

}

catch (IOException ie) { Stdout.logAndAbortException(ie); }

catch (NoDataSourceException nse)

{ Stdout.logAndAbortException(nse); }

if (! DeviceInfo.setFormat(audioDataSource, captureAudioFormat))

{

Stdout.log("Error: unable to set audio format - program aborted");

System.exit(0);

}

DataSource mixedDataSource = null;

try

{

DataSource dArray[] = new DataSource[2];

dArray[0] = videoDataSource;

dArray[1] = audioDataSource;

mixedDataSource=

javax.media.Manager.createMergingDataSource(dArray);

}

Division of Computer Engineering, CUSAT. 98

Platform Independent Video/Voice over IP

catch(IncompatibleSourceExceptionise){

Stdout.logAndAbortException(ise); }

FileTypeDescriptoroutputType=new FileTypeDescriptor(FileTypeDescriptor.MSVIDEO);

Format outputFormat[] = new Format[2];

outputFormat[0] = new VideoFormat(VideoFormat.INDEO50);

outputFormat[1] = new AudioFormat(AudioFormat.GSM_MS /* LINEAR

*/);

ProcessorModelprocessorModel=new

ProcessorModel(mixedDataSource, outputFormat, outputType);

Processor processor = null;

try

{

processor = Manager.createRealizedProcessor(processorModel);

}

catch (IOException e) { Stdout.logAndAbortException(e); }

catch (NoProcessorException e) { Stdout.logAndAbortException(e); }

catch (CannotRealizeException e) { Stdout.logAndAbortException(e); }

DataSource source = processor.getDataOutput();

MediaLocator dest = new MediaLocator("file:testcam.avi");

DataSink dataSink = null;

MyDataSinkListener dataSinkListener = null;

try

{

dataSink = Manager.createDataSink(source, dest);

dataSinkListener = new MyDataSinkListener();

dataSink.addDataSinkListener(dataSinkListener);

dataSink.open();

}

catch (IOException e) { Stdout.logAndAbortException(e); }

catch (NoDataSinkException e) { Stdout.logAndAbortException(e); }

Division of Computer Engineering, CUSAT. 99

Platform Independent Video/Voice over IP

catch (SecurityException e) { Stdout.logAndAbortException(e); }

try

{

dataSink.start();

}

catch (IOException e) { Stdout.logAndAbortException(e); }

processor.start();

Stdout.log("starting capturing ...");

try { Thread.currentThread().sleep(10000); } catch (InterruptedException

ie) {}

Stdout.log("... capturing done");

processor.stop();

processor.close();

dataSinkListener.waitEndOfStream(10);

dataSink.close();

Stdout.log("[all done]");

}

}

Division of Computer Engineering, CUSAT. 100

Platform Independent Video/Voice over IP

7. SYSTEM TESTING

Division of Computer Engineering, CUSAT. 101

Platform Independent Video/Voice over IP

Testing and Implementation are the final and important phase. It involves user

training, system testing and successful running of the developed proposed system. The

user tests the developed system and changes are made according to their needs. The

testing phase involves the testing of developed system using various kinds of data.

An elaborate testing of data is prepared and the system is tested using that test data.

While testing, errors are noted and corrections are being made. The users are trained to

operate the developed system successfully in future.

7.1 Testing

System testing is the stage of implementation, which is aimed at ensuring that the

system works accurately and efficiently before live operation commences. Testing is vital

to the success of the system. System testing makes a logical assumption that if all the

parts of the system are correct, the goal will be successfully achieved. The candidate

system is subject to a variety of tests: online response, volume, stress, recovery and

security and usability tests. A series of testing are performed for the proposed system

before the system is ready for user acceptance testing.

The testing steps are: -

 Unit Testing

 Integration Testing

 Validation

 Output Testing

 User Acceptance Testing

7.1.1 Unit Testing

Unit testing involves verification efforts on the smallest unit of software design

the module. This is also known as “Module Testing”. The modules are tested separately.

This testing is carried out during programming stage itself. In this testing step, each

Division of Computer Engineering, CUSAT. 102

Platform Independent Video/Voice over IP

module is found to be working satisfactorily as regard to the expected output from the

module. Unit testing is normally considered and adjunct to the coding step. After source

level code has been developed, reviewed and verified for correct syntax, unit test case

design case design begins. Each test case should be coupled with a set of expected

results. Unit testing is simplified when modules with high cohesion is designed. When a

module a number of test cases only addresses only one function is reduced and error can

be more easily uncovered.

