1. INTRODUCTION
1.1.COMPANY PROFILE :

The National Small Industries Corporation Ltd. (NSIC) was established in 1955 by the Government of India with a view to promote, aid and foster the growth of Small Industries in the country. NSIC continues to remain at the forefront, with its various programs and projects, to assist the small-scale sector in the country. Recent Transitions of industrial climate and liberalization arena has witnessed tremendous changes in the domestic as well as international markets. These sudden changes have thrown up as many opportunities as challenges to the small-scale enterprises in the country.

Over a period of four decades of this rescission, growth and development of small-scale sector, it has proved its strength within the country and abroad dynamically, showing its progressive attitude towards modernization, up gradation of technology, quality consciousness, strengthening linkages with large and medium scale enterprises and boosting exports of products from small enterprises. The small-scale sector continues to remain an important instrument for enterprise-building, dispersal of industries for even regional economic development and employment generation. NSIC has been successfully able to plan its assigned role in this endeavor.

Due to changed industrial scenario and gradual globalization of the economy, small-scale sector has to face stiff competition as the insulated and protected market conditions are no more going to be available to it. To enable the small-scale industry to meet this challenge, NSIC has already initiated various steps so that SSI can play their due role, even during polarization of various economic forces.

1.2.COMPANY ACTIVITIES :
NSIC provides diversified support through its wide spectrum of programs of TSC to cater to their different needs related to multi-products and multi-locations markets. It has adopted a multi-pronged approach to effectively serve the various needs of TSC. Assistance by NSIC to Small Scale Units to sell their goods and services to government departments and agencies, through 'Single Point Registration Scheme', provides a vast marketing opportunity.

The corporation also arranges indigenous as well as imported raw materials and parts to ensure that the production cycle of SSI continues without break and they are able to produce high quality products. But that's not all. There is a lot more to NSIC. The organization operates Hire purchase and Equipment Leasing Schemes for providing machinery and equipment at doorsteps of the entrepreneurs. These schemes not only have been able to generate a class of First Generation Entrepreneurs to set up enterprises with minimum investment, the schemes have also acted as stimulants to the existing entrepreneur for expansion, diversification, modernization and technology up gradation.

Through a chain of five NSIC Technical Service Centers that are located at different parts of the country, NSIC offers workshops, testing laboratories and common facilities to the entrepreneurs and their workmen are provided with avenues for skill up gradation through training in various technical trades. To encourage exports, NSIC has set up Software Technology Parks providing complete infrastructure to enable small entrepreneurs to undertake Software exports.
1.3.COMPANY DEPARTMENTS :
Company is organized into some departments serving various sectors lik Nuclear, Defence and Commercial sectors and some developing projects and products.
	· Control & Automation Division (CAD)

· Instruments & Systems Division (ISD)

· Components Division (CD)
· Communications Division (CND)

· Antenna Products Division (APD)

· Servo Systems Division (SSD)

· Supervisory Control & Data Acquisition Division (SCADA)

· Telecom Division (TCD)

· Customer Support Division (CSD)

· Business Systems Division (BSD)
· Computer Education Division (CED)

· Control and Instrumentation for Nuclear Power Plants
· Access Control Systems with a variety of Databases

· SCADA Systems to all major Oil/Gas Pipelines and river Water management

	

	
	

	2.1.CONTROL AND AUTOMATION DIVISION (CAD) :

 Having started with instruments and control systems , and the added expertise based on the strength of association with computer hardware and software development, Automation and Control has become a major segment in the company product line.

 Automation is the use of control systems and information technologies reducing the need for human intervention. In the scope of industrialization, automation is a step beyond mechanization. Whereas mechanization provided human operators with machinery to assist them with the muscular requirements of work, automation greatly reduces the need for human sensory and mental requirements as well. Automation plays an increasingly important role in the world economy and in daily experience. Automation which incorporates all the upcoming ideas of the trade to develop technologically advanced and economical systems such as

· PLCs (Programmable logic control)

· Power Plant Training Simulators

· SCADA (Supervisory control and data acquisition)
· Turbine Supervisory instrumentation system

2.1.1.PROGRAMMABLE LOGIC CONTROL (PLC) :

 A programmable logic controller (PLC) is a small, dedicated computer used to automate and control mechanical effort, and is most often seen in use in the automotive industry. Factory assembly line machinery is activated and monitored by a single PLC, where in the past hundreds of timers and relays would have been required to do the task.

 Programmable logic controllers, sometimes referred to simply as programmable controllers, are microprocessor based units that, in essence, monitor external sensory activity from additional devices. They take in the data, which reports on a wide variety of activity, such as machine performance, energy output, and process impediment. They also control attached motor starters, pilot lights, valves and many other devices. Both functions respond to a custom, user-created program.
 Automation of many different processes, such as controlling machines or factory assembly lines, is done through the use of small computers called a programmable logic controller (PLC). This is actually a control device that consists of a programmable microprocessor, and is programmed using a specialized computer language. Before, a programmable logic controller would have been programmed in ladder logic, which is similar to a schematic of relay logic. A modern programmable logic controller is usually programmed in any one of several languages, ranging from ladder logic to Basic or C. Typically, the program is written in a development environment on a personal computer (PC), and then is downloaded onto the programmable logic controller directly through a cable connection. The program is stored in the programmable logic controller in non-volatile memory.

 Programmable logic controllers contain a variable number of Input/Output (I/O) ports, and are typically Reduced Instruction Set Computer (RISC) based. The programmable logic controller circuitry monitors the status of multiple sensor inputs, which control output actuators, which may be things like motor starters, solenoids, lights and displays, or valves.

Earlier automation systems had to use thousands of individual relays and cam timers, but all of the relays and timers within a factory system can often be replaced with a single programmable logic controller. Today, programmable logic controllers deliver a wide range of functionality, including basic relay control, motion control, process control, and complex networking, as well as being used in Distributed Control Systems.

