 1 INTRODUCTION

1.1 ORGANIZATION PROFILE:

LORVEN TECHNOLOGIES (LT) takes-up and spreads a vision across their service area. Our way of thinking makes us unique and our approach towards business development through technology based IT application is our real strength. LT is not the only one offering these services but the way we serve our clients is one of its kind - unparalleled and incomparable. We dedicate ourselves to become team-member of our client because we have strong faith that nothing less than this can get desired results. Our expertise, excellence in specialized services and energetic people are creating huge difference through their up-front and timeless services and solutions.

Entrusting enthusiasm and energy to whole enterprise, we work on existing system and retain all the legacy assets to minimize the investment on new applications.

 * LT has the ability to visualize client’s future and translate long cherished dreams into reality.

 * LT has understood the importance of coherence between employer and employee and this is the real secret of our success.

 * LT envisions facilitating employer, employees and all stakeholders with equal care and determination to make real difference

LORVEN TECHNOLOGIES offers consultancy, IT applications, Management and administrative policies, industrial solutions, Customer Relationship Systems, Project Management and many other time-tested services of high standards. LT team comprises of icons of creativity, competitive skills and truly professional people who are born to lead and made to matter in diverse and challenging tasks.

They are driven by a passion to perform. LT values its people and they love to be part of an organization, which nurtures them similar to Mother Nature.

1.2 SCOPE

Software Development:

Gone are the days, when reliability accounted only for financial reputation, in today’s highly competitive world, reliability and compatibility of a company’s Information technology applications plays decisive role in pre-qualification to higher customer retention rate. Your clients want and expect you to be flawless and highly dependable by all means and with LORVEN TECHNOLOGIES, you get double advantage, efficient enterprise application development solutions for your company and top-quality training for your employees.

LORVEN TECHNOLOGIES extends holistic and integrated approach towards building customized all-scale mission-critical enterprise applications by attaching hi-end and sophisticated technology. We believe in effective, in-depth and realistic understanding of our client’s requirements and devising intelligent software applications to fulfill the same. A team of dedicated and daring developers designs the architecture of your enterprise application by closely considering futuristic needs and timeless technologies. LT makes your enterprise application solution by including component-based architectures with inherent fault tolerance and load balancing, and provides interoperability through open-industry data and information sharing standards.

LORVEN TECHNOLOGIES thinks by going in the shoes of its clients. We adopt very enterprising approach in developing your innovative application system. Our initial study of your prevailing information technology application has been the most cherished advantage for our clients. We respect the legacy of our clients and in the development of new application system; we try to incorporate the legacy assets with new applications to minimize the cost of system up gradation. LT enjoys individual reputation ob behalf of its expert and highly creative team of developers, who create a natural coherence between old and new system application.

LT counts on vast, diverse and real-time experience to offer highly dependable and time tested support services in the given areas:
Design and Blue-print
Idea and creativity is LT core competency, we leverage on wisdom of our intelligent application system designers, who create customized blue-print with unparallel functionality and compatibility. LORVEN TECHNOLOGIES has been well-known for offering system design, architecture development and consultancy strikes that are workable, applicable and long-lasting in their function.
Driven by Diversity
LT has been driven by diversity in everything. People from different background and multiple sector experience together establish the platform to perform different IT based services with expertise and highest level of precious. LT has the real answer to all your queries and that is where we are different from others.

Storage solutions

Your data is the most important component of your organization and its effective organization and storage is testament for smooth business operations. LORVEN TECHNOLOGIES has mastered the art of managing your data by professionally designing the Data Warehouse and extending simply accessible Business intelligence tools. LT partners with your company maximize the access and productivity of the company information.

Database up gradation

Evolution is the key to business growth and after a certain time-period organizations needs to upgrade and innovated their existing databases to improve efficiency and to benefit latest developments in database management. LT gets hold of all your database conversion requirements and gives-you absolute peace of mind.

1.3 Purpose:

We present Platypus, an authenticated source routing system built around the concept of network capabilities, which allow for accountable, fine-grained path selection by cryptographically attesting to policy compliance at each hop along a source route. Platypus policy framework that can be used to address several issues in wide-area routing at both the edge and the core, and evaluate its performance and security. Our results show that incremental deployment of Platypus can achieve immediate gains.
1.3 TECHNOLOGY
C#:
Language used mostly at the client levels which have the capability of creating dynamic web pages. The essential need of VBScript is due to the following requirements

 1. User interaction

 2. Data validation

 3. Client side utility

FEATURES:

 a. Interpreted language

 b. Object oriented support

 c. Provides procedural capabilities

 d. Works on event driven model

 e. Embedded within ML format

 f. Works on DOM (Document Object Model)

ELEMENTS OF C#:

 a. Variable
 b. Arrays

 c. Control statements

 d. Functions

 e. Objects

 f. Events

 g. Delegation

 h. Properties

 i. Interface

To program with ASP.NET, c# is probably the most common language. VB Scripts only has one data type the variant data type. The variant is used because of its flexibility with all data types. The variant data type is unique in the sense that the variant actually changes behavior depending on the type of data it is storing.

Microsoft Visual C#.Net

Microsoft C#.Net is a modern, object oriented, type safe language. It enables programmers to quickly build a wide range of applications for the new Microsoft.Net platform. More than anything else, C# pronounced “C Sharp” is designed to bring rapid development to the C++ programmer without sacrificing the power and control that have been a hallmark of C and C++.

Microsoft Visual C++.Net

Visual C++ provides deep support for creating XML web services including ATL servers and a new project type for creating powerful server-based applications. With attribute based programming any function can be easily exposed as an XML web service. Traditional unmanaged C++ and new managed C++ code can be mixed freely within the same application. Existing components can be wrapped as .NET components by using the managed extension. This preserves investment in existing code while integrating with the .NET Framework.

ABOUT .NET:

 The Microsoft .NET Framework is a software framework that can be installed on computers running Microsoft Windows operating systems. It includes a large library of coded solutions to common programming problems and a virtual machine that manages the execution of programs written specifically for the framework. The .NET Framework is a Microsoft offering and is intended to be used by most new applications created for the Windows platform.

 The framework's Base Class Library provides a large range of features including user interface, data access, database connectivity, cryptography, web application development, numeric algorithms, and network communications. The class library is used by programmers, who combine it with their own code to produce applications.

 Programs written for the .NET Framework execute in a software environment that manages the program's runtime requirements. Also part of the .NET Framework, this runtime environment is known as the Common Language Runtime (CLR). The CLR provides the appearance of an application virtual machine so that programmers need not consider the capabilities of the specific CPU that will execute the program. The CLR also provides other important services such as security, memory management, and exception handling. The class library and the CLR together constitute the .NET Framework.

