Cell Breathing Techniques for Load Balancing in Wireless LANs

1 INTRODUCTION
Network overload is one of the key challenges in wireless LANs (WLANs). This goal is typically achieved when the load of access points (APs) is balanced. Recent studies on operational WLANs, shown that AP load is often uneven distribution. To rectify such overload, several load balancing schemes have been proposed. These methods are commonly require proprietary software or hardware at the user side for controlling the user-AP association. In this paper we present a new load balancing method by controlling the size of WLAN cells (i.e., AP’s coverage range), which is conceptually similar to cell breathing in cellular networks. This method does not require any modification to the users neither the IEEE 802.11 standard. It only requires the ability of dynamically changing the transmission power of the AP beacon messages. We develop a set of polynomial time algorithms that find the optimal beacon power settings which minimize the load of the most congested AP. We also consider the problem of network-wide min-max load balancing. Simulation results show that the performance of the proposed method is comparable with or superior to the best existing association-based method.

1.3 Purpose:

We present Platypus, an authenticated source routing system built around the concept of network capabilities, which allow for accountable, fine-grained path selection by cryptographically attesting to policy compliance at each hop along a source route.Platypus policy framework that can be used to address several issues in wide-area routing at both the edge and the core, and evaluate its performance and security. Our results show that incremental deployment of Platypus can achieve immediate gains.

1.3 TECHNOLOGY

C#:
C#:
Language used mostly at the client levels which have the capability of creating dynamic web pages. The essential need of VBScript is due to the following requirements

 1. User interaction

 2. Data validation

 3. Client side utility

FEATURES:

 a. Interpreted language

 b. Object oriented support

 c. Provides procedural capabilities

 d. Works on event driven model

 e. Embedded within ML format

 f. Works on DOM (Document Object Model)

ELEMENTS OF C#:

 a. Variable
 b. Arrays

 c. Control statements

 d. Functions

 e. Objects

 f. Events

 g. Delegation

 h. Properties

 i. Interface

To program with ASP.NET, c# is probably the most common language. VB Scripts only has one data type the variant data type. The variant is used because of its flexibility with all data types. The variant data type is unique in the sense that the variant actually changes behavior depending on the type of data it is storing.
Microsoft Visual C#.Net

Microsoft C#.Net is a modern, object oriented, type safe language. It enables programmers to quickly build a wide range of applications for the new Microsoft.Net platform. More than anything else, C# pronounced “C Sharp” is designed to bring rapid development to the C++ programmer without sacrificing the power and control that have been a hallmark of C and C++.
Microsoft Visual C++.Net

Visual C++ provides deep support for creating XML web services including ATL servers and a new project type for creating powerful server-based applications. With attribute based programming any function can be easily exposed as an XML web service. Traditional unmanaged C++ and new managed C++ code can be mixed freely within the same application. Existing components can be wrapped as .NET components by using the managed extension. This preserves investment in existing code while integrating with the .NET Framework.
ABOUT .NET:

 The Microsoft .NET Framework is a software framework that can be installed on computers running Microsoft Windows operating systems. It includes a large library of coded solutions to common programming problems and a virtual machine that manages the execution of programs written specifically for the framework. The .NET Framework is a Microsoft offering and is intended to be used by most new applications created for the Windows platform.

 The framework's Base Class Library provides a large range of features including user interface, data access, database connectivity, cryptography, web application development, numeric algorithms, and network communications. The class library is used by programmers, who combine it with their own code to produce applications.

 Programs written for the .NET Framework execute in a software environment that manages the program's runtime requirements. Also part of the .NET Framework, this runtime environment is known as the Common Language Runtime (CLR). The CLR provides the appearance of an application virtual machine so that programmers need not consider the capabilities of the specific CPU that will execute the program. The CLR also provides other important services such as security, memory management, and exception handling. The class library and the CLR together constitute the .NET Framework.

[image: image1.png]
.NET FRAME WORK:
FEATURES:
Interoperability:

 Because interaction between new and older applications is commonly required, the .NET Framework provides means to access functionality that is implemented in programs that execute outside the .NET environment. Access to COM components is provided in the System.Runtime.InteropServices and System.EnterpriseServices namespaces of the framework; access to other functionality is provided using the P/Invoke feature.
Common Runtime Engine:

 The Common Language Runtime (CLR) is the virtual machine component of the .NET framework. All .NET programs execute under the supervision of the CLR, guaranteeing certain properties and behaviors in the areas of memory management, security, and exception handling.