 Digital signals yield an on or off signal, which the programmable logic controller sees as Boolean values. Analog signals may also be used, from devices such as volume controls, and these analog signals are seen by the programmable logic controller as floating point values.

There are several different types of interfaces that are used when people need to interact with the programmable logic controller to configure it or work with it. This may take the form of simple lights or switches or text displays, or for more complex systems, a computer of Web interface on a computer running a Supervisory Control and Data Acquisition (SCADA) system.

Programmable logic controllers were first created to serve the automobile industry, and the first programmable logic controller project was developed in 1968 for General Motors to replace hard-wired relay systems with an electronic controller.

Supervisory Control and Data Acquisition (SCADA)
INTRODUCTION:

With the advent of advances in the communication system, computer systems and instrumentation systems, supervisory control and data acquisition (SCADA) applications are growing more and more. A centrally located master station controls monitoring and control of any process parameters, like pressure and temperature, whose plant installations are more remote or widely scattered. So in the SCADA system one can monitor and control any process by observing the process on a color video graphic display terminals of the operator consoles from master station.

A typical SCADA system comprises of:

1. A master control station, running SCADA and application software

2. A set of RTUs located close of the measuring and control instruments dispersed in the plant.

3. A dedicated communication system linking the MCS and the RTUs

The main features of the SCADA system are:

Design for unattended operations.

Field proven for stringent environmental conditions.

Microprocessor based intelligence.

Flexibility in configuration to suit specific applications.

Positions independent I/O modules.

Low power consumption.

The typical applications of SCADA system are as follows:

Remote monitoring and control of Electric traction monitoring.

Pipeline for transportation of Oil, Water, Gas etc…,

OFF-shore and ON-shore Oil platforms.

Cement, Steel, Fertilizers and other process plants.

Thermal/Hydro/Gas power plants and electric substations.

Efficient management of electric power transmission and distribution.

OVERVIEW OF RTU:

Remote Telemetry unit (RTU) is a microprocessor based data acquisition system suitable for telemeter and telecontrol applications .The basic functions performed by the RTU include input scanning, alarm and change of state detection with a high degree of security, reliability and integrity .The RTU is designed to act as a telemetry units to a Master computer and is capable of exchanging information with it.

The RTU employs sophisticated microprogramming techniques to provide a highly secure method of data transmission and being software based, offers a considerable degree of flexibility for incorporation of special application oriented features.

The data transmission link may be Omnibus, Multidrop or radial .The rate of data transmission is determined by the characteristics of the transmission medium and system response times.

The RTUs and the MS are normally filled with Modems or line drivers, which provide an interface to suit the requirements of the transmission network.
FUNCTIONS OF RTU:
The exact operation of RTU can be broadly categorized as follows

1. Data Acquisition and Control.

2. House Keeping

3. Communication and message security.

DATA ACQUISITION AND CONTROL

The RTU scans its inputs at predetermined intervals, compares the readings with previously stored data, thus enabling the detection of any change of state and alarms .This information is kept ready by RTU for onward transmission to the Master Computer when called for.
HOUSE KEEPING

The RTU can initialize itself on switch “on” and restoration of power after interruption in supply. The initialization sequence may also be initiated by hardware reset, by software interrupt from watch-dog etc, watch-dog provides a check on the operation of RTU when watch-dog detects that the microprocessor has jumped out of a program, and it attempts to reinitialize the system.

The self-diagnostic checks run by the RTU include bus checks, ADC checks and I/O module checks. A special address is used to report back to the master station, a wide range of specific RTU faults.
COMMUNICATION:

The communication from the RTU to the MCs is in different modes such as

1) Interrogation mode

2) Broadcasting mode

3) downlink load mode

4) Report mode

The input and output cards of a typical RTU are as follows:

a. Digital I/p card

b. Digital o/p card

c. Analog I/p card

d .Analog o/p card

The digital I/p card Detects whether a contact is open or closed. E.g.: the position of the motor operator valve (MOV) or start/stop status of an engine (close or open), ON/OFF position of a circuit breaker etc.

With the digital output card a relay can be driven there by open/close MOV or circuit breaker.

The analog input card will take an input of 4-20 amps or 1-5 V. these electrical signals, which may be an output of a pressure transducer, differential pressure transducer, temperature transducer, flow meter, voltage/current transducer of power station subsystems.

The analog output card is for set point control of analog devices and current of 4-20mAmps can be the o/p of the analog o/p card. This current o/p can be too partially open/close of MOV. In traction applications, the monitoring is done by keeping the RTUs at each substation in which the high values of current and voltage are converted to 4-20mAmps and 1-5 V by current and voltage transducers respectively This serves as an analog I/p for the analog monitoring card. The position ON/OFF of the circuit breakers are taken as 1&0respectively.this serves as a digital I/p for digital input card.

The RTU is controlled by the master station (MS).

CAN

1.1 INTRODUCTION

 The main aim of this project is to implementation for data communication based on CAN protocol by using AT89S52 programmable microcontroller. Here we have connected

DESCRIPTION:

CAN is a multi-master broadcast serial bus standard for connecting electronic control units (ECUs).Each node is able to send and receive messages, but not simultaneously: a message (consisting primarily of an ID usually chosen to identify the message-type/sender and up to eight message bytes) is transmitted serially onto the bus, one bit after another this signal pattern codes the message (in NRZ) and is sensed by all nodes.

The devices that are connected by a CAN network are typically sensors, actuators and control devices. A CAN message never reaches these devices directly, but instead a host processor and a CAN controller are needed between these devices and the bus.

If the bus is free, any node may begin to transmit. If two or more nodes begin sending messages at the same time, the message with the more dominant ID (which has more dominant bits, i.e., bit 0) will overwrite other nodes' less dominant IDs, so that eventually (after this arbitration on the ID) only the dominant message remains and is received by all nodes.

Bit rates up to 1 Mbit/s are possible at network lengths below 40 m. Decreasing the bit rate allows longer network distances (e.g. 125 kbit/s at 500 m).