[image: image1.png]
.NET FRAME WORK:
FEATURES:
Interoperability:

 Because interaction between new and older applications is commonly required, the .NET Framework provides means to access functionality that is implemented in programs that execute outside the .NET environment. Access to COM components is provided in the System.Runtime.InteropServices and System.EnterpriseServices namespaces of the framework; access to other functionality is provided using the P/Invoke feature.
Common Runtime Engine:

 The Common Language Runtime (CLR) is the virtual machine component of the .NET framework. All .NET programs execute under the supervision of the CLR, guaranteeing certain properties and behaviors in the areas of memory management, security, and exception handling.

Language Independence:

 The .NET Framework introduces a Common Type System, or CTS. The CTS specification defines all possible data types and programming constructs supported by the CLR and how they may or may not interact with each other conforming to the Common Language Infrastructure (CLI) specification. Because of this feature, the .NET Framework supports the exchange of types and object instances between libraries and applications written using any conforming .NET language.
Base Class Library:

 The Base Class Library (BCL), part of the Framework Class Library (FCL), is a library of functionality available to all languages using the .NET Framework. The BCL provides classes which encapsulate a number of common functions, including file reading and writing, graphic rendering, database interaction, XML document manipulation and so on.
Simplified Deployment:

 The .NET framework includes design features and tools that help manage the installation of computer software to ensure that it does not interfere with previously installed software, and that it conforms to security requirements.
Security:

 The design is meant to address some of the vulnerabilities, such as buffer overflows, that have been exploited by malicious software. Additionally, .NET provides a common security model for all applications.
Portability:

 The design of the .NET Framework allows it to theoretically be platform agnostic, and thus cross-platform compatible. That is, a program written to use the framework should run without change on any type of system for which the framework is implemented. While Microsoft has never implemented the full framework on any system except Microsoft Windows, the framework is engineered to be platform agnostic,[5] and cross-platform implementations are available for other operating systems (see Silverlight and the Alternative implementations section below). Microsoft submits the specifications for the Common Language Infrastructure (which includes the core class libraries, Common Type System, and the Common Intermediate Language), the C# language, and the C++/CLI language[10] to both ECMA and the ISO, making them available as open standards. This makes it possible for third parties to create compatible implementations of the framework and its languages on other platforms.

VERSIONS:
[image: image2.png]
ARCHITECTURE:
[image: image3.png]
COMMON LANGUAGE INFRASTRUCTURE (CLI):
 The purpose of the Common Language Infrastructure, or CLI, is to provide a language-neutral platform for application development and execution, including functions for exception handling, garbage collection, security, and interoperability. By implementing the core aspects of the .NET Framework within the scope of the CLR, this functionality will not be tied to a single language but will be available across the many languages supported by the framework. Microsoft's implementation of the CLI is called the Common Language Runtime, or CLR.
ASSEMBLIES:
 The CIL code is housed in .NET assemblies. As mandated by specification, assemblies are stored in the Portable Executable (PE) format, common on the Windows platform for all DLL and EXE files. The assembly consists of one or more files, one of which must contain the manifest, which has the metadata for the assembly. The complete name of an assembly (not to be confused with the filename on disk) contains its simple text name, version number, culture, and public key token. The public key token is a unique hash generated when the assembly is compiled, thus two assemblies with the same public key token are guaranteed to be identical from the point of view of the framework. A private key can also be specified known only to the creator of the assembly and can be used for strong naming and to guarantee that the assembly is from the same author when a new version of the assembly is compiled (required to add an assembly to the Global Assembly Cache).
METADATA:
 All CIL is self-describing through .NET metadata. The CLR checks the metadata to ensure that the correct method is called. Metadata is usually generated by language compilers but developers can create their own metadata through custom attributes. Metadata contains information about the assembly, and is also used to implement the reflective programming capabilities of .NET Framework.
SECURITY:
 .NET has its own security mechanism with two general features: Code Access Security (CAS), and validation and verification. Code Access Security is based on evidence that is associated with a specific assembly. Typically the evidence is the source of the assembly (whether it is installed on the local machine or has been downloaded from the intranet or Internet). Code Access Security uses evidence to determine the permissions granted to the code. Other code can demand that calling code is granted a specified permission. The demand causes the CLR to perform a call stack walk: every assembly of each method in the call stack is checked for the required permission; if any assembly is not granted the permission a security exception is thrown.

 When an assembly is loaded the CLR performs various tests. Two such tests are validation and verification. During validation the CLR checks that the assembly contains valid metadata and CIL, and whether the internal tables are correct. Verification is not so exact. The verification mechanism checks to see if the code does anything that is 'unsafe'. The algorithm used is quite conservative; hence occasionally code that is 'safe' does not pass. Unsafe code will only be executed if the assembly has the 'skip verification' permission, which generally means code that is installed on the local machine.

 .NET Framework uses AppDomains as a mechanism for isolating code running in a process. AppDomains can be created and code loaded into or unloaded from them independent of other AppDomains. This helps increase the fault tolerance of the application, as faults or crashes in one AppDomains do not affect rest of the application. AppDomains can also be configured independently with different security privileges. This can help increase the security of the application by isolating potentially unsafe code. The developer, however, has to split the application into subdomains; it is not done by the CLR.

CLASS LIBRARY:
 The .NET Framework includes a set of standard class libraries. The class library is organized in a hierarchy of namespaces. Most of the built in APIs are part of either System.* or Microsoft.* namespaces. These class libraries implement a large number of common functions, such as file reading and writing, graphic rendering, database interaction, and XML document manipulation, among others. The .NET class libraries are available to all CLI compliant languages. The .NET Framework class library is divided into two parts: the Base Class Library and the Framework Class Library.

 The Base Class Library (BCL) includes a small subset of the entire class library and is the core set of classes that serve as the basic API of the Common Language Runtime.[11] The classes in mscorlib.dll and some of the classes in System.dll and System.core.dll are considered to be a part of the BCL. The BCL classes are available in both .NET Framework as well as its alternative implementations including .NET Compact Framework, Microsoft Silverlight and Mono.

 The Framework Class Library (FCL) is a superset of the BCL classes and refers to the entire class library that ships with .NET Framework. It includes an expanded set of libraries, including Windows Forms, ADO.NET, ASP.NET, Language Integrated Query, Windows Presentation Foundation, Windows Communication Foundation among others. The FCL is much larger in scope than standard libraries for languages like C++, and comparable in scope to the standard libraries of Java

ADO.NET:
· ADO.NET is the new database technology of the .NET (Dot Net) platform, and it builds on Microsoft ActiveX� Data Objects (ADO).