The test that occurs as a part of unit testing is the model interface is tested to

ensure that information correctly flows into and out of the program unit under test. The

local data structure is examined to ensure that data store temporarily maintains its

integrity during all steps of algorithm execution.

Boundary conditions are tested to ensure that modules operate properly. All independent

paths through the control structure exercised to ensure that all statements in a module

have been executed at least once. And finally, all error-handling paths are tested.

7.1.2 Integration Testing

Data can be lost across an interface; on module can have an adverse effort on

other sub functions, when combined, may not produce the desired major functions.

Integration testing is a systematic testing for constructing the program structure, while at

the same time conducting tests to uncover errors associated with the interface. The

objective is to take unit tested modules and build a program structure. All the modules are

combined and tested as a whole. Here correction is difficult because the vast expenses of

the entire program complicate the isolation of causes. Thus, in the integration-testing

step, all the errors uncovered are corrected for the next testing steps.

7.1.3 Output Testing

After performing the validation testing, the next step is output testing of the

proposed system since no system could be useful if it does not produce the required

output in the specific format. Asking the users about the format required by them tests the

Division of Computer Engineering, CUSAT. 103

Platform Independent Video/Voice over IP

outputs generated or displayed by the system under consideration. Here, the output

format is considered in two ways: - one is on screen and another is printed format.

The output format on the screen is found to be correct as the format was designed in the

system design phase according to the user needs. For the hardcopy also, the output comes

out as the specified requirements by the user. Hence, output testing does not result in any

correction in the system.

7.1.4 User Acceptance Testing

User acceptance of a system is the key factor for the success of any system. The

system under consideration is tested for user acceptance by constantly keeping in touch

with the prospective system users at time of developing and making changes wherever

required. This is done with regard to the following points: -

 Input screen design

 Output screen design

 On-line message to guide the user

The above testing, are done by taking various kinds of test data. Preparation of

test data plays a vital role in the system testing. After preparing the test data, the system

understudy is tested using the test data. While testing the system by using test s\data

errors are again uncovered and corrected by using above testing steps and corrections are

also noted for future use.

7.2 User training

After the system is implemented successfully, training of the user is one of the

most important subtasks of the developer. For the purpose user system manuals are

prepared and handed over to the user to operate the developed system. Both the hardware

and software securities are made to run the developed systems successfully in future.

Division of Computer Engineering, CUSAT. 104

Platform Independent Video/Voice over IP

8. SNAPSHOTS

Division of Computer Engineering, CUSAT. 105

Platform Independent Video/Voice over IP

8.1 Interface for the Login Page

This interface allows the client to login by providing a user name ,server’s IP addres and

port number.

Division of Computer Engineering, CUSAT. 106

Platform Independent Video/Voice over IP

8.2 Interface for the Group Conversation Window

This is the group conversation window which allows multiple client to have a group
conversation.

Division of Computer Engineering, CUSAT. 107

Platform Independent Video/Voice over IP

Division of Computer Engineering, CUSAT. 108

Platform Independent Video/Voice over IP

Division of Computer Engineering, CUSAT. 109

Platform Independent Video/Voice over IP

Division of Computer Engineering, CUSAT. 110

Platform Independent Video/Voice over IP

8.3 Interface for the Private Messaging

This is the private message window which allows two clients to communicate with each

other in private.

Division of Computer Engineering, CUSAT. 111

Platform Independent Video/Voice over IP

8.4 Interfaces for Audio Streaming

There is provision for administrator to start the audio server by providing username and

password. Once the server is started the clients can have audio conversation by

connecting to the server through its IP address.

Division of Computer Engineering, CUSAT. 112

Platform Independent Video/Voice over IP

Division of Computer Engineering, CUSAT. 113

Platform Independent Video/Voice over IP

8.5 Interface for Video Streaming

This window displays the video streams captured by web cam connected to the clients

system.

Division of Computer Engineering, CUSAT. 114

Platform Independent Video/Voice over IP

8.6 Audio Player

This interface provides the client with the option to play the recorded audio

Division of Computer Engineering, CUSAT. 115

Platform Independent Video/Voice over IP

8.7 Audio Recorder

This interface provides the client with the option to record audio.

Division of Computer Engineering, CUSAT. 116

Platform Independent Video/Voice over IP

9. FUTURE ENHANCEMENT

Division of Computer Engineering, CUSAT. 117

Platform Independent Video/Voice over IP

To survive from the competition each system has to produce some modifications to it in

the future. New features will provide the system a new fresh look, by which it can attract

a lot of users.