The CAN data link layer protocol is standardized in ISO 11898-1 (2003). This standard describes mainly the data link layer — composed of the logical link control (LLC) sublayer and the media access control (MAC) sublayer — and some aspects of the physical layer of the OSI reference model. All the other protocol layers are the network designer's choice. The vehicle driver selection is done by using switches which are placed after the micro controller unit.

The programming language used for developing the software to the microcontroller is Embedded/Assembly. The KEIL cross compiler is used to edit, compile and debug this program. Micro Flash programmer is used for burning the developed code on Keil in to the microcontroller Chip. Here in our application we are using AT89C51 microcontroller which is Flash Programmable IC.AT represents the Atmel Corporation represents CMOS technology is used for designing the IC. This IC is one of the versions of 8051.

SOFTWARE:

1. Embedded C

2. Keil IDE

HARDWARE:

1. Micro Controller

2. MCP 2515 CAN controller

3. Power supply

4. MAX232

5. MCP 2551 CAN DRIVER

6. LCD

BLOCK DIAGRAM OF THE PROJECT

 CANH CANL

1.3 FLOW CHART:

[image: image1.emf]

SRART

INITIALIZE MICROCONTROLLER

INITIALIZE CAN BUS

INITIALIZE HYPERTERMINAL

INITIALIZE LCD

TRANSMIT DATA THROUGH PC

CANB BUS READS THE DATA FROM PC

RECEIVED DATA IS DISPLAYED ON LCD

MONITOR IF ANY DATA TRANSMITTED

THROUGH PC

STOP

	

	 2.4 MCP2515

2.4.1FEATURES:

• Implements CAN V2.0B at 1 Mb/s:

- 0 – 8 byte length in the data field

- Standard and extended data and remote

frames

• Receive buffers, masks and filters:

- Two receive buffers with prioritized message

storage

- Six 29-bit filters

- Two 29-bit masks

• Data byte filtering on the first two data bytes

(applies to standard data frames)

• Three transmit buffers with prioritizaton and abort

features.

• High-speed SPI™ Interface (10 MHz):

- SPI modes 0,0 and 1,1

• One-shot mode ensures message transmission is

attempted only one time

• Clock out pin with programmable prescaler:

- Can be used as a clock source for other

device(s)

• Start-of-Frame (SOF) signal is available for

monitoring the SOF signal:

- Can be used for time-slot-based protocols

and/or bus diagnostics to detect early bus

degredation

• Interrupt output pin with selectable enables

• Buffer Full output pins configurable as:

- Interrupt output for each receive buffer

- General purpose output

• Request-to-Send (RTS) input pins individually

configurable as:

- Control pins to request transmission for each

transmit buffer

- General purpose inputs

• Low-power CMOS technology:

- Operates from 2.7V – 5.5V

- 5 mA active current (typical)

- 1 μA standby current (typical) (Sleep mode)

• Temperature ranges supported:

- Industrial (I): -40°C to +85°C

- Extended (E): -40°C to +125°C

2.4.2 PIN DIAGRAM:

[image: image2.emf]
2.4.3 DESCRIPTION:

Microchip Technology’s MCP2515 is a stand-alone Controller Area Network (CAN) controller that implements the CAN specification, version 2.0B. It is capable of transmitting and receiving both standard and extended data and remote frames. The MCP2515 has two acceptance masks and six acceptance filters that

are used to filter out unwanted messages, thereby reducing the host MCUs overhead. The MCP2515 interfaces with microcontrollers (MCUs) via an industry

standard Serial Peripheral Interface (SPI).

2.4.4 : 1.0 DEVICE OVERVIEW:
The MCP2515 is a stand-alone CAN controller developed to simplify applications that require

interfacing with a CAN bus. A simple block diagram of the MCP2515 is shown in Figure 1-1.

The device consists of three main blocks:

1. The CAN module, which includes the CAN protocol engine, masks, filters, transmit and

receive buffers.

2. The control logic and registers that are used to configure the device and its operation.

3. The SPI protocol block.

An example system implementation using the device is shown in Figure 1-2.

1.1 CAN Module:

The CAN module handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate message buffer and control registers. Transmission is initiated by using control register bits via the SPI interface or by using the transmit enable pins. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against the userdefined filters to see if it should be moved into one of the two receive buffers.

1.2 Control Logic:

The control logic block controls the setup and operation of the MCP2515 by interfacing to the other blocks in order to pass information and control. Interrupt pins are provided to allow greater system flexibility. There is one multi-purpose interrupt pin (as well as specific interrupt pins) for each of the receive registers that can be used to indicate a valid message has been received and loaded into one of the receive buffers. Use of the specific interrupt pins is optional.

The general purpose interrupt pin, as well as status registers (accessed via the SPI interface), can also be used to determine when a valid message has been received. Additionally, there are three pins available to initiate immediate transmission of a message that has been loaded into one of the three transmit registers. Use of these pins is optional and initiating message transmissions can also be accomplished by utilizing control registers, accessed via the SPI interface.

1.3 SPI Protocol Block

The MCU interfaces to the device via the SPI interface.Writing to, and reading from, all registers is accomplished using standard SPI read and write commands, in addition to specialized SPI commands.

[image: image3.emf]
[image: image4.emf]
[image: image5.emf]
1.4 Transmit/Receive Buffers/Masks/ Filters

The MCP2515 has three transmit and two receive buffers, two acceptance masks (one for each receive buffer) and a total of six acceptance filters. Shows a block diagram of these buffers and their connection to the protocol engine.

[image: image6.emf]
1.5 CAN Protocol Engine

The CAN protocol engine combines several functional blocks, shown in Figure 1-4 and described below.

1.5.1 PROTOCOL FINITE STATE MACHINE

The heart of the engine is the Finite State Machine (FSM). The FSM is a sequencer that controls the sequential data stream between the TX/RX shift register, the CRC register and the bus line. The FSM also controls the Error Management Logic (EML) and the parallel data stream between the TX/RX shift

registers and the buffers. The FSM ensures that the processes of reception, arbitration, transmission and error-signaling are performed according to the CAN

protocol. The automatic retransmission of messages on the bus line is also handled by the FSM.