Language Independence:

 The .NET Framework introduces a Common Type System, or CTS. The CTS specification defines all possible data types and programming constructs supported by the CLR and how they may or may not interact with each other conforming to the Common Language Infrastructure (CLI) specification. Because of this feature, the .NET Framework supports the exchange of types and object instances between libraries and applications written using any conforming .NET language.
Base Class Library:

 The Base Class Library (BCL), part of the Framework Class Library (FCL), is a library of functionality available to all languages using the .NET Framework. The BCL provides classes which encapsulate a number of common functions, including file reading and writing, graphic rendering, database interaction, XML document manipulation and so on.
Simplified Deployment:

 The .NET framework includes design features and tools that help manage the installation of computer software to ensure that it does not interfere with previously installed software, and that it conforms to security requirements.
Security:

 The design is meant to address some of the vulnerabilities, such as buffer overflows, that have been exploited by malicious software. Additionally, .NET provides a common security model for all applications.
Portability:

 The design of the .NET Framework allows it to theoretically be platform agnostic, and thus cross-platform compatible. That is, a program written to use the framework should run without change on any type of system for which the framework is implemented. While Microsoft has never implemented the full framework on any system except Microsoft Windows, the framework is engineered to be platform agnostic,[5] and cross-platform implementations are available for other operating systems (see Silverlight and the Alternative implementations section below). Microsoft submits the specifications for the Common Language Infrastructure (which includes the core class libraries, Common Type System, and the Common Intermediate Language), the C# language, and the C++/CLI language[10] to both ECMA and the ISO, making them available as open standards. This makes it possible for third parties to create compatible implementations of the framework and its languages on other platforms.
VERSIONS:

[image: image2.jpg]
ARCHITECTURE:

[image: image3.png]
COMMON LANGUAGE INFRASTRUCTURE (CLI):
 The purpose of the Common Language Infrastructure, or CLI, is to provide a language-neutral platform for application development and execution, including functions for exception handling, garbage collection, security, and interoperability. By implementing the core aspects of the .NET Framework within the scope of the CLR, this functionality will not be tied to a single language but will be available across the many languages supported by the framework. Microsoft's implementation of the CLI is called the Common Language Runtime, or CLR.
ASSEMBLIES:

 The CIL code is housed in .NET assemblies. As mandated by specification, assemblies are stored in the Portable Executable (PE) format, common on the Windows platform for all DLL and EXE files. The assembly consists of one or more files, one of which must contain the manifest, which has the metadata for the assembly. The complete name of an assembly (not to be confused with the filename on disk) contains its simple text name, version number, culture, and public key token. The public key token is a unique hash generated when the assembly is compiled, thus two assemblies with the same public key token are guaranteed to be identical from the point of view of the framework. A private key can also be specified known only to the creator of the assembly and can be used for strong naming and to guarantee that the assembly is from the same author when a new version of the assembly is compiled (required to add an assembly to the Global Assembly Cache).
METADATA:

 All CIL is self-describing through .NET metadata. The CLR checks the metadata to ensure that the correct method is called. Metadata is usually generated by language compilers but developers can create their own metadata through custom attributes. Metadata contains information about the assembly, and is also used to implement the reflective programming capabilities of .NET Framework.
SECURITY:
 .NET has its own security mechanism with two general features: Code Access Security (CAS), and validation and verification. Code Access Security is based on evidence that is associated with a specific assembly. Typically the evidence is the source of the assembly (whether it is installed on the local machine or has been downloaded from the intranet or Internet). Code Access Security uses evidence to determine the permissions granted to the code. Other code can demand that calling code is granted a specified permission. The demand causes the CLR to perform a call stack walk: every assembly of each method in the call stack is checked for the required permission; if any assembly is not granted the permission a security exception is thrown.

 When an assembly is loaded the CLR performs various tests. Two such tests are validation and verification. During validation the CLR checks that the assembly contains valid metadata and CIL, and whether the internal tables are correct. Verification is not so exact. The verification mechanism checks to see if the code does anything that is 'unsafe'. The algorithm used is quite conservative; hence occasionally code that is 'safe' does not pass. Unsafe code will only be executed if the assembly has the 'skip verification' permission, which generally means code that is installed on the local machine.

 .NET Framework uses AppDomains as a mechanism for isolating code running in a process. AppDomains can be created and code loaded into or unloaded from them independent of other AppDomains. This helps increase the fault tolerance of the application, as faults or crashes in one AppDomains do not affect rest of the application. AppDomains can also be configured independently with different security privileges. This can help increase the security of the application by isolating potentially unsafe code. The developer, however, has to split the application into subdomains; it is not done by the CLR.

CLASS LIBRARY:

 The .NET Framework includes a set of standard class libraries. The class library is organized in a hierarchy of namespaces. Most of the built in APIs are part of either System.* or Microsoft.* namespaces. These class libraries implement a large number of common functions, such as file reading and writing, graphic rendering, database interaction, and XML document manipulation, among others. The .NET class libraries are available to all CLI compliant languages. The .NET Framework class library is divided into two parts: the Base Class Library and the Framework Class Library.

 The Base Class Library (BCL) includes a small subset of the entire class library and is the core set of classes that serve as the basic API of the Common Language Runtime.[11] The classes in mscorlib.dll and some of the classes in System.dll and System.core.dll are considered to be a part of the BCL. The BCL classes are available in both .NET Framework as well as its alternative implementations including .NET Compact Framework, Microsoft Silverlight and Mono.