Following the popularity of the Internet and multimedia services over the Internet in

recent years, soft videophones using Session Initiation Protocol (SIP) have become one

of the major IP teleconference applications for desktops, or laptops, or handhold PCs.

One of the soft videophone challenges is to be platform independent. This project can

also be migrated to other OS like NOVELL NETWARE, OS/2 and other processors like

ALPHA AXP, MIPS 4X00 series. This project can be enhanced to work on heterogeneous

networks using RMI technology.

Division of Computer Engineering, CUSAT. 118

Platform Independent Video/Voice over IP

 10. CONCLUSION

Division of Computer Engineering, CUSAT. 119

Platform Independent Video/Voice over IP

 This project is intended to use the full features of the technological Revolution

in the Current application development Scenario. Following the popularity of the Internet

and multimedia services over the Internet in recent years, soft videophones using Session

Initiation Protocol (SIP) have become one of the major IP teleconference applications for

desktops, or laptops, or handhold PCs.

 This is the best project in the world. This project uses the platform

independent feature and JMF package of JAVA. The Java Media Framework API (JMF)

enables audio, video and other time-based media to be added to applications and applets

built on Java technology. This optional package, which can capture, playback, stream,

and transcode multiple media formats, extends the Java 2 Platform, Standard Edition

(J2SE) for multimedia developers by providing a powerful toolkit to develop scalable,

cross-platform technology

Division of Computer Engineering, CUSAT. 120

Platform Independent Video/Voice over IP

11. BIBLIOGRAPHY

Division of Computer Engineering, CUSAT. 121

Platform Independent Video/Voice over IP

11.1 Textual References:

1. Java 2: The Complete Reference,Fifth Edition- Herbert Schildt

2. “Teach Yourself JAVA in 21 Days” by Charles L. Perkins and Michael Morrison
3. Orielly,“ Java Reference Library”

4. Java Cookbook by Ian Darwin Publisher: O'Reilly First Edition June 2001

11.2 Websites referred: -

1. http://www.google.com/

2. http://java.sun.com/products/java-media/jmf/

3. http://forum.java.sun.com/jmf/

4. http://en.wikipedia.org/wiki/Main_Page/jmf

5. http://www-128.ibm.com/developerworks/edu/j-dw-javajmf-i.html

6. http://java.sun.com/products/java-media/jmf/2.1.1/faq-jmf.html

7. http://java.sun.com/developer/technicalArticles/Media/JavaSoundAPI/

Division of Computer Engineering, CUSAT. 122

	1.1 Functionality Description:
	Distributed Multitiered Applications
	J2EE Components
	J2EE Clients
	Web Clients
	Applets
	Application Clients
	The JavaBeans Component Architecture
	J2EE Server Communications

	Web Components
	Business Components
	Enterprise Information System Tier

	J2EE Containers
	Container Services
	Container Types

	Web Services Support
	XML
	SOAP Transport Protocol
	WSDL Standard Format
	UDDI and ebXML Standard Formats

	Packaging Applications
	Development Roles
	J2EE Product Provider
	Tool Provider
	Application Component Provider
	Enterprise Bean Developer
	Web Component Developer
	Application Client Developer

	Application Assembler
	Application Deployer and Administrator

	J2EE 1.4 APIs
	Enterprise JavaBeans Technology
	Java Servlet Technology
	JavaServer Pages Technology
	Java Message Service API
	Java Transaction API
	JavaMail API
	JavaBeans Activation Framework
	Java API for XML Processing
	Java API for XML-Based RPC
	SOAP with Attachments API for Java
	Java API for XML Registries
	J2EE Connector Architecture
	JDBC API
	Java Naming and Directory Interface
	Java Authentication and Authorization Service
	Simplified Systems Integration

	Sun Java System Application Server Platform Edition 8
	Technologies
	JavaServer Pages Standard Tag Library
	JavaServer Faces

	Tools

	Web Applications
	Web Application Life Cycle
	Access a URL that references the web application. Configuring Web Applications
	Servlets
	JMF 2.1.1 RTP/RTSP
	Swing (Java)
	History
	Relationship to AWT
	Relationship to SWT
	Example

	5.5 Data Dictionary
	Sl. No
	Code
	7.1	Testing
	7.1.1 Unit Testing
	7.1.2 Integration Testing
	7.1.4 User Acceptance Testing
	7.2 User training
	11.2 Websites referred: -