1.5.2 CYCLIC REDUNDANCY CHECK

The Cyclic Redundancy Check register generates the Cyclic Redundancy Check (CRC) code, which is transmitted after either the Control Field (for messages

with 0 data bytes) or the Data Field and is used to check the CRC field of incoming messages.

1.5.3 ERROR MANAGEMENT LOGIC

The Error Management Logic is responsible for the fault confinement of the CAN device. Its two counters, the Receive Error Counter (REC) and the Transmit

Error Counter (TEC), are incremented and decremented by commands from the bit stream processor. According to the values of the error counters, the CAN controller is set into the states erroractive, error-passive or bus-off.

1.5.4 BIT TIMING LOGIC

The Bit Timing Logic (BTL) monitors the bus line input and handles the bus related bit timing according to the CAN protocol. The BTL synchronizes on a recessiveto- dominant bus transition at Start-of-Frame (hard synchronization)

and on any further recessive-to-dominant bus line transition if the CAN controller itself does not transmit a dominant bit (resynchronization). The BTL also provides programmable time segments to compensate for the propagation delay time, phase

shifts and to define the position of the sample point within the bit time. The programming of the BTL depends on the baud rate and external physical delay

times.

[image: image7.emf]
2.0 CAN MESSAGE FRAMES

The MCP2515 supports standard data frames, extended data frames and remote frames (standard and extended), as defined in the CAN 2.0B specification.

2.1 Standard Data Frame

The CAN standard data frame is shown in Figure 2-1.

As with all other frames, the frame begins with a Start-Of-Frame (SOF) bit, which is of the dominant state and allows hard synchronization of all nodes.

The SOF is followed by the arbitration field, consisting of 12 bits: the 11-bit identifier and the Remote

Transmission Request (RTR) bit. The RTR bit is used to distinguish a data frame (RTR bit dominant) from a remote frame (RTR bit recessive).

Following the arbitration field is the control field, consisting of six bits. The first bit of this field is the Identifier Extension (IDE) bit, which must be dominant to specify a standard frame. The following bit, Reserved Bit Zero (RB0), is reserved and is defined as a dominant bit by the CAN protocol. The remaining four bits of the control field are the Data Length Code (DLC), which specifies the number of bytes of data (0 – 8 bytes) contained in the message. After the control field is the data field, which contains any data bytes that are being sent, and is of the length

defined by the DLC (0 – 8 bytes). The Cyclic Redundancy Check (CRC) field follows the data field and is used to detect transmission errors. The CRC field consists of a 15-bit CRC sequence, followed by the recessive CRC Delimiter bit.

The final field is the two-bit Acknowledge (ACK) field.

During the ACK Slot bit, the transmitting node sends out a recessive bit. Any node that has received an error-free frame acknowledges the correct reception of

the frame by sending back a dominant bit (regardless of whether the node is configured to accept that specific message or not). The recessive acknowledge

delimiter completes the acknowledge field and may not be overwritten by a dominant bit.

2.2 Extended Data Frame

In the extended CAN data frame, shown in Figure 2-2,

the SOF bit is followed by the arbitration field, which consists of 32 bits. The first 11 bits are the Most Significant bits (MSb) (Base-lD) of the 29-bit identifier.

These 11 bits are followed by the Substitute Remote Request (SRR) bit, which is defined to be recessive.

The SRR bit is followed by the lDE bit, which is recessive to denote an extended CAN frame.

It should be noted that if arbitration remains unresolved after transmission of the first 11 bits of the identifier, and one of the nodes involved in the arbitration is sending a standard CAN frame (11-bit identifier), the standard

CAN frame will win arbitration due to the assertion of a dominant lDE bit. Also, the SRR bit in an extended CAN frame must be recessive to allow the assertion of

a dominant RTR bit by a node that is sending a standard CAN remote frame.

The SRR and lDE bits are followed by the remaining 18 bits of the identifier (Extended lD) and the remote transmission request bit.

To enable standard and extended frames to be sent

across a shared network, the 29-bit extended message identifier is split into 11-bit (most significant) and 18-bit (least significant) sections. This split ensures that the

lDE bit can remain at the same bit position in both the standard and extended frames.

Following the arbitration field is the six-bit control field.

The first two bits of this field are reserved and must be dominant. The remaining four bits of the control field are the Data Length Code (DLC), which specifies the

number of data bytes contained in the message.

The remaining portion of the frame (data field, CRC field, acknowledge field, end-of-frame and intermission) is constructed in the same way as a standard data

frame (see Section 2.1 “Standard Data Frame”).

2.3 Remote Frame

Normally, data transmission is performed on an autonomous basis by the data source node (e.g., a sensor sending out a data frame). It is possible, however, for a destination node to request data from the source. To accomplish this, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node will then send a data

frame in response to the remote frame request.

There are two differences between a remote frame and a data frame. First, the RTR bit is at the recessive state and, second, there is no data field. In the event of a data frame and a remote frame with the same identifier being transmitted at the

same time, the data frame wins arbitration due to the dominant RTR bit following the identifier.

In this way, the node that transmitted the remote frame receives

the desired data immediately.

2.4 Error Frame

An error frame is generated by any node that detects a bus error. An error frame, shown in Figure consists of two fields, an error flag field followed by an error

delimiter field.

There are two types of error flag fields.

The type of error flag field sent depends upon the error status of the node that detects and generates the error flag field.

2.4.1 ACTIVE ERRORS:

If an error-active node detects a bus error, the node interrupts transmission of the current message by generating an active error flag. The active error flag is

composed of six consecutive dominant bits. This bit sequence actively violates the bit-stuffing rule. All other stations recognize the resulting bit-stuffing error and, in

turn, generate error frames themselves, called error

echo flags.

The error flag field, therefore, consists of between six and twelve consecutive dominant bits (generated by one or more nodes). The error delimiter field (eight

recessive bits) completes the error frame. Upon completion of the error frame, bus activity returns to normal and the interrupted node attempts to resend the aborted message.

