Trustworthy Computing under Resource

Constraints with the DOWN Policy

Scope of the Project :
In this project we substantially improve the ability of low-cost ScPs to protect their secrets. We use DOWN policy which relies on the ability to operate with fractional parts of secrets. Taking full advantage of the DOWN policy requires consideration of the nature of computations performed with secrets and even the mechanisms employed for distribution of secrets.
Introduction :
Many emerging applications will rely on extensive mutual co-operation among a highly interconnected network of computers. A group of computers working together may decide the setting of a thermostat based on weather forecasts received directly from computers in the local weather station. Computers in a car, interacting with computers in cars nearby may decide the best course of action to avoid an impending collision. Sensors monitoring vital internal organ functions of a person on the road may relay early warning signs over multihop ad hoc networks to the nearest hospital to facilitate timely responses.

In such applications, each device is expected to perform some tasks for the overall good of the network. An obvious requirement in such scenarios is the ability to trust the devices. It does not take much imagination to see the consequences of an attacker’s ability to impersonate a sensor to send a false alarm or a malicious course correction.
Modules:
LOGIN MODULE

TRUSTED SYSTEM MODULE

CRYPTOGRAPHY

 Encryption

 Decryption

SENDING MODULE

RECEIVING MODULE

Module Description :
LOGIN MODULE :

User gives the required username and password and then logins. If the login name and password in correct then he goes to the next form else he is asked to give the correct username and password.
TRUSTED SYSTEM MODULE :

Any trusted computer defines a clear trust boundary. For example, for a single chip ScP all components inside the chip may fall under such a trust boundary. Enforcing the trust boundary is by proactive measures for protection of components within the boundary. However, the regions inside a trust boundary that are physically protected can change dynamically, depending on the state of the ScP. when the CPU is off, there is no need to extend protection to all regions. However, when the CPU is on, the scope of protection will need to be wider.
CRYPTOGRAPHY :

Encryption :

In this module, we investigate the suitability of DOWN for identity-based encryption (IBE) and signature (IBS) schemes. We then motivate the need for low complexity ID-based authentication schemes for ScPs for evolving application scenarios. This includes an overview of some existing low-complexity ID-based KPS
 Decryption :

In this module a private exponent d is used for decryption and signing. More specifically, the private exponent needs to be stored in RAM for performing computations like decryption and signing.Modular exponentiation is often performed using the square-and-multiply algorithm.

SENDING MODULE :

In this module, the encrypted file is sent to the non-trusted system with the key, normal file is sent to the trusted system and also read only files are sent while sending the files details about the file and the path of the file is stored in data base. Before sending the file to the trusted and non-trusted systems we have to make sure that the server is made to run so that it can receive files from the client.
RECEIVING MODULE :

In this module the files are received. If it’s a trusted system then the files receives without decryption else it receives in encryption mode with a secret key to decrypt the encrypt file and view the file. The file are usually stored in the path “c:\receive”. If it’s a read only file the user cannot edit or modify the file.
INPUT/OUTPUT :

The input will be choosing trusted system and selecting IP address of both the trusted and non-trusted systems if there is no stored IP then new IP address will be entered and the output will be IP address gets stored in database and direct us to the main form.
Module Diagram :
UML Diagrams :

Use case diagram :
[image: image1.emf]sender

Encryption

Decryption

Receiver

ReadOnly

File

Normal File

Trusted

Systems

Other

systems

Class diagram :

[image: image2.emf]Sender

Encrypted file

Normal file

Readonly file

Decryption

Receiver

[image: image3.emf]Files

Encrypt()

Encrypt File

Decrypt()

Normal file

view()

Read only File

View()

Object diagram :

State diagram :

[image: image4.emf]ReadOnly File Normal File

Encrypted File

Trusted System

Non-trusted

System

Receiver

Seperates type of file to be sent

Checks for type of system

sender

[image: image5.emf]Sender IP

address

Mode

System Decrypt Receiver

1: Select existing or new IP address 2: Normal File

3: Read Only File

4: Trusted System

5: Non Trusted System

6: Key Word 7: Converted File

Activity diagram :

Sequence diagram :
[image: image6.emf]Sender IP address Mode System Decrypt Receiver