· ADO is a language-neutral object model that is the keystone of Microsoft's Universal Data Access strategy.

· ADO.NET is an integral part of the .NET Compact Framework, providing access to relational data, XML documents, and application data. ADO.NET supports a variety of development needs. You can create database-client applications and middle-tier business objects used by applications, tools, languages or Internet browsers.

· ADO.NET defines DataSet and DataTable objects which are optimized for moving disconnected sets of data across intranets and Internets, including through firewalls. It also includes the traditional Connection and Command objects, as well as an object called a DataReader that resembles a forward-only, read-only ADO recordset. If you create a new application, your application requires some form of data access most of the time.

· ADO.NET provides data access services in the Microsoft .NET platform.

DATA PROVIDERS:
 We know that ADO.NET allows us to interact with different types of data sources and different types of databases. However, there isn't a single set of classes that allow you to accomplish this universally. Since different data sources expose different protocols, we need a way to communicate with the right data source using the right protocol. Some older data sources use the ODBC protocol, many newer data sources use the OleDb protocol, and there are more data sources every day that allow you to communicate with them directly through .NET ADO.NET class libraries.

 ADO.NET provides a relatively common way to interact with data sources, but comes in different sets of libraries for each way you can talk to a data source. These libraries are called Data Providers and are usually named for the protocol or data source type they allow you to interact with some well known data providers, the API prefix they use, and the type of data source they allow you to interact with.

You can use ADO.NET to access data by using the new .NET Framework data providers which are:

Data Provider for SQL Server (System.Data.SqlClient).

Data Provider for OLEDB (System.Data.OleDb).

Data Provider for ODBC (System.Data.Odbc).

Data Provider for Oracle (System.Data.OracleClient).

 An example may help you to understand the meaning of the API prefix. One of the first ADO.NET objects you'll learn about is the connection object, which allows you to establish a connection to a data source. If we were using the OleDb Data Provider to connect to a data source that exposes an OleDb interface, we would use a connection object named OleDbConnection. Similarly, the connection object name would be prefixed with Odbc or Sql for an OdbcConnection object on an Odbc data source or a SqlConnection object on a SQL Server database, respectively. Since we are using MSDE in this tutorial (a scaled down version of SQL Server) all the API objects will have the Sql prefix. i.e. SqlConnection.
ADO .NET OBJECTS:
 ADO.NET includes many objects you can use to work with data. This section introduces some of the primary objects you will use. Over the course of this tutorial, you'll be exposed to many more ADO.NET objects from the perspective of how they are used in a particular lesson. The objects below are the ones you must know. Learning about them will give you an idea of the types of things you can do with data when using ADO.NET.

The SqlConnection Object:

 To interact with a database, you must have a connection to it. The connection helps identify the database server, the database name, user name, password, and other parameters that are required for connecting to the data base. A connection object is used by command objects so they will know which database to execute the command on.
The SqlCommand Object:

 The process of interacting with a database means that you must specify the actions you want to occur. This is done with a command object. You use a command object to send SQL statements to the database. A command object uses a connection object to figure out which database to communicate with. You can use a command object alone, to execute a command directly, or assign a reference to a command object to an SqlDataAdapter, which holds a set of commands that work on a group of data as described below.
The SqlDataReader Object:

 Many data operations require that you only get a stream of data for reading. The data reader object allows you to obtain the results of a SELECT statement from a command object. For performance reasons, the data returned from a data reader is a fast forward-only stream of data. This means that you can only pull the data from the stream in a sequential manner. This is good for speed, but if you need to manipulate data, then a DataSet is a better object to work with.
The SqlDataAdapter Object:

 Sometimes the data you work with is primarily read-only and you rarely need to make changes to the underlying data source. Some situations also call for caching data in memory to minimize the number of database calls for data that does not change. The data adapter makes it easy for you to accomplish these things by helping to manage data in a disconnected mode. The data adapter fills a DataSet object when reading the data and writes in a single batch when persisting changes back to the database. A data adapter contains a reference to the connection object and opens and closes the connection automatically when reading from or writing to the database. Additionally, the data adapter contains command object references for SELECT, INSERT, UPDATE, and DELETE operations on the data. You will have a data adapter defined for each table in a DataSet and it will take care of all communication with the database for you. All you need to do is tell the data adapter when to load from or write to the database.

The DataSet Object:

 DataSet objects are in-memory representations of data. They contain multiple Datatable objects, which contain columns and rows, just like normal database tables. You can even define relations between tables to create parent-child relationships. The DataSet is specifically designed to help manage data in memory and to support disconnected operations on data, when such a scenario make sense. The DataSet is an object that is used by all of the Data Providers, which is why it does not have a Data Provider specific prefix.
ADO.NET OBJECT MODEL:
[image: image4.png]
2 SOFTWARE AND HARDWARE REQUIREMENTS

Software Requirements:

Operating System
: Windows XP.

Front End

: Asp .Net 2.0.

Coding Language
: Visual C# .Net
Hardware Requirements:

System

: Pentium IV

Hard Disk

: 40 GB.

Ram

: 256 MB.

3 SYSTEM STUDY:

Compulsive algorithm designers adore greedy methods. All that seems to be required for this is to jump in and do whatever seems best at the time. A great example is the first fit algorithm for bin packing shown in the section on approximations. In that algorithm one merely takes items in order and places each in the closest available bin. The fact that the results are often quite good in practice makes techniques like this very attractive.

Another greedy method much in the spirit of first fit is the nearest neighbor algorithm for the closed tour problem. It is very much like the very famous Kruskal algorithm for minimum spanning trees since we merely keep connecting the cities that are closest until we have a tour. An example is pictured in figure 1.

[image: image5.png]
Figure 1 - Nearest Neighbor Closed Tour
Here though, the relationship between tours found by the nearest neighbor algorithm and optimum tours is:

[image: image6.png]
which depends on n, the size of the problem. So, the theoretical bound on performance seems to decrease as the problem instances grow larger.

Our next problem comes from the field of CAD algorithms for VSLI design. It is called channel routing. A routed channel is shown in figure 2 and defined formally as:

Definition: A channel is a sequence of pairs of integers
<t1, b1>,<t2, b2>, ... , <tn, bn>.
Unfortunately the definition, although precise, is not very intuitive and thus does not help one to understand what a channel actually is. The intuition behind the definition is that a channel consists of two rows of pins (or terminals), some of which must have a common electrical connection. The ti represent the pins on the top of the channel, while the bi are those on the bottom. Examine figure 2.