2.4.2 PASSIVE ERRORS:

If an error-passive node detects a bus error, the node transmits an error-passive flag followed by the error delimiter field. The error-passive flag consists of six consecutive recessive bits and the error frame for an error-passive node consists of 14 recessive bits. From this it follows that, unless the bus error is detected by an

error-active node or the transmitting node, the message will continue transmission because the error-passive flag does not interfere with the bus.

If the transmitting node generates an error-passive flag, it will cause other nodes to generate error frames due to the resulting bit-stuffing violation. After transmission

of an error frame, an error-passive node must wait for six consecutive recessive bits on the bus before attempting to rejoin bus communications.

The error delimiter consists of eight recessive bits and allows the bus nodes to restart bus communications cleanly after an error has occurred.

2.5 Overload Frame

An overload frame, shown in Figure 2-5, has the same format as an active error frame. An overload frame, however, can only be generated during an interframe

space. In this way, an overload frame can be differentiated from an error frame (an error frame is sent during the transmission of a message). The overload frame consists of two fields, an overload flag followed by an overload delimiter. The overload flag consists of six dominant bits followed by overload flags generated by

other nodes (and, as for an active error flag, giving a maximum of twelve dominant bits). The overload delimiter consists of eight recessive bits. An overload

frame can be generated by a node as a result of two conditions:

1. The node detects a dominant bit during the interframe space, an illegal ondition.

Exception: the dominant bit is detected during the third bit of IFS. In this case, the receivers will interpret this as a SOF.

2. Due to internal conditions, the node is not yet able to start reception of the next message. A node may generate a maximum of two sequential overload frames to delay the start of the next message.

2.6 Interframe Space

The interframe space separates a preceding frame (of any type) from a subsequent data or remote frame.

The interframe space is composed of at least three recessive bits called the Intermission. This allows nodes time for internal processing before the start of

the next message frame. After the intermission, the bus line remains in the recessive state (bus idle) until the next transmission starts.

3.0 MESSAGE TRANSMISSION

3.1 Transmit Buffers

The MCP2515 implements three transmit buffers. Each of these buffers occupies 14 bytes of SRAM and are mapped into the device memory map.

The first byte, TXBnCTRL, is a control register associated with the message buffer. The information in this register determines the conditions under which the

message will be transmitted and indicates the status of the message transmission

Five bytes are used to hold the standard and extended identifiers, as well as other message arbitration information (see Register 3-3 through Register 3-7).

The last eight bytes are for the eight possible data bytes of the message to be ansmitted At a minimum, the TXBnSIDH, TXBnSIDL and TXBnDLC registers must be loaded. If data bytes are present in the message, the TXBnDm registers must also be loaded. If the message is to use extended identifiers, the TXBnEIDm registers must also be loaded and the TXBnSIDL.EXIDE bit set. Prior to sending the message, the MCU must initialize the CANINTE.TXInE bit to enable or disable the generation of an interrupt when the message is sent.

3.2 Transmit Priority

Transmit priority is a prioritization within the MCP2515 of the pending ansmittable messages. This is independent from, and not necessarily related to, any prioritization implicit in the message arbitration scheme built into the CAN rotocol.

Prior to sending the SOF, the priority of all buffers that are queued for transmission is compared. The transmit buffer with the highest priority will be sent first. For

example, if transmit buffer 0 has a higher priority setting than transmit buffer 1, buffer 0 will be sent first.

If two buffers have the same priority setting, the buffer with the highest buffer number will be sent first. For example, if transmit buffer 1 has the same priority

setting as transmit buffer 0, buffer 1 will be sent first.

There are four levels of transmit priority. If TXBnCTRL.TXP<1:0> for a particular message buffer is set to 11, that buffer has the highest possible priority.

If TXBnCTRL.TXP<1:0> for a particular message buffer is 00, that buffer has the lowest possible priority

3.3 Initiating Transmission

In order to initiate message transmission, the

TXBnCTRL.TXREQ bit must be set for each buffer to

be transmitted. This can be accomplished by:

• Writing to the register via the SPI write command

• Sending the SPI RTS command

• Setting the TXnRTS pin low for the particular

transmit buffer(s) that are to be transmitted

If transmission is initiated via the SPI interface, the

TXREQ bit can be set at the same time as the TXP

priority bits.

When TXBnCTRL.TXREQ is set, the TXBnCTRL.ABTF,

TXBnCTRL.MLOA and TXBnCTRL.TXERR bits will be

cleared automatically.

Once the transmission has completed successfully, the TXBnCTRL.TXREQ bit will be cleared, the CANINTF.TXnIF bit will be set and an interrupt will be

generated if the CANINTE.TXnIE bit is set.

If the message transmission fails, the

TXBnCTRL.TXREQ will remain set. This indicates that

the message is still pending for transmission and one

of the following condition flags will be set:

• If the message started to transmit but encountered

an error condition, the TXBnCTRL.TXERR and the CANINTF.MERRF bits will be set and an interrupt will be generated on the INT pin if the CANINTE.MERRE bit is set

• If the message is lost, arbitration at the

TXBnCTRL.MLOA bit will be set

3.4 One-Shot Mode

One-shot mode ensures that a message will only attempt to transmit one time. Normally, if a CAN message loses arbitration, or is destroyed by an error

frame, the message is retransmitted. With One-shot mode enabled, a message will only attempt to transmit one time, regardless of arbitration loss or error frame.

One-shot mode is required to maintain time slots in

deterministic systems, such as TTCAN.

3.5 TXnRTS PINS

The TXnRTS pins are input pins that can be configured

as:

• Request-to-send inputs, which provides an alternative means of initiating the transmission of a message from any of the transmit buffers

• Standard digital inputs Configuration and control of these pins is accomplished

using the TXRTSCTRL register (see Register 3-2). The TXRTSCTRL register can only be modified when the MCP2515 is in Configuration mode (see Section 10.0

“Modes of Operation”).