 The Framework Class Library (FCL) is a superset of the BCL classes and refers to the entire class library that ships with .NET Framework. It includes an expanded set of libraries, including Windows Forms, ADO.NET, ASP.NET, Language Integrated Query, Windows Presentation Foundation, Windows Communication Foundation among others. The FCL is much larger in scope than standard libraries for languages like C++, and comparable in scope to the standard libraries of Java
ADO.NET:
· ADO.NET is the new database technology of the .NET (Dot Net) platform, and it builds on Microsoft ActiveX� Data Objects (ADO).

· ADO is a language-neutral object model that is the keystone of Microsoft's Universal Data Access strategy.

· ADO.NET is an integral part of the .NET Compact Framework, providing access to relational data, XML documents, and application data. ADO.NET supports a variety of development needs. You can create database-client applications and middle-tier business objects used by applications, tools, languages or Internet browsers.

· ADO.NET defines DataSet and DataTable objects which are optimized for moving disconnected sets of data across intranets and Internets, including through firewalls. It also includes the traditional Connection and Command objects, as well as an object called a DataReader that resembles a forward-only, read-only ADO recordset. If you create a new application, your application requires some form of data access most of the time.

· ADO.NET provides data access services in the Microsoft .NET platform.

DATA PROVIDERS:
 We know that ADO.NET allows us to interact with different types of data sources and different types of databases. However, there isn't a single set of classes that allow you to accomplish this universally. Since different data sources expose different protocols, we need a way to communicate with the right data source using the right protocol. Some older data sources use the ODBC protocol, many newer data sources use the OleDb protocol, and there are more data sources every day that allow you to communicate with them directly through .NET ADO.NET class libraries
. ADO.NET provides a relatively common way to interact with data sources, but comes in different sets of libraries for each way you can talk to a data source. These libraries are called Data Providers and are usually named for the protocol or data source type they allow you to interact with some well known data providers, the API prefix they use, and the type of data source they allow you to interact with.

You can use ADO.NET to access data by using the new .NET Framework data providers which are:
Data Provider for SQL Server (System.Data.SqlClient).

Data Provider for OLEDB (System.Data.OleDb).

Data Provider for ODBC (System.Data.Odbc).

Data Provider for Oracle (System.Data.OracleClient).
 An example may help you to understand the meaning of the API prefix. One of the first ADO.NET objects you'll learn about is the connection object, which allows you to establish a connection to a data source. If we were using the OleDb Data Provider to connect to a data source that exposes an OleDb interface, we would use a connection object named OleDbConnection. Similarly, the connection object name would be prefixed with Odbc or Sql for an OdbcConnection object on an Odbc data source or a SqlConnection object on a SQL Server database, respectively. Since we are using MSDE in this tutorial (a scaled down version of SQL Server) all the API objects will have the Sql prefix. i.e. SqlConnection.
ADO .NET OBJECTS:
 ADO.NET includes many objects you can use to work with data. This section introduces some of the primary objects you will use. Over the course of this tutorial, you'll be exposed to many more ADO.NET objects from the perspective of how they are used in a particular lesson. The objects below are the ones you must know. Learning about them will give you an idea of the types of things you can do with data when using ADO.NET.

The SqlConnection Object:

 To interact with a database, you must have a connection to it. The connection helps identify the database server, the database name, user name, password, and other parameters that are required for connecting to the data base. A connection object is used by command objects so they will know which database to execute the command on.
The SqlCommand Object:

 The process of interacting with a database means that you must specify the actions you want to occur. This is done with a command object. You use a command object to send SQL statements to the database. A command object uses a connection object to figure out which database to communicate with. You can use a command object alone, to execute a command directly, or assign a reference to a command object to an SqlDataAdapter, which holds a set of commands that work on a group of data as described below.
The SqlDataReader Object:

 Many data operations require that you only get a stream of data for reading. The data reader object allows you to obtain the results of a SELECT statement from a command object. For performance reasons, the data returned from a data reader is a fast forward-only stream of data. This means that you can only pull the data from the stream in a sequential manner. This is good for speed, but if you need to manipulate data, then a DataSet is a better object to work with.
The SqlDataAdapter Object:
 Sometimes the data you work with is primarily read-only and you rarely need to make changes to the underlying data source. Some situations also call for caching data in memory to minimize the number of database calls for data that does not change. The data adapter makes it easy for you to accomplish these things by helping to manage data in a disconnected mode. The data adapter fills a DataSet object when reading the data and writes in a single batch when persisting changes back to the database. A data adapter contains a reference to the connection object and opens and closes the connection automatically when reading from or writing to the database. Additionally, the data adapter contains command object references for SELECT, INSERT, UPDATE, and DELETE operations on the data. You will have a data adapter defined for each table in a DataSet and it will take care of all communication with the database for you. All you need to do is tell the data adapter when to load from or write to the database.
The DataSet Object:

 DataSet objects are in-memory representations of data. They contain multiple Datatable objects, which contain columns and rows, just like normal database tables. You can even define relations between tables to create parent-child relationships. The DataSet is specifically designed to help manage data in memory and to support disconnected operations on data, when such a scenario make sense. The DataSet is an object that is used by all of the Data Providers, which is why it does not have a Data Provider specific prefix.
ADO.NET OBJECT MODEL:

[image: image4.png]
Abstract

Network overload is one of the key challenges in wireless LANs (WLANs). This goal is typically achieved when the load of access points (APs) is balanced. Recent studies on operational WLANs, shown that AP load is often uneven distribution. To rectify such overload, several load balancing schemes have been proposed. These methods are commonly require proprietary software or hardware at the user side for controlling the user-AP association. In this paper we present a new load balancing method by controlling the size of WLAN cells (i.e., AP’s coverage range), which is conceptually similar to cell breathing in cellular networks. This method does not require any modification to the users neither the IEEE 802.11 standard. It only requires the ability of dynamically changing the transmission power of the AP beacon messages. We develop a set of polynomial time algorithms that find the optimal beacon power settings which minimize the load of the most congested AP. We also consider the problem of network-wide min-max load balancing. Simulation results show that the performance of the proposed method is comparable with or superior to the best existing association-based method.

Existing System

Cell breathing has been studied mostly in the context of CDMA cellular networks. The coverage and capacity of a CDMA cell are inversely related with each other .The increase of the number of active users in a cell causes the increase of the total interference sensed at the base station. Therefore, in congested cells, users need to transmit with higher power to maintain a certain signal-to-interference ratio at the receiving base station. As the users in a congested cell increase their transmission power, they also increase their interference to the neighboring cells since all cells use the same frequency in CDMA networks. As a result, the overall network capacity may decrease. Furthermore, since the maximal transmission power of the users is bounded, the users who are far from the base station may experience poor services. To overcome these problems, the cell breathing approach was proposed. In essence, they reduce the size of congested cells.

Proposed System

we address the problem of minimizing the load of the congested APs. Let us call the AP with the maximal load as congested AP and its load as congestion load. We designed two polynomial time algorithms that find optimal solutions, one for the complete knowledge model and the other for the limited knowledge model. These results are intriguing, because similar load balancing problems are known to be strong NP-hard. It is particularly interesting that a polynomial time optimal algorithm exists for the limited knowledge model. Second, we address the problem of min-max load balancing. This is a strong NP-hard problem. In , it is proved that there exists no algorithm that guarantees any coordinate wise approximation ratio, and the approximation ratio of any prefix-sum approximation algorithm is at least nlogn , where n is the number of APs. In this paper, we solve a variant of this min-max problem, termed min-max priority load balancing, whose optimal solution can be calculated in polynomial time for both knowledge models.Here, the AP load is defined as an ordered pair of the aggregated load contributions of its associated users and a unique AP priority.

Modules display as follows.

1 Client Model

2 Server Model

3 Network Model

4 Algorithmic Challenges

5 Cell Breathing Approach

6 Bottleneck Method

7 Congestion Load Minimization

Module Description

Client Model:
 A client is an application or system that accesses a remote service on another computer system, known as a server, by way of a network. The term was first applied to devices that were not capable of running their own stand-alone programs, but could interact with remote computers via a network. These dumb terminals were clients of the time-sharing mainframe computer
Server model:
 In computing, a server is any combination of hardware or software designed to provide services to clients. When used alone, the term typically refers to a computer which may be running a server operating system, but is commonly used to refer to any software or dedicated hardware capable of providing services.
Network Model:

 Generally, the channel quality is time-varying. For the ser-AP association decision, a user performs multiple samplings of the channel quality, and only the signal attenuation that results from long-term channel condition changes are utilized Our load model can accommodate various additive load definitions such as the number of users associated with an AP. It can also deal with the multiplicative user load contributions.

Algorithmic Challenges:

 A greedy algorithm that reduces the power level of the congested APs until any of the congested APs reaches to the minimal power level. This will shift users from congested APs to their neighbors, and the set of congested APs and their load may change during the execution of the algorithm. A complete knowledge model is feasible when all users collect the RSSI information from all of the nearby APs. Such a feature is suggested, for instance, in the IEEE 802.11- k proposal. Unfortunately, this feature is currently not available in most existing WLANs. We use this model as a building block for the limited knowledge solution.

Cell Breathing Approach:
 We reduce the load of congested APs by reducing the size of the corresponding cells. Such cell dimensioning can be obtained, for instance, by reducing the transmission power of the congested APs. This forces users near the congested cells’ boundaries to shift to adjacent (less congested) APs. The transmission bit rate between a user and its associated AP is determined by the quality of the data traffic channel. Transmitting the data traffic with maximal power3 maximizes the AP-user SNR and the bit rate. On the other hand, each user determines its

association by performing a scanning operation, in which it evaluates the quality of the beacon messages of the APs in its vicinity. By reducing the beacon messages’ power level of congested APs, we practically shrink the size of their cells, and consequently discourage user association. This concept of controlling the cells’ dimensions by adapting power levels of the beacon messages is termed cell breathing. The separation between the power levels of the data traffic and the beacon messages is the only modification that we require from APs.