[image: image7.png]
Figure 2 - A Routed Channel
Note that there is a row of numbered pins along the top and one along the bottom. (We call these sides’ shores to go along with the nautical motif of channels.) Those of figure 2 correspond to the following sequence which satisfies the above definition.
<1, 2>, <0, 1>, <2, 3>, <2, 1>, <3, 4>, <0, 0>, <4, 5>, <3, 5>

Those pins bearing the same label (number) must be connected together. Pins labeled zero however are not connected to any others. A collection of pins which must be connected is called a net. The labels on the pins name the net.

The small dark squares are called vias and indicate where two wires (the lines) are connected, as they are insulated from each other at all other points. The horizontal wires are routed on tracks. An optimum solution contains the fewest tracks or least area. Figure 2 illustrates a 5-track routing.

The greedy router we are about to examine makes one pass over the channel the left to the right. As it progresses along the channel, it brings in wires from pins on the shores column by column (or pin by pin) into the channel and attaches them to wires on horizontal tracks until every pin is connected to the rest of those bearing the identical labels.

Here is an example. First, tracks are assigned to nets, such as net 1, that enter the channel from the left as shown in figure 3. Then nets 1 and 2 were brought in from the top and bottom in the first column. Net 2 is assigned to a new track and extended to the right. Net 1 is attached to the existing net 1 track in both the first and second columns. Then both tracks are extended to column three.

[image: image8.png]
Figure 3 - Beginning a Routing
Next, net 2 is attached to its existing track and net 3 is brought into the channel to an empty track. This is the state of affairs in figure 3. Examine figure 4.

[image: image9.png]
Figure 4 - Continuing the Routing
Now all existing tracks (those for nets 1, 2, and 3) are extended to column 4 and nets 2 and 1 are brought into the channel. Net 1 is attached to the existing net 1 track and net 2 is brought in to an empty track at the top.

At this point a problem arises. We cannot join net 2 to its existing track because this will cause an overlap with net 1. This is not allowed. Thus a new track must then be assigned to net 2 causing it to exist on two tracks. This is shown in the next channel installment in figure 5.

[image: image10.png]
Figure 5 - More of the Routing
Also in figure 5 we see that at the next column, nets 4 and 3 were brought into the channel and net three was connected to an existing track. And, since the next pin for net 3 is on the top shore, the extension of net 3's track was made as near the top as possible. Note also that on the next column we shall be able to consolidate the tracks for net 2 since no nets enter there.

The process of bringing nets into the channel and either assigning them to new tracks or attaching them to existing tracks continues column by column until the end of the channel.

We are now ready to state the entire algorithm, but first we need some terminology. A net is said to be rising if its next pin further along the channel is on the top shore and next pin (if any) does not reside on the bottom shore within a pre-defined distance called the steady net constant. Similarly, a net is falling if its next pin is on the bottom shore and the following pin is not located on the top shore within the distance specified by the steady net constant. In our example, net 1 is falling and net 2 is rising after column one. A steady net by default is that which is neither rising nor falling. Split nets are nets that unfortunately have been placed upon two different tracks at a column. Net 2 has been split on columns four, five, and six.

The greedy algorithm for channel routing is presented as figure 6 below.

[image: image11.png]
Figure 6 - The Greedy Channel Router
The algorithm begins by assigning tracks to left border nets if any. Here, track selection for the nets is done by placing rising nets above steady nets that, in turn are placed above falling nets. This group is placed upon the central tracks of the channel.

The algorithm then continues through each column of the channel by first trying to bring in the non-zero pins from the top and bottom shores to either the first unused track, or to a track containing its net, whichever comes first. The vertical wires that are used to bring in the pins must not cross over each other in the process and if such a situation arises, the pin that requires the shorter distance to be brought into the channel is assigned its existing track, and a new track is created for the other pin such that there is no overlap of vertical wires.

The algorithm next locates all split nets (nets occupying more than one track) and tries to 'collapse' as many of these as possible into one track each by connecting them together with a vertical jog. This obviously frees up one track if a split net occupies two tracks and more if the net is spread on more than two tracks. Care must be taken to see that a vertical jog of one net does not overlap the vertical jog of another net or of an incoming net unless of course they are the same net. Net 2's two tracks were reunited in this manner in column 6.

The next step is to narrow down the distance between as many existing split nets as possible by making nets come closer to each other by the use of vertical wires which must be the minimum jog length. Also, these wires should not be incompatible with vertical wires that may have been placed in earlier steps.

This is followed up by locating all single track nets that are rising or falling, and attempting to move them to higher or lower tracks if possible using vertical wires. This was done to net 3 at column 5 and net 4 at column 6.

As the algorithm progresses through these steps some bookkeeping is done so that when:

· new pins are brought in,

· other vertical wires are placed in the channel, or

· a new track is created,

The list of available tracks is continually updated to reflect the changes in availability of the tracks made along the way. Now the routing for this column is over and at this point, the column count is incremented and routing begins on the new column. When the end of the channel is reached, all tracks are checked for their availability and if they are still in use, then there are two possibilities for them. The first is that the tracks contain split nets that were unable to be collapsed earlier within the channel area. They may now be collapsed, one at a time if necessary. This might mean extending the right edge of the channel by some more columns. The second possibility is that the tracks are continuing with those nets because they comprise the list of right border nets. These are as they should be and end there.

In order to calculate the time complexity for this routing algorithm, the parameters are the length of the channel and the number of tracks. The algorithm makes one pass over a channel having length n. As it processes each column, it checks every track. This means that the time taken is equal to the channel length multiplied by the number of tracks. If the number of nets is proportional to n (the length of the channel), then the time complexity comes out to be O(n2) since n tracks could be required in the worst case.

4 ANALYSIS PHASE

 EXISTING SYSTEM:

As mobile computing requires more computation as well as communication activities, energy efficiency becomes the most critical issue for battery-operated mobile devices. Specifically, in ad hoc networks where each node is responsible for forwarding neighbor nodes' data packets, care has to be taken not only to reduce the overall energy consumption of all relevant nodes but also to balance individual battery levels. Unbalanced energy usage will result in earlier node failure in overloaded nodes, and in turn may lead to network partitioning and reduced network lifetime. Localized routing algorithms which achieves a trade-off between balanced energy consumption and shortest routing delay, and at the same time avoids the blocking and route cache problems.