If configured to operate as a request-to-send pin, the pin is mapped into the

respective TXBnCTRL.TXREQ bit for the transmit buffer. The TXREQ bit is latched by the falling edge of the TXnRTS pin. The TXnRTS pins are designed to

allow them to be tied directly to the RXnBF pins to automatically initiate a message transmission when the RXnBF pin goes low.

The TXnRTS pins have internal pull-up resistors of normal 100k

3.6 Aborting Transmission

The MCU can request to abort a message in a specific message buffer by clearing the associated TXBnCTRL. TXREQ bit. In addition, all pending messages can be requested to be aborted by setting the CANCTRL.ABAT bit. This bit MUST be reset (typically after the TXREQ bits have been verified to be cleared) to continue transmitting messages. The CANCTRL.ABTF flag will only be set if the abort was requested via the CANCTRL.ABAT bit. Aborting a message by resetting the TXREQ bit does NOT cause the ABTF bit to be set.

2.5 MCP2551

High-Speed CAN Transceiver

2.5.1 Features

• Supports 1 Mb/s operation

• Implements ISO-11898 standard physical layer

requirements

• Suitable for 12V and 24V systems

• Externally-controlled slope for reduced RFI

emissions

• Detection of ground fault (permanent dominant)

on TXD input

• Power-on reset and voltage brown-out protection

• An unpowered node or brown-out event will not

disturb the CAN bus

• Low current standby operation

• Protection against damage due to short-circuit

conditions (positive or negative battery voltage)

• Protection against high-voltage transients

• Automatic thermal shutdown protection

• Up to 112 nodes can be connected

• High noise immunity due to differential bus

implementation

• Temperature ranges:

- Industrial (I): -40°C to +85°C

- Extended (E): -40°C to +125°C

2.5.2 PIN DIAGRAM:

[image: image8.emf]
[image: image9.emf]
2.5.3: 1.0 DEVICE OVERVIEW

The MCP2551 is a high-speed CAN, fault-tolerant device that serves as the interface between a CAN protocol controller and the physical bus. The MCP2551

provides differential transmit and receive capability for the CAN protocol controller and is fully compatible with the ISO-11898 standard, including 24V requirements. It will operate at speeds of up to 1 Mb/s.

Typically, each node in a CAN system must have a device to convert the digital signals generated by a CAN controller to signals suitable for transmission over

the bus cabling (differential output). It also provides a buffer between the CAN controller and the high-voltage spikes that can be generated on the CAN bus by

outside sources (EMI, ESD, electrical transients, etc.).

1.1 Transmitter Function

The CAN bus has two states: Dominant and Recessive. A dominant state occurs when the

differential voltage between CANH and CANL is greater than a defined voltage (e.g.,1.2V). A recessive state occurs when the differential voltage is less than a defined voltage (typically 0V). The dominant and recessive states correspond to the low and high state of the TXD input pin, respectively. However, a dominant state initiated by another CAN node will override a

recessive state on the CAN bus.

1.1.1 MAXIMUM NUMBER OF NODES

The MCP2551 CAN outputs will drive a minimum load of 45Ω, allowing a maximum of 112 nodes to be connected (given a minimum differential input resistance of 20 kΩ and a nominal termination resistor value of 120Ω).

1.2 Receiver Function

The RXD output pin reflects the differential bus voltage between CANH and CANL. The low and high states of the RXD output pin correspond to the dominant and recessive states of the CAN bus, respectively.

1.3 Internal Protection

CANH and CANL are protected against battery short circuits and electrical transients that can occur on the CAN bus. This feature prevents destruction of the transmitter output stage during such a fault condition. The device is further protected from excessive current loading by thermal shutdown circuitry that disables the output drivers when the junction temperature exceeds

a nominal limit of 165°C. All other parts of the chip remain operational and the chip temperature is lowered due to the decreased power dissipation in the transmitter outputs. This protection is essential to protect against bus line short-circuit-induced damage.

1.4 Operating Modes

The RS pin allows three modes of operation to be selected:

• High-Speed

• Slope-Control

• Standby

These modes are summarized

When in High-speed or Slope-control mode, the drivers for the CANH and CANL signals are internally regulated to provide controlled symmetry in order to minimize EMI emissions.

Additionally, the slope of the signal transitions on CANH and CANL can be controlled with a resistor connected from pin 8 (RS) to ground, with the slope proportional to the current output at RS, further reducing EMI emissions.

 HIGH-SPEED

High-speed mode is selected by connecting the RS pin to VSS. In this mode, the transmitter output drivers have fast output rise and fall times to support high-speed CAN bus rates.

 SLOPE-CONTROL

Slope-control mode further reduces EMI by limiting the rise and fall times of CANH and CANL. The slope, or slew rate (SR), is controlled by connecting an external resistor (REXT) between RS and VOL

(usually ground).

The slope is proportional to the current output at the RS pin. Since the current is primarily determined by the slope-control resistance value REXT, a certain slew rate is achieved by applying a respective resistance.

Typical slew rate values as a function of the slope-control resistance value.

STANDBY MODE

The device may be placed in standby or “SLEEP” mode by applying a high-level to RS. In LEEP mode, the transmitter is switched off and the receiver operates at a lower current. The receive pin on the controller side (RXD) is still functional but will operate at a slower rate.

The attached microcontroller can monitor RXD for CAN bus activity and place the transceiver into normal operation via the RS pin (at higher bus rates, the first CAN message may be lost).

1.5 TXD Permanent Dominant

Detection

If the MCP2551 detects an extended low state on the TXD input, it will disable the CANH and CANL output drivers in order to prevent the corruption of data on the CAN bus. The drivers are disabled if TXD is low for more than 1.25 ms (minimum). This implies a maximum bit time of 62.5 μs (16 kb/s bus rate),allowing up to 20 consecutive transmitted dominant bits during a multiple bit error and error frame scenario. The drivers remain disabled as long as TXD remains low. A rising edge on TXD will reset the timer logic and enable the CANH and CANL output drivers.