Bottleneck Method:
 The bottleneck set is a useful means for deciding whether the system congestion load can be further reduced by power reduction operation. Obviously, if the bottleneck set contains APs that transmit with minimal power, power reduction operation cannot be performed.

Min-max Load Minimization:
 The algorithms presented in this project minimize the load of the congested AP, but they do not necessarily balance the load of the noncongested APs.In this section, we consider min-max load balancing approach that not only minimizes the network congestion load but also balances the load of the noncongested APs. As mentioned earlier, the proposed approach can be used for obtaining various max-min fairness objectives by associating each user with appropriate load contributions. Unfortunately, min-max load balancing is NP-hard problem and it is hard to find even an approximated solution. In this paper, we solve a variant of the min-max problem, termed min-max priority-load balancing problem, whose optimal solution can be found in polynomial time.
2. SYSTEM STUDY

2.1 FEASIBILITY STUDY

 The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

1 ECONOMICAL FEASIBILITY
2 TECHNICAL FEASIBILITY
3 SOCIAL FEASIBILITY
ECONOMICAL FEASIBILITY
 This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY
 This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.

SOCIAL FEASIBILITY
 The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.
 System Architecture:

[image: image5]
Data Flow Diagram:

[image: image6]
UML Diagram:
Usecase Diagram:

[image: image7]
State Diagram:

[image: image8]
Activity Diagram:

[image: image9]
Sequence Diagram:

[image: image10]
Sample Code:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.Net;

using System.Net.Sockets;

using System.IO;

//That code is written by Suman Biswas, Calcutta, India (Email: sumanbiswas@aol.in,Website: sumanbiswas.xm.com).

//That code is running to transfer small file to client to server. by using and after doing modification any one

//can able to make a large file transfer application in C#.Net. This is Server code.

namespace LBServerCode

{

 public partial class CelBreathingServer : Form

 {

 DBase db = new DBase();

 string path, ClientPath;

 public CelBreathingServer()

 {

 InitializeComponent();

 LBSReceive.receivedPath = "";

 }

 private void button1_Click(object sender, EventArgs e)

 {

 // if (FTServerCode.receivedPath.Length > 0)

 backgroundWorker1.RunWorkerAsync();

 FolderBrowserDialog fd = new FolderBrowserDialog();

 if (fd.ShowDialog() == DialogResult.OK)

 {

 ClientPath = fd.SelectedPath;

 for (int i = 1; i <= 3; i++)

 {

 System.Diagnostics.Process.Start(ClientPath + "//Client " + i + "//bin//Debug//Client " + i);

 }

 }

 // else

 // MessageBox.Show("Please select file receiving path");

 }

 private int RandomNumber(int min, int max)

 {

 Random random = new Random();

 return random.Next(min, max);

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 //label5.Text = LBSReceive.receivedPath;

 label3.Text = LBSReceive.curMsg;

 lblserver1.Text = LBSReceive.loadst1.ToString();

 lblserver2.Text = LBSReceive.loadst2.ToString();

 lblserver3.Text = LBSReceive.loadst3.ToString();

 progressBar1.Value = LBSReceive.loadst1;

 progressBar2.Value = LBSReceive.loadst2;

 progressBar3.Value = LBSReceive.loadst3;

 }

 LBSReceive obj = new LBSReceive();

 private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

 {

 obj.StartServer();

 }

 private void button2_Click(object sender, EventArgs e)

 {

 FolderBrowserDialog fd = new FolderBrowserDialog();

 if (fd.ShowDialog() == DialogResult.OK)

 {

 LBSReceive.receivedPath = fd.SelectedPath;

 }

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 path = Directory.GetParent(Application.StartupPath).ToString();

 }

 int a = 0;

 private void timer2_Tick(object sender, EventArgs e)

 {

 int returnValue = RandomNumber(1, 20);

 // a1.Text = returnValue.ToString();

 if (returnValue == 1)

 {

 db.command("delete FROM Engine1 where Id in (SELECT TOP 2 Id FROM Engine1)");

 db.conclose();

 LoadStatus();

 }

 else if (returnValue == 2)

 {

 db.command("delete FROM Engine2 where Id in (SELECT TOP 2 Id FROM Engine2)");

 db.conclose();

 LoadStatus();

 }

 else if (returnValue == 3)

 {

 db.command("delete FROM Engine3 where Id in (SELECT TOP 2 Id FROM Engine3)");

 db.conclose();

 LoadStatus();

 }

 }

 public void LoadStatus()

 {

 db.reader("Select Count(Msg) from Engine1");

 db.dr.Read();

 LBSReceive.loadst1 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 db.reader("Select Count(Msg) from Engine2");

 db.dr.Read();

 LBSReceive.loadst2 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 db.reader("Select Count(Msg) from Engine3");

 db.dr.Read();