PROPOSED SYSTEM:
In this project, a greedy anti-void routing (GAR) protocol is proposed to solve the void problem with increased routing efficiency by exploiting the boundary finding technique for the unit disk graph (UDG). The proposed rolling-ball UDG boundary traversal (RUT) is employed to completely guarantee the delivery of packets from the source to the destination node under the UDG network. The boundary map (BM) and the indirect map searching (IMS) scheme are proposed as efficient algorithms for the realization of the RUT technique.
Modules:
1. Networking Module.

2. Boundary evaluation Module.

3. Greed Anti-void Traversal module.

4. Partial UDG Construction (PUC) Mechanism

5. Performance evaluation module.

MODULE DESCRIPTION:
1. Networking Module:
 Client-server computing or networking is a distributed application architecture that partitions tasks or workloads between service providers (servers) and service requesters, called clients. Often clients and servers operate over a computer network on separate hardware. A server machine is a high-performance host that is running one or more server programs which share its resources with clients. A client also shares any of its resources; Clients therefore initiate communication sessions with servers which await (listen to) incoming requests.

 DFD:

2. Boundary evaluation Module:
 The RUT scheme is adopted to solve the boundary finding problem, and the combination of the GF and the RUT scheme (i.e., the GAR protocol) can resolve the void problem, leading to the guaranteed packet delivery. The definition of boundary and the problem statement are described as follows: Definition 1 (boundary). If there exists a set B such that 1) the nodes in B form a simple unidirectional ring and 2) the nodes located on and inside the ring are disconnected with those outside of the ring, B is denoted as the boundary set and the unidirectional ring is called a boundary.

[image: image12.emf]
DFD:

[image: image13.emf]
3. Greed Anti-void Traversal module:

The objective of the GAR protocol is to resolve the void problem such that the packet delivery from NS to ND can be guaranteed. Before diving into the detail formulation of the proposed GAR algorithm, an introductory example is described in order to facilitate the understanding of the GAR protocol, the data packets initiated from the source node NS to the destination node ND will arrive in NV based on the GF algorithm. The void problem occurs as NV receives the packets, which leads to the adoption of the RUT scheme as the forwarding strategy of the GAR protocol. A circle is formed by centering at SV with its radius being equal to half of the transmission range R/2.

DFD:

[image: image14]
4. Partial UDG Construction (PUC) Mechanism:

 The PUC mechanism is targeted to recover the UDG linkage of the boundary node Ni within a non-UDG network. The boundary nodes within the proposed GAR protocol are defined as the SNs that are utilized to handle the packet delivery after encountering the void problem .Therefore, conducting the PUC mechanism only by the boundary nodes can conserve network resources than most. The PUC mechanism of the existing flooding-based schemes that require information from all the network nodes.

[image: image15.emf]
5. Performance evaluation module:
 The performance of the proposed GAR algorithm is evaluated and compared with other existing localized schemes via simulations, including the reference GF algorithm, the planar graph-based GPSR and GOAFR++ schemes, and the UDG-based BOUNDHOLE algorithm. It is noted that the GPSR and GOAFR++ schemes that adopt the GG planarization technique to planarize the network graph are represented as the GPSR(GG) and GOAFR++(GG) algorithms, while the variants of these two schemes with the CLDP planarization algorithm are denoted as the GPSR(CLDP) and GOAFR++(CLDP) protocols.
System Architecture:

[image: image16]
5 DATA FLOW DIAGRAM
DATA FLOW ANALYSIS:

This states a great deal about how organization objectives are accomplished in the course of handling transactions and completing task. Data is input, processed, stored, retrieved, use, changed and output. Data flow analysis studies the use of data in each activity.

FEATURES OF DATA STRATEGY:

 Data flow analysis examines the use of the data to carry out specific process within the scope of a systems investigation.

TOOLS OF DATA FLOW STRATEGY:

Data flow strategy shows the use of data in the system pictorially. The tools used in the data flow strategy are:
DATA FLOW DIAGRAM (DFD):

A graphical tool is used to describe and analyze the movement of the data through a system manually or automate including the process of data storage, and delay in the system. DFD’s are central tools and the basis for the development of other components. The transformation of data from one process to another process is independent of physical components. These types of DFD’s are called LOGICAL DATA FLOW DIAGRAMS. In contrast, physical data flow diagrams show the actual implementation and movements of the data through people, departments and workstations.

Data flow diagram is a structure analysis tool that is used for graphical representation of Data processes through any organization. The data flow approach emphasis on the logic underlying the system, by using combination of only 4 symbols. It follows a top down approach. A full description of a system actually consists of set of DFD s, which comprises of various levels. And initial over view model is exploded lower level diagrams that show additional feature of the system. Further each process can be broken down into a more detailed DFD. This occurs repeatedly until sufficient details are described.

DFD SYMBOLS

Square: It defines a source (originator) or destination of system data.

Arrow: It indicates data flow-data in motion. It is a pipeline through which information flows.

Circle or Bubble: It represents a process that transforms incoming data flow(s) into outgoing data flow(s).

Open Rectangle: It is a data store-data at rest, or a temporary repository of data.
 [image: image17.png]
They are explained by

GANE and SARON method

DEMACRO YORDAN method

GANE AND SARSON NOTATION

Data Flow:

Data Structure:

External entity or link:
Process:

Database: [image: image18.png]
DEMACRO YORDAN NOTATION:

Dataflow:

Data Structure:

External entity or link:
Process:
Database: [image: image19.png]
ADVANTAGES OF DFD’s:
 Users, persons who are part of the process being studied, early understand the notations. So analysts can work with the users and involve them in the study of data flow diagram. For accurate business activity users can make suggestions for modification and also they examine charts and spot out the problems quickly. If the errors are not found in the development process they will be very difficult to correct latter and the system may be failure.

 Data flow analysis permits analyst to isolate areas of interest in the organization and study them by examining the data that enters the process and see how it is changed when it leaves the process.
6 DESIGN PHASE

Introduction to UML:

 UML was meant to be a unifying language enabling IT professionals to model computer applications. The primary authors were Jim Rumbaugh, Ivar Jacobson, and Grady Booch, who originally had their own competing methods (OMT, OOSE, and Booch). Eventually, they joined forces and brought about an open standard.
 Also, the UML notation set is a language and not a methodology. This is important, because a language, as opposed to a methodology, can easily fit into any company's way of conducting business without requiring change. Since UML is not a methodology, it does not require any formal work products.
 Reading a sequence diagram is very simple. Start at the top left corner with the "driver" class instance that starts the sequence. Then follow each message down the diagram. Remember

* Use cases:

 A use case describes a sequence of actions that provide something of measurable value to an actor and is drawn as a horizontal ellipse.