1.6 Power-on Reset

When the device is powered on, CANH and CANLremain in a high-impedance state until VDD reaches the voltage evel VPORH. In addition, CANH and CANL will remain in a high-impedance state if TXD is low when VDD reaches PORH. CANH and CANL will becomeactive only after TXD is asserted high. Once powered on, CANH and CANL will enter a high-impedance state if the voltage level at VDD falls below VPORL, providing voltage brown-out protection during normal operation.

[image: image10.emf]
1.7.1 TRANSMITTER DATA INPUT (TXD)

TXD is a TTL-compatible input pin. The data on this pin is driven out on the CANH and CANL differential output pins. It is usually connected to the transmitter data output of the CAN controller device. When TXD is low, CANH and CANL are in the dominant state. When TXD

is high, CANH and CANL are in the recessive state, provided that another CAN node is not driving the CAN bus with a dominant state. TXD has an internal pull-up resistor (nominal 25 kΩ to VDD).

1.7.2 GROUND SUPPLY (VSS):

Ground supply pin.

1.7.3 SUPPLY VOLTAGE (VDD):

Positive supply voltage pin.

1.7.4 RECEIVER DATA OUTPUT (RXD):

RXD is a CMOS-compatible output that drives high or low depending on the differential signals on the CANH and CANL pins and is usually connected to the receiver data input of the CAN controller device. RXD is high when the CAN bus is recessive and low in the dominant state.

1.7.5 REFERENCE VOLTAGE (VREF):

Reference Voltage Output (Defined as VDD/2).

 CAN LOW (CANL)

The CANL output drives the low side of the CAN

differential bus. This pin is also tied internally to the receive input comparator.

 CAN HIGH (CANH)

The CANH output drives the high-side of the CAN differential bus. This pin is also tied internally to the receive input comparator.

 SLOPE RESISTOR INPUT (RS)

The RS pin is used to select High-speed, Slope-control or Standby modes via an external biasing resistor.

2.6 LCD
LCD

To send any of the commands from given table to the lcd, make pin RS =0.For data, make RS=1.then send a high to low pulse to the E pin to enable the internal latch of the LCD. As shown in figure for LCD connections.

[image: image11.emf]
Table 2.1., Pin assignment for <= 80 character displays

Pin number

Symbol

 Level

I/O

Function

1

Vss

-

-

Power supply (GND)

2

Vcc

-

-

Power supply (+5V)

3

Vee

-

-

Contrast adjust

4

RS

0/1

I

0 = Instruction input
1 = Data input

5

R/W

0/1

I

0 = Write to LCD module
1 = Read from LCD module

6

E

1, 1->0

I

Enable signal

7

DB0

0/1

I/O

Data bus line 0 (LSB)

8

DB1

0/1

I/O

Data bus line 1

9

DB2

0/1

I/O

Data bus line 2

10

DB3

0/1

I/O

Data bus line 3

11

DB4

0/1

I/O

Data bus line 4

12

DB5

0/1

I/O

Data bus line 5

13

DB6

0/1

I/O

Data bus line 6

14

DB7

0/1

I/O

Data bus line 7 (MSB)

Table 2.2., Pin assignment for > 80 character displays

Pin number

Symbol

 Level

I/O

Function

1

DB7

0/1

I/O

Data bus line 7 (MSB)

2

DB6

0/1

I/O

Data bus line 6

3

DB5

0/1

I/O

Data bus line 5

4

DB4

0/1

I/O

Data bus line 4

5

DB3

0/1

I/O

Data bus line 3

6

DB2

0/1

I/O

Data bus line 2

7

DB1

0/1

I/O

Data bus line 1

8

DB0

0/1

I/O

Data bus line 0 (LSB)

9

E1

1, 1->0

I

Enable signal row 0 & 1 (1stcontroller)

10

R/W

0/1

I

0 = Write to LCD module
1 = Read from LCD module

11

RS

0/1

I

0 = Instruction input
1 = Data input

12

Vee

-

-

Contrast adjust

13

Vss

-

-

Power supply (GND)

14

Vcc

-

-

Power supply (+5V)

15

E2

1, 1->0

I

Enable signal row 2 & 3 (2ndcontroller)

16

n.c.

Instruction set

Table 2.3. HD44780 instruction set

Instruction

Code

Description

Execution time**

RS

R/W

DB7

DB6

DB5

DB4

DB3

DB2

DB1

DB0

Clear display

0

0

0

0

0

0

0

0

0

1

Clears display and returns cursor to the home position (address 0).

1.64mS

Cursor home

0

0

0

0

0

0

0

0

1

*

Returns cursor to home position (address 0). Also returns display being shifted to the original position. DDRAM contents remains unchanged.

1.64mS

Entry mode set

0

0

0

0

0

0

0

1

I/D

S

Sets cursor move direction (I/D), specifies to shift the display (S). These operations are performed during data read/write.

40uS

Display On/Off control

0

0

0

0

0

0

1

D

C

B

Sets On/Off of all display (D), cursor On/Off (C) and blink of cursor position character (B).

40uS

Cursor/display shift

0

0

0

0

0

1

S/C

R/L

*

*

Sets cursor-move or display-shift (S/C), shift direction (R/L). DDRAM contents remains unchanged.

40uS

Function set

0

0

0

0

1

DL

N

F

*

*

Sets interface data length (DL), number of display line (N) and character font(F).

40uS

Set CGRAM address

0

0

0

1

CGRAM address

Sets the CGRAM address. CGRAM data is sent and received after this setting.

40uS

Set DDRAM address

0

0

1

DDRAM address

Sets the DDRAM address. DDRAM data is sent and received after this setting.

40uS

Read busy-flag and address counter

0

1

BF

CGRAM / DDRAM address

Reads Busy-flag (BF) indicating internal operation is being performed and reads CGRAM or DDRAM address counter contents (depending on previous instruction).

0uS

Write to CGRAM or DDRAM

1

0

write data

Writes data to CGRAM or DDRAM.