Select existing or new IP address

Normal File

Read Only File

Trusted System

Non Trusted System

Key Word

Converted File

Collaboration diagram:
[image: image7.emf]Sender Select IP

File key

File

Search IP

Receiver

Normal

File

Select File

With Key

Without Key

Type of File

Component diagram :

E-R diagram :

Dataflow diagram :
Project flow diagram :
System architecture :

Literature review :

Research on the use of tamper-resistant hardware has been in progress for nearly 15 years public concerns for issues such as copy protection and secure remote execution and the recent push in commodity secure hardware suggest that the benefits of using secure hardware is now exceeding its overhead in complexity, performance, and cost. This project describes a trusted computing architecture, Cerium, that uses a secure processor to protect a program’s execution, so that a user can detect tampering of the program’s instructions, data, and control-flow while the program is running. This project considers the following computation model. A user runs a program on a computer outside the user’s control. The computer runs the program and presents the user with an output. The user wants to know if the output is in fact produced by an un-tampered execution of the user’s program. We call this computation model tamper-evident execution. Tamper-evident execution enables many new useful applications. For example, a project that depends on distributed computation, such as SETI@home, can use tamper-evident execution to check that results returned by participants are produced by the appropriate SETI@home software. The goal of Cerium is to support tamper-evident execution while facing strong adversaries. At the user level, Cerium should expose malicious users forging results of other users’ programs without running them. At the system level, Cerium should expose buggy operating systems that allow malicious programs to modify the instructions and data of other programs. At the hardware level, Cerium should detect hardware attacks that tamper with a program’s data while they are stored in memory, such as attacks on the DRAM or memory bus. Such strong adversaries prevent us from using software only techniques to implement tamper-evident execution.
Smart cards are increasingly prevalent, particularly in Europe, for authentication and payment mechanisms (credit cards, pay-TV access control, public transport payment, medical records, personal identity, mobile phone SIMs, etc.). They present a harder target for the criminal underworld than their magnetic strip counterparts. None the less, there is suf_cient economic gain in cracking smart cards. Pay-TV is particularly vulnerable since communication with the smart card is typically unidirectional, from the broadcasting source to the set-top box hosting the smart card. Since there is no back channel, it is not possible to identify duplicate smart cards via interactive protocols. Consequently, it is economically attractive to reverse engineer a pay-TV smart card in order to make a large number of duplicates. As smart cards are used in more and more applications, many new

opportunities for theft and fraud open up to criminals capable of reverse engineering cards or extracting key material.

The next section introduces attack technologies which determine the environment in which smart cards must survive. We address a number of hardware level security issues and how self-timed circuits can be used to build more robust smart cards.

Technique used or algorithm used :

· DOWN policy

· Encryption

· Decryption
Advantages :

Mandates sufficiently trustworthy computers that can be realized at low cost . The often heard statement that “complexity is the enemy of security” is far from dogmatic. For one, lower complexity implies better verifiability of compliance. Furthermore, keeping the complexity inside the trust boundary at low levels can obviate the need for proactive measures for heat dissipation. Strategies constrained to simultaneously facilitate shielding and heat dissipation tend to be expensive. On the other hand, unconstrained shielding strategies can be reliable and inexpensive to facilitate.
Applications :

In emerging application scenarios, calling for very large scale deployments of inexpensive devices bound to low complexity ScPs, the use of asymmetric cryptographic primitives may not be feasible. It was argued that low-complexity ID-based schemes are very much desirable for many emerging applications scenarios.

Server

Client

Client

Decrypt File

No

No

yes

yes

No

yes

Receiver

View File

File Sent

Read-Only File

Encrypt File

Normal File

Decrypt File using Key

Read only File

Encrypted File with Key

Normal File

Select Type of File

Decrypts file using Key

Read-Only File

Normal File

Other System

Trusted System

Server

Keys is entered for Encryption

Sets Trusted System if needed

Selects Existing IP or new IP entered

User Logins to send file

Select IP

User/Sender

Readable File

Decrypt

Read Only

Normal

Encryption

Receiver

Sender

Files

Decryption

Data’s

Read Only

Files

Normal File

Creating

Encryption

Receiver

Sender