 LBSReceive.loadst3 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 if (LBSReceive.loadst1 > 80 && LBSReceive.loadst3 > 50)

 {

 db.command("delete From Engine1");

 db.conclose();

 }

 else if (LBSReceive.loadst3 > 80 && LBSReceive.loadst2 > 50)

 {

 db.command("delete From Engine3");

 db.conclose();

 }

 else if (LBSReceive.loadst3 > 50 && LBSReceive.loadst1 > 50)

 {

 db.command("delete From Engine2");

 db.conclose();

 }

 }

 private void button2_Click_1(object sender, EventArgs e)

 {

 System.Diagnostics.Process.Start(path + "/Cell Breathing.exe");

 }

 }

 //FILE TRANSFER USING C#.NET SOCKET - SERVER

 class LBSReceive

 {

 DBase db = new DBase();

 IPEndPoint ipEnd;

 Socket sock;

 public LBSReceive()

 {

 LoadStatus();

 ipEnd = new IPEndPoint(IPAddress.Any, 5655);

 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 sock.Bind(ipEnd);

 }

 public static string receivedPath;

 public static string curMsg = "Stopped";

 public static int loadst1 = 0;

 public static int loadst2 = 0;

 public static int loadst3 = 0;

 public void StartServer()

 {

 try

 {

 curMsg = "Starting...";

 sock.Listen(100);

 //LoadStatus();

 curMsg = "Running.....";

 Socket clientSock = sock.Accept();

 byte[] clientData = new byte[1024];

 int receivedBytesLen = clientSock.Receive(clientData);

 string a=clientSock.ReceiveBufferSize.ToString();

 //int b = a-1024;

 string s = Encoding.ASCII.GetString(clientData, 0, 1);

 if (s == "1")

 {

 s = "";

 s = "M1";

 }

 else if (s == "2")

 {

 s = "";

 s = "M2";

 }

 else if (s == "3")

 {

 s = "";

 s = "M3";

 }

 //MessageBox.Show(s.ToString());

 int fileNameLen = BitConverter.ToInt32(clientData, 1);

 // string fileString = Encoding.ASCII.GetString(clientData, 1, 1022);

 int i = 0;

 string t ="";

 while(clientData[i] != Convert.ToByte('\0'))

 {

 // fi[i] = clientData[i];

 //t += fi.ToString();

 i++;

 }

 byte[] final = new byte[i];

 for (int j = 0; j < i; j++)

 {

 final[j] = clientData[j+1];

 }

 string fileString = Encoding.ASCII.GetString(final);

 LoadStatus();

 if (loadst1 != 100 || loadst2 != 100 || loadst3 != 100)

 {

 if (loadst1 == loadst2 && loadst1 == loadst3)

 {

 //load("Engin1", s, fileString);

 db.command("insert into Engine1 values('" + s.ToString() + "','" + fileString.ToString() + "') ");

 db.conclose();

 }

 else

 {

 if (loadst1 < loadst2 && loadst1 < loadst3)

 {

 db.command("insert into Engine1 values('" + s + "','" + fileString + "') ");

 db.conclose();

 }

 else if (loadst2 < loadst3)

 {

 db.command("insert into Engine2 values('" + s + "','" + fileString + "') ");

 db.conclose();

 }

 else

 {

 db.command("insert into Engine3 values('" + s + "','" + fileString + "') ");

 db.conclose();

 }

 }

 }

 else

 {

 }

 LoadStatus();

 //MessageBox.Show(fileString);

 clientSock.Close();

 StartServer();

 }

 catch (Exception ex)

 {

 curMsg = "File Receving error.";

 }

 }

 public void LoadStatus()

 {

 db.reader("Select Count(Msg) from Engine1");

 db.dr.Read();

 loadst1 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 db.reader("Select Count(Msg) from Engine2");

 db.dr.Read();

 loadst2 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 db.reader("Select Count(Msg) from Engine3");

 db.dr.Read();

 loadst3 = Convert.ToInt32(db.dr.GetValue(0));

 db.conclose();

 if (loadst1 > 80 && loadst3 > 50)

 {

 db.command("delete From Engine1");

 db.conclose();

 }

 else if (loadst3 > 80 && loadst2 > 50)

 {

 db.command("delete From Engine3");

 db.conclose();

 }

 else if (loadst3 > 50 && loadst1 > 50)

 {

 db.command("delete From Engine2");

 db.conclose();

 }

 }

 //public void Load(string Engine, string From, string Msg)

 //{

 // db.command("insert into " + Engine + "values('" + From + "','" + Msg + "') ");

 // db.conclose();

 //}

TESTING AND IMPLEMENTATION
SOFTWARE TESTING
Introduction
Software is only one element of a larger computer based system. Ultimately software is incorporated with other system elements (Ex. New hardware) and a series of system integration and validation tests are conducted. System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system.