40uS

Read from CGRAM or DDRAM

1

1

read data

Reads data from CGRAM or DDRAM.

40uS

Remarks:
- DDRAM = Display Data RAM.
- CGRAM = Character Generator RAM.
- DDRAM address corresponds to cursor position.
- * = Don't care.
- ** = Based on Fosc = 250kHz.

Table 2.4. Bit names

Bit name

Setting / Status

I/D

0 = Decrement cursor position

1 = Increment cursor position

S

0 = No display shift

1 = Display shift

D

0 = Display off

1 = Display on

C

0 = Cursor off

1 = Cursor on

B

0 = Cursor blink off

1 = Cursor blink on

S/C

0 = Move cursor

1 = Shift display

R/L

0 = Shift left

1 = Shift right

DL

0 = 4-bit interface

1 = 8-bit interface

N

0 = 1/8 or 1/11 Duty (1 line)

1 = 1/16 Duty (2 lines)

F

0 = 5x7 dots

1 = 5x10 dots

BF

0 = Can accept instruction

1 = Internal operation in progress

	

[image: image12.png]
 SAMPLE PROGRAMS
Example 1:

 org 00h // Starting Of The Program From 00h memory

 back: mov P1,#55h //Move 55h to Port1

 acall delay // Call Delay Function

 mov P1,#0AAh //Move 55h to Port1

 lcall delay // Call Delay Function

 sjmp back

 delay: mov r5,#30h

 again: djnz r5,again // Generating delay

 ret // Return Of Loop

 end
 // End Of Program

Example 2:

 #include<reg51.h>

 void delay(unsigned int); //Global Declaration Of Delay

 void main()

 {

 P0=0x00; // Clearing Of Port O

while(1)

//Infinite Loop

{

P0=0xAA;

delay(30);

P0=0x55;

delay(30);

}

 }

void delay(unsigned int x)
//Delay Main Function

{

unsigned int i,j;

for(i=0;i<=x;i++)

for(j=0;j<=1275;j++);

}

Example3:

 #include<reg51.h>

 sbit SWITCH=P1^0; // Input to P1.0

 sbit LED =P2^5; // Out to P2.5

 void main()

{

 while(1)

//Infinite Loop

 {

 if (SWITCH==0)

 {

 LED=1;

 }

else

 {

 LED=0;

 }

 }

 }

Example4:

#include<reg51.h>

unsigned char str[10]="MAGNI5"; // String Of Data

void main()

{

unsigned int i=0;

TMOD=0X20; // Timer1, Mode2

SCON=0X50;
 //1 Start Bit And 1 Stop Bit

TH1=-3;
 // Baud Rate 9600

TR1=1;
 //Start Timer 1

While(1)

 {

for(i=0;i<10;i++)

{

SBUF=str[i];

while(TI==0);
 // Wait Data Till Bit Of Data

TI=0;

 }

 }

 }

 SOFTWARE DEVELOPMENT
5.1 Introduction:

In this chapter the software used and the language in which the program code is defined is mentioned and the program code dumping tools are explained. The chapter also documents the development of the program for the application. This program has been termed as “Source code”. Before we look at the source code we define the two header files that we have used in the code.
5.2 Tools Used:
[image: image13.png]
Figure 4.1 Keil Software- internal stages
 Keil development tools for the 8051 Microcontroller Architecture support every level of software developer from the professional applications
CONCLUSION- NSIC:

 In this project work, we have studied and implemented a complete working model using a PIC micro-controller. The programming and interfacing of PIC micro-controllers has been mastered during the implementation. This work includes the study of telecommunication and implementation requires the telephone wires. This gives the insight into the operation of telecom circuits.

 Any technology that is being developed has its own share of limitations. A

Few to state are that there is a security threat regarding the information that is routed, time factor is another very important consideration to be taken into account.
 This project work “Temperature Monitoring System Using Micro controller” is successfully designed, tested and a demonstration module is fabricated. This is a prototype module.

The analog to digital converter employed in the project work is an 8-bit, ADC and it has only 1 channel . We are interfacing the ADC and the LCD display with the Microcontroller AT89C51. We used the ATMEL Microcontroller for constructing this project, because it has FLASH memory and cost of this Microcontroller is very less.

 We are aware that “Perfection has no peak”, so our project is not complete and perfect. As there is always room for improvement, this project can reach to this perfection and potential with few more extensions and enhancements, as ongoing process.

CONCLUSION-ECIL
 We are privileged enough to get the opportunity to do our industrial training at ECIL, which is a professionally managed electronics and IT giant with several firsts and awards. It is engaged in Automation and Controls, Communications, IT including Computer Education, Special Products, Instrumentation, etc with major emphasis on projects of national importance in Defence sector and nuclear areas.

An Earnest effort has been put in to accomplish the objectives of our industrial training. Our analytical and logical capabilities have indeed been enhanced by this practical experience. After completing the training it can be said that ECIL has elevated our knowledge on the latest electronic technology.

We have visited different departments of ECIL and observed their working and performance. These divisions are involved in manufacturing different products for Defence, government and private sector.

BIBILOGRAPHY

1. WWW.MITEL.DATABOOK.COM
2. WWW.ATMEL.DATABOOK.COM
3. WWW.FRANKLIN.COM
4. WWW.KEIL.COM
REFERENCES

1. "The 8051 Microcontroller Architecture, Programming & Applications"

 By Kenneth J Ayala.

2. "The 8051 Microcontroller & Embedded Systems" by Mohammed Ali Mazidi and Janice Gillispie Mazidi

3. "Power Electronics” by M D Singh and K B Khanchandan

4. "Linear Integrated Circuits” by D Roy Choudary & Shail Jain

5. "Electrical Machines” by S K Bhattacharya

6. "Electrical Machines II” by B L Thereja

7. www.8051freeprojectsinfo.com

AT89S52

LCD

CAN Controller

 MCP2515

CAN Transceiver

MCP2551

AT89S52

PC

CAN Controller

MCP2515

CAN Transceiver

MCP2551