* Actors:

 An actor is a person, organization, or external system that plays a role in one or more interactions with your system. Actors are drawn as stick figures.

* Associations:

 Associations between actors and use cases are indicated in use case diagrams by solid lines. An association exists whenever an actor is involved with an interaction described by a use case. Associations are modeled as lines connecting use cases and actors to one another, with an optional arrowhead on one end of the line. The arrowhead is often used to indicating the direction of the initial invocation of the relationship or to indicate the primary actor within the use case. The arrowheads are typically confused with data flow and as a result I avoid their use.

* Packages (optional):

 Packages are UML constructs that enable you to organize model elements (such as use cases) into groups. Packages are depicted as file folders and can be used on any of the UML diagrams, including both use case diagrams and class diagrams. I use packages only when my diagrams become unwieldy, which generally implies they cannot be printed on a single page, to organize a large diagram into smaller ones.
Use-case diagram:
 A use case illustrates a unit of functionality provided by the system. The main purpose of the use-case diagram is to help development teams visualize the functional requirements of a system, including the relationship of "actors" (human beings who will interact with the system) to essential processes, as well as the relationships among different use cases.

 Use-case diagrams generally show groups of use cases — either all use cases for the complete system, or a breakout of a particular group of use cases with related functionality (e.g., all security administration-related use cases). To show a use case on a use-case diagram, you draw an oval in the middle of the diagram and put the name of the use case in the center of, or below, the oval. To draw an actor (indicating a system user) on a use-case diagram, you draw a stick person to the left or right of your diagram (and just in case you're wondering, some people draw prettier stick people than others). Use simple lines to depict relationships between actors and use cases.
 A use-case diagram is typically used to communicate the high-level functions of the system and the system's scope. By looking at our use-case diagram in Figure 1, you can easily tell the functions that our example system provides. This system lets the band manager view a sales statistics report and the Billboard 200 report for the band's CDs. It also lets the record manager view a sales statistics report and the Billboard 200 report for a particular CD. The diagram also tells us that our system delivers Billboard reports from an external system called Billboard Reporting Service.
 In addition, the absence of use cases in this diagram shows what the system doesn't do. For example, it does not provide a way for a band manager to listen to songs from the different albums on the Billboard 200 — i.e., we see no reference to a usecase called Listen to Songs from Billboard 200. This absence is not a trivial matter. With clear and simple use-case descriptions provided on such a diagram, a project sponsor can easily see if needed functionality is present or not present in the system.
Sequence diagram:

 Sequence diagrams show a detailed flow for a specific use case or even just part of a specific use case. They are almost self explanatory; they show the calls between the different objects in their sequence and can show, at a detailed level, different calls to different objects.

 A sequence diagram has two dimensions: The vertical dimension shows the sequence of messages/calls in the time order that they occur; the horizontal dimension shows the object instances to which the messages are sent.
 A sequence diagram is very simple to draw. Across the top of your diagram, identify the class instances (objects) by putting each class instance inside a box (see Figure 4). In the box, put the class instance name and class name separated by a space/colon/space " : " (e.g., myReportGenerator : ReportGenerator). If a class instance sends a message to another class instance, draw a line with an open arrowhead pointing to the receiving class instance; place the name of the message/method above the line. Optionally, for important messages, you can draw a dotted line with an arrowhead pointing back to the originating class instance; label the return value above the dotted line. Personally, I always like to include the return value lines because I find the extra details make it easier to read.

Activity diagram:

 Activity diagrams show the procedural flow of control between two or more class objects while processing an activity. Activity diagrams can be used to model higher-level business process at the business unit level, or to model low-level internal class actions. In my experience, activity diagrams are best used to model higher-level processes, such as how the company is currently doing business, or how it would like to do business. This is because activity diagrams are "less technical" in appearance, compared to sequence diagrams, and business-minded people tend to understand them more quickly.

An activity diagram's notation set is similar to that used in a statechart diagram. Like a state chart diagram, the activity diagram starts with a solid circle connected to the initial activity. The activity is modeled by drawing a rectangle with rounded edges, enclosing the activity's name. Activities can be connected to other activities through transition lines, or to decision points that connect to different activities guarded by conditions of the decision point. Activities that terminate the modeled process are connected to a termination point (just as in a statechart diagram). Optionally, the activities can be grouped into swimlanes, which are used to indicate the object that actually performs the activity....

Collaboration Diagram:
 Like a Sequence Diagram, a Collaboration diagram is used to model the dynamics of a system. Model Maker supports Collaboration diagram at both specification and instance level.

UML Collaboration diagrams (interaction diagrams) illustrate the relationship and interaction between software objects. They require use cases, system operation contracts, and domain model to already exist. The collaboration diagram illustrates messages being sent between classes and objects (instances). A diagram is created for each system operation that relates to the current development cycle (iteration).

When creating collaboration diagrams, patterns are used to justify relationships. Patterns are best principles for assigning responsibilities to objects and are described further in the section on patterns. There are two main types of patterns used for assigning responsibilities which are evaluative patterns and driving patterns. Each system operation initiates a collaboration diagram. Therefore, there is a collaboration diagram for every system operation.
7 UML DIAGRAMS

USECASE DIAGRAM:

[image: image20.emf]Select the recieving path

Packet sent from source

Router selects the destination

 path

Packet traversal using greedy

routing

Reaching destination node

without loss

Source

Destination

:

ACTIVITY DIAGRAM:

[image: image21.png]
STATECHART DIAGRAM:

[image: image22.emf]Select the

recieving path

Sending packets from

source node

Checks the available node

Packet traverse through

nearest available node

Reaches

destination node

 SEQUENCEDIAGRAM:

[image: image23.emf]construct

network

select the

recieving path

choosing

destinatin path

sending

packets

nearest

available node

routing

estimatin

selects path

select file

sends packet

sends packet

after checki...

calculate the packet

efficiency

8 CODING AND IMPLEMENTATION

CLIENT

//FILE TRANSFER USING C#.NET SOCKET - SERVER

 class DestCode

 {

 IPEndPoint ipEnd;

 Socket sock;

 public DestCode()

 {

 ipEnd = new IPEndPoint(IPAddress.Any, 5656);

 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 sock.Bind(ipEnd);

 }

 public static string receivedPath;

 public static string curMsg = "Stopped";

 public static int res;

 public void StartServer()