Testing presents an interesting anomaly for the software development. The testing phase creates a series of test cases that are intended to ‘Demolish’ the software that has been built. A good test case is one that has a high probability of finding an as yet undiscovered error. A successful test is one that uncovers as an yet undiscovered error.

Testing methods
Testing process brakes applications down in to two main parts

· Unit Testing

· System Testing.

· Integration Testing.

· User Integration Testing.

In unit testing, the modules of the system are tested as individual units. Each unit has definite input and output parameters and often a definite single function. Hence Unit testing is otherwise known as program testing.

 In System testing, the system is tested as a whole; that’s intercommunication among the individual units and functions of the complete system are tested.

Unit Testing
Unit testing comprises the set of tests performed by an individual programmer prior to integration of the unit into a larger system. The situation is illustrated as follows,

A program unit is usually small enough that the programmer who developed can test in a great detail and certainly in greater detail that will be possible when the unit is integrated in to an evolving software product.

There are four categories of tests that a programmer will typically perform on a program unit.

· Functional Tests

· Performance Tests

· Stress Tests

· Structure Tests

 Functional Tests
Functional tests, where test cases involving exercising the code with nominal input values for which the expected results are known, were done.

In client Module, the request message is verified for all possible inputs taking into account the set of possible circumstances. This is essential because if affects the overall output of the system.

In Server module, the request message interpretation and job administration module are extensively tested so that they work satisfactorily for all possible circumstances.

Performance Tests
Performance testing is concerned with the evaluation speed and memory utilization of the program. Using various test cases tests the package and the performance is found satisfactory.

Stress Tests
Stress testing, which is concerned with exercising the internal logic of a program and traveling particular execution paths is done. The input is given in such a way that starting form request from client to the job completion all possible paths is tested.

Structure Tests
Structure testing is also referred to as White Box or Glass Box Testing.

System Testing
 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.
Test Data

Data to be entered in this project are Distance coverage, energy, link quality in such a way that if the distance coverage is high then the energy required to transmit the message should also high due to high energy the link quality will be less. Based on this condition the values should be entered at runtime in the table through will rank will be calculated and packets are routed.
Integration Testing

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.
Functional Testing
Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output : identified classes of application outputs must be exercised.

Systems/Procedures:

Interfacing systems or procedures must be invoked. Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

White Box Testing
White Box Testing is a testing in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is used to test areas that cannot be reached from a black box level.

Black Box Testing
Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.

Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results

All the test cases mentioned above passed successfully. No defects encountered.

	Test case id
	Unit to test
	Test data
	Steps to be executed
	Expected results
	Actual results
	Pass/Fail
	Comments

	1
	Start Server
	Select a Directory
	Click on server

Receive Loc

Is not set

Select the receive location
	Server is ready

Server is ready

	Server is not ready, set the Receive loc

Server starts
	Fail

Pass

	If receive location is not selected then set the location and then start the server.

Screen Shots:
Debugging server:

[image: image11.png]
Starting server:
[image: image12.png]
Running Clients :
[image: image13.png]
Passing Message:
[image: image14.png]
Before Loading:
[image: image15.png]
Balancing Load:
[image: image16.png]
Keep On Passing Message:
[image: image17.png]
Again Balancing Load:
[image: image18.png]
Algorithm Analyze:
[image: image19.png]
Binary Tree View:
[image: image20.png]
Minimum Binary Tree:
[image: image21.png]
[image: image22.png]
Bibliography

[1] Y. Bejerano and S.-J. Han, “Cell Breathing Techniques for Load Balancing in Wireless LANs,” Proc. IEEE INFOCOM, 2006.

[2] M. Balazinska and P. Castro, “Characterizing Mobility and Network Usage in a Corporate Wireless Local-Area Network,”Proc. USENIX Int’l Conf. Mobile Systems, Applications, and Services (MobiSys ’03), 2003.

[3] T. Henderson, D. Kotz, and I. Abyzov, “The Changing Usage of a Mature Campus-Wide Wireless Network,” Proc. ACM MobiCom, pp. 187-201, 2004.

[4] T. Togo, I. Yoshii, and R. Kohno, “Dynamic Cell-Size Control According to Geographical Mobile Distribution in a DS/CDMA Cellular System,” Proc. IEEE Personal, Indoor, and Mobile Radio Comm. Symp. (PIMRC ’98), pp. 677-681, 1998.

[5] A. Jalali, “On Cell Breathing in CDMA Networks,” Proc. IEEE Int’l Conf. Comm. (ICC ’98), pp. 985-988, 1998.

[6] I. Papanikos and M. Logothetis, “A Study on Dynamic Load Balance for IEEE 802.11b Wireless LAN,” Proc. Int’l Conf. Comm.Control (COMCON ’01), 2001.

[7] I. Tinnirello and G. Bianchi, “A Simulation Study of Load Balancing Algorithms in Cellular Packet Networks,” Proc. ACM/ IEEE Int’l Workshop Modeling, Analysis and Simulation of Wireless and Mobile Systems (MSWiM ’01), pp. 73-78, 2001.