 {

 try

 {

 curMsg = "Starting...";

 sock.Listen(100);

 curMsg = "Running and waiting to receive file.";

 Socket clientSock = sock.Accept();

 byte[] clientData = new byte[1024 * 5000];

 int receivedBytesLen = clientSock.Receive(clientData);

 curMsg = "Receiving data...";

 int fileNameLen = BitConverter.ToInt32(clientData, 0);

 string fileName = Encoding.ASCII.GetString(clientData, 4, fileNameLen);

BinaryWriter bWrite = new BinaryWriter(File.Open(receivedPath +"/"+ fileName, FileMode.Append)); ;

 bWrite.Write(clientData,4 + fileNameLen, receivedBytesLen - 4 - fileNameLen);

 res = receivedBytesLen;

 if (receivedPath == "")

 {

 MessageBox.Show("No Path was selected to Save the File");

 }

 curMsg = "Saving file...";

 bWrite.Close();

 clientSock.Close();

 curMsg = "File Received ...";

 StartServer();

 }

 catch (Exception ex)

 {

 curMsg = "File Receving error.";

 }

 }

 }
EXPLANATION
1. The client first selects the destination client (file) to which the data is to be transmitted.

2. Once the client clicks the select the button a file dialog box is displayed in order to select the destination file.

3. If the file is not selected then an message box is displayed which intimates the user that unless the destination file is selected the data cannot be transmitted.

ROUTERS
class ReceiverCode

 {

 IPEndPoint ipEnd;

 Socket sock;

 public ReceiverCode()

 {

 ipEnd = new IPEndPoint(IPAddress.Any, 5655);

 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 sock.Bind(ipEnd);

 }

 public static string receivedPath;

 public static string curMsg = "Stopped";

 public static string Rout = "";

 public static int rlength = 0;

 public static string MsgStatus = "";

 public static byte[] send;

 public void StartServer()

 {

 try

 {

 curMsg = "Starting...";

 sock.Listen(100);

 curMsg = "Running and waiting to receive file.";

 Socket clientSock = sock.Accept();

 byte[] clientData = new byte[1024 * 5000];

 int receivedBytesLen = clientSock.Receive(clientData);

 System.Threading.Thread.Sleep(1000);

 rlength = receivedBytesLen;

 curMsg = "Receiving data...";

 int receive = clientSock.Receive(clientData);

 send = new byte[receivedBytesLen];

 Array.Copy(clientData, send, receivedBytesLen);

 Rout = "Start";

 clientSock.Close();

 curMsg = "Reeived & Saved file; Server Stopped.";

 StartServer();

 }

 catch (Exception ex)

 {

 curMsg = "File Receving error.";

 }

 }

 }
EXPLANATION
1. Here we can view the simulation of how the nodes are routed in a network.

2. The sender have to select the destination node in order to transfer the data.
3. In this simulation the error node (the node where the void problem occurs) is also selected.

4. Here we can view the Packet Arrival Rate, Average delay and Path efficiency.
SERVER
private void btnOpen_Click(object sender, EventArgs e)

 {

 txtFilePath.Text = "";

 openFileDialog1.ShowDialog();

 txtFilePath.Text = openFileDialog1.FileName;

 fileDes = openFileDialog1.FileName;

 if (fileDes == "openFileDialog1")

 {

 lblError.Text = "";

 lblError.Text = "Select a File first";

 txtFilePath.Text = "";

 btnSend.Enabled = false ;

 }

 else

 {

 len = fileDes.Length;

 fileini = fileDes.Substring(fileDes.IndexOf("\\") + 1);

 btnSend.Enabled = true;

 }

 }

 private void btnSend_Click(object sender, EventArgs e)

 {

 //Buffer();

 pic1.Visible = true;

 Application.DoEvents();

 send();

 //pic1.Visible = false;

 }

 public void send()

 {

 try

 {

 IPAddress[] ipAddress = Dns.GetHostAddresses("127.0.0.1");

 IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], 5655);

 Socket clientSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 string filePath = "";

 fileDes = fileDes.Replace("\\", "/");

 while (fileDes.IndexOf("/") > -1)

 {

 filePath += fileDes.Substring(0, fileDes.IndexOf("/") + 1);

 fileDes = fileDes.Substring(fileDes.IndexOf("/") + 1);

 }

 byte[] fileNameByte = Encoding.ASCII.GetBytes(fileDes);

 lblError.Text = "";

 lblError.Text = "Buffering ...";

 byte[] fileData = File.ReadAllBytes(filePath + fileDes);

 byte[] clientData = new byte[4 + fileNameByte.Length + fileData.Length];

 byte[] fileNameLen = BitConverter.GetBytes(fileNameByte.Length);

 fileNameLen.CopyTo(clientData, 0);

 fileNameByte.CopyTo(clientData, 4);

 fileData.CopyTo(clientData, 4 + fileNameByte.Length);

 lblError.Text = "";

 lblError.Text = "Connection to server ...";

 clientSock.Connect(ipEnd);

 lblError.Text = "";

 lblError.Text = "File sending...";

 System.Threading.Thread.Sleep(1000);

 clientSock.Send(clientData);

 label3.Text = clientData.Length.ToString();

 lblError.Text = "";

 lblError.Text = "Disconnecting...";

 clientSock.Close();

 lblError.Text = "";

 lblError.Text = "File transferred.";

EXPLANATION
1. Once the destination file and the destination is selected now its time to select the file which is to be transmitted.

2. Once the open button is clicked, a file dialog box is displayed to select the file which is to be transmitted.

3. Now the selected file is displayed.

4. Finally the “TRANSFER” button is clicked.

5. We can view the path i.e., through which nodes the data is being transmitted.

6. We can notice that there is no packet loss in the entire data transmission.
9. TESTING

INTRODUCTION:

 During Testing, the program to be tested is executed with a set of test cases, and the output of the program for the test cases is evaluated to determine if the program is performing as expected. Testing can ascertain the presence of errors in a program. Testing a large system is a complex activity; it has to be broken into smaller activities. Incremental testing is generally performed, in which components and subsystems of the system are tested separately before integrating them to form the system of system testing. For this reason, this phase is sometimes called "integrating and testing".

Different levels of testing are used in the testing process; each level of the testing aims to test different aspects of the system.

Testing is generally 4 types:
1. Unit Testing

2. Integration Testing

3. System Testing

4. Acceptance Testing

Unit Testing:
 It is essential for verification of code produced during coding phase and hence the goal is to test the intemallogic of the modules.