[8] A. Balachandran, P. Bahl, and G.M. Voelker, “Hot-Spot Congestion Relief and Service Guarantees in Public-Area Wireless Networks,” SIGCOMM Computing Comm. Rev., vol. 32, no. 1, pp. 59-59, 2002.

[9] H. Velayos, V. Aleo, and G. Karlsson, “Load Balancing in Overlapping Wireless LAN Cells,” Proc. IEEE Int’l Conf. Comm. (ICC ’98), 1998.

[10] A. Kumar and V. Kumar, “Optimal Association of Stations and APs in an IEEE 802.11 WAN,” Proc. Nat’l Conf. Comm., 2005.

[11] K. Premkumar and A. Kumar, “Optimal Association of Mobile Wireless Devices with a WLAN-3G Access Network,” Proc. IEEE Int’l Conf. Comm. (ICC ’06), 2006.

[12] B. Kauffmann, F. Baccelli, A. Chaintreau, K. Papagiannaki, and C. Diot, “Self Organization of Interfering 802.11 Wireless Access Networks,” INRIA Research Report RR-5649, 2005.

[13] S. Shakkottai, E. Altman, and A. Kumar, “The Case for Non- Cooperative Multihoming of Users to Access Points in IEEE 802.11 WLANs,” Proc. IEEE INFOCOM, 2006.

[14] T.-C. Tsai and C.-F. Lien, “IEEE 802.11 Hot Spot Load Balance and QoS-Maintained Seamless Roaming,” Proc. Nat’l Computer Symp., 2003.

[15] Y. Bejerano, S.-J. Han, and L.E. Li, “Fairness and Load Balancing in Wireless LANs Using Association Control,” Proc. ACM MobiCom, pp. 315-329, 2004.

[16] V.V. Veeravalli and A. Sendonaris, “The Coverage-Capacity Tradeoff in Cellular CDMA Systems,” IEEE Trans. Vehicular Technology, pp. 1443-1451, Sept. 1999.

[17] S.-T. Yang and A. Ephremides, “Resolving the CDMA Cell Breathing Effect and Near-Far Unfair Access Problem by Bandwidth-Space Partitioning,” Proc. IEEE Vehicular Technology Conf. (VTC ’01), pp. 1037-1041, 2001.

[18] L. Du, J. Bigham, and L. Cuthbert, “A Bubble Oscillation Algorithm for Distributed Geographic Load Balancing in Mobile Networks,” Proc. IEEE INFOCOM, 2004.

[19] A. Sang, X. Wang, M. Madihian, and R. Gitlin, “Coordinated Load Balancing, Handoff/Cell-Site Selection, and Scheduling in Multi- Cell Packet Data Systems,” Proc. ACM MobiCom, pp. 302-314, 2004.

[20] P. Bahl, M.T. Hajiaghayi, K. Jain, V.S. Mirrokni, L. Qiu, and A. Saberi, “Cell Breathing in Wireless LANs: Algorithms and Evaluation,” IEEE Trans. Mobile Computing, vol. 6, no. 2, pp. 164- 178, Feb. 2007.

[21] J.M. Kleinberg, Y. Rabani, and E. Tardos, “Fairness in Routing and Load Balancing,” Proc. IEEE Ann. Symp. Foundations of Computer Science (FOCS ’99), pp. 568-578, 1999.

[22] D. Simone, 802.11k Makes WLANs Measure Up. Network World, Mar. 2004.

[23] R. Raz and S. Safra, “A Subconstant Error-Probability Low-Degree Test, and Subconstant Error-Probability PCP Characterization of NP,” Proc. ACM Symp. Theory of Computers, pp. 475-484, 1997.

[24] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[25] T.S. Rappaport, Wireless Communications: Principle and Practice Prentice Hall, 1996.

User

Server

AP

AP

u6

u5

u4

u3

u2

u1

AP - Access Point

U - User

Balancing

Overload

Balancing

Overload

Server

AP

AP

AP

U9

U8

U7

U6

U5

U4

U3

U2

U1

Server

 Server

Users

Sending signal load in sequence to server

Server receiving

 the signal

 Checking for signal overload on APs

Balancing APs Load by cell breathing method

 Selecting APs

 Sending signal

 Load to APs

No

 Reaching the

 server

 Passing signal load

 Sequentially to

 server

 Balancing load by

 Cell breathing

 Method

Overload

 ?

 Sending signal load

 to APs

 Select the APs

 AP2

 AP1

 Users

 Server

Sending signals to APs

Passing signals AP1 to AP2

Load balancing by

Cell Breathing Method

Receiving signal sequentially

Yes

Balancing load with adjacent APs (Cell breathing method)

Overload?

 AP1

Sending Signal to APs

Selecting APs

Server

APs

Users

 Wireless Network

Yes

No

Passing signals to next APs

Sequentially

Receiving signal without traffic

Start

Receiving signal with traffic

Without checking load

yes

No

Balanced

 Load

End

Yes

No