Integration Testing:
 Many tested modules are combined into subsystems, which are then tested. The goal here is to see if the modules can be integrated properly. This testing activity can be considered as testing the design. The integration testing is successful when was combining the two modules, i.e., the main form and the sub-form.
System Testing:
 Entire software system is tested. The reference document for this process is the SRS documents and the goal is to see if the software meets its requirements. In Software Requirement Specification Document the information collected from the users is used to develop the application. With this few the system testing is taken place after the development of the system is over.

Acceptance Testing:
 It is performed with realizes data of the client to demonstrate that the software is working satisfactorily. For acceptance testing, the valid data given by the organization is entered and tested by each and every staff member who uses the package. With all these testing processes finally the project is completed and ready for usage.

Black Box Testing:

 This testing is mainly on functional requirements. It attempts to find errors like incorrect functions, interface errors, etc.

White Box Testing:

 This testing of software predicated on close examination of procedural details. Providing test cases that exercise specific sets of conditions, tests logical paths through the software. White Box testing would lead to "100% correct program." All we have to do is define all logical paths, develop test cases to exercise them, and evaluate results.

TEST PLAN:
 A test plan is general document for the entire project that defines the scope, approach to be taken, and the schedule of testing as well as identifies the test items for the entire testing process and the personnel responsible for the different activities of testing. Thus test planning can be done in parallel with the coding and design phases.

A test plan should contain the following:

· Test unit specification

· Features to be tested

· Approach for testing

· Test deliverables

· Schedule

· Personnel allocation

Test unit identification:

 One of the most important activities of the test plan is to identify the test units. A test unit is a set of one or more modules, together with associated data, that are form a single computer program and that are the objective of the testing. A test unit can occur at any level and can contain a single module to the entire system. Thus, a test unit may be a module, a few modules, or complete system.

Features to be tested:

 Features to be tested include all software features and combination of features that should be tested. A software feature is as software characteristic specified or implied by the requirements or design documents. All the functional features specified in the requirements document will be tested.

Approach for testing:

 The approach for testing specifies the overall approach to be followed in the project. In this project, for unit testing structural testing based on branch Coverage Criteria will be used. System testing will be largely functional in nature. The focuses on valid cases and some invalid cases.

TEST CASE SPECIFICATION FOR SYSTEM TESTING:
 Here we specify all test cases that are used for system testing. First, the different conditions that need to be tested, along with the test cases used for testing those conditions and the expected outs are given. Then the data files used for testing are given. The test cases are specified with respect to these data files. The test cases have been selected using the functional approach. The goal is to test the different functional requirements, as specified in the requirement document. Test cases have been selected for both valid and invalid inputs.
TEST CASES AND TEST CRITERION
 Testing is a crucial step in software development. Fundamental theorem of testing is that if a testing criterion is valid and reliable. Having proper test cases is central to successful testing. The goal during selecting test case is to ensure that if there is an error or fault in the program.

There are two desirable properties for a testing criterion: reliability and validity. A criterion is valid if for any error in the program there is some set satisfying the criterion that will reveal the error. The goal of test case selection is to select the test cases such that the maximum no. of faults detected by minimum number of test cases

TEST CASES
CLIENT:

Test case id: 1
Unit to test: To let the user enter the network to transmit the data.
Test data: Specified file format.
Steps to be executed: Click the select button to select the destination file.

Expected results: File dialog box is displayed.

Actual results: File dialog box is displayed.
Pass/Fail: Pass
Comments: User should visit the network and select a destination file.
Test case id: 2
Unit to test: To allow the user select the destination file.

Test data: Valid file.
Steps to be executed: Select the destination file to which the data must be transmitted.
Expected results: Selects the specified file.
Actual results: Selects the specified file.
Pass/Fail: Pass
Comments: User should select the file of specified format.
ROUTERS

Test case id: 3
Unit to test: Check whether the routing of nodes has properly done.

Test data: number of nodes.
Steps to be executed: Select the error node (where the void problem occurs) and destination node in the network.
Expected results: Shows the simulation of the network.
Actual results: Shows the simulation of the network.
Pass/Fail: Pass
Comments: User can view the packet arrival time, delay time, packet efficiency.
SERVER

Test case id: 4
Unit to test: To allow the user to select the file that is to be transmitted.

Test data: Specified file format.
Steps to be executed: Select the file to be transmitted and then give the intimation to the server to transfer the file.
Expected results: Shows the shortest path through which the data packets are being transmitted also sends an acknowledgement that the packets have been delivered.
Actual results: Shows the shortest path through which the data packets are being transmitted also sends an acknowledgement that the packets have been delivered.
Pass/Fail: Pass
Comments: User can notice that the data is transmitted without any loss.
10 SCREENSHOTS
CLIENT HAS TO SELECT THE RECEIVING PATH:
[image: image24.png]
[image: image25.png]
ROUTER TRANSFERS THE PACKETS FROM CLIENT TO SERVER:
[image: image26.png]
SELECT THE DESTINATION NODE:
[image: image27.png]
OPEN THE FILE THAT IS TO BE TRANSMITTED:
[image: image28.png]
[image: image29.png]
[image: image30.png]
PACKETS ARE SENT FROM SOURCE TO DESTINATION:
[image: image31.png]
PACKETS HAVE BEEN TRANSMITTED WITHOUT ANY LOSS:
[image: image32.png]
12 CONCLUSIONS AND FUTURE SCOPE
 In this project, a UDG-based GAR protocol is proposed to resolve the void problem incurred by the conventional GF algorithm. The RUT scheme is adopted within the GAR protocol to solve the boundary finding problem, which results in guaranteed delivery of data packets under the UDG networks. The BM and the IMS are also proposed to conquer the computational problem of the rolling mechanism in the RUT scheme, forming the direct mappings between the input/output nodes. The proposed GAR algorithms can guarantee the delivery of data packets under the UDG network.
 Because of the low energy consumption and less amount of packet loss greedy routing algorithm is used for the transfer of packets. Main advantage of greedy routing algorithm is effective routing when compare to other algorithms.
REFERENCES:
1. D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next

 Century Challenges: Scalable Coordination in Sensor networks,” Proc. ACM MobiCom, pp. 263-270, Aug. 1999.

2. G.G. Finn, “Routing and Addressing Problems in Large

Metropolitan-Scale Internetworks,” Technical Report ISI/RR-87-180, Information Sciences Inst., Mar. 1987.

3. B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless

Destination node

Node 2

Node 1

Source node

N - Nodes

Failed Path

Destination

N

N

N

N

N

N

N

N

N

N

N

N

N

N

Source

N

N

N

N

N

N

Source

N

Destination

N

53

