 INTRODUCTION:

 SOFTWARE development, being a human activity, is challenged by human limitations. There are individual cognitive challenges and social collaborative challenges. The collaborative challenges are what we are concerned with in this work, having observed teams of software developers working together to deliver their target products. Collaborative challenges were identified very early in the nascent field of Software Engineering. Brooks observed that software development was “a complex interpersonal exercise.” The seminal work by Curtis and colleagues recognized that breakdowns in communication and coordination efforts constituted a major problem in large-scale software development. Later, Staudenmayer recognized that good coordination of teams of developers was correlated with high team performance. Finally, Herbsleb at al. documented how software development tasks performed in distributed contexts took longer than similar tasks performed in collocated ones due to the cost of coordinating developers in different geographical locations. Over the years, Software Engineering practitioners have proposed a large number of strategies to facilitate the collaboration required of software development efforts including tools (e.g., CVS), approaches (e.g., software process models), and techniques (e.g., pair programming).

 Many of the problems faced by software developers are the same as problems faced by professionals in other domains: communication breakdowns, coordination problems, lack of knowledge about colleagues’ activities, and so on . The research field of Computer-Supported Cooperative Work (CSCW) emerged to address these kinds of problems, and, in the beginning, primarily in the area of office automation. Generally, CSCW as a field concentrates on understanding how collaboration among individuals takes place, and how it can efficiently be supported by (computational) tools . Since its inception, CSCW has attracted researchers who have considered Software Engineering as an important domain for research . Although there has always been some crossover, recently researchers in Software Engineering have become increasingly interested in the lessons from the CSCW literature. The timing could not be more critical due to various trends, including the growth of globally distributed projects that exacerbate coordination and communication problems and agile methods that emphasize cooperation and communication among software developers . Among the examples of Software Engineering research informed by CSCW concepts is that by Sarma and colleagues , who argue that awareness among software developers involved in programming
activities is important because configuration management workspaces create a harmful isolation among software developers. Estublier and Garcia present a similar argument, but they discuss it in the con- text of software process models. Another example is our own previous work , wherein we discuss the different roles played by application programming interfaces (APIs) in the coordination of software developers’ work. Finally, Cataldo and colleagues discuss the importance of work dependencies on failure prediction [8]. In the growing body of Software Engineering research influenced by CSCW, the concept of awareness has had considerable influence. For instance, this concept has influenced the design of several collaborative development environments, including Ariadne ; CollabCVS ; FastDASH ; Jazz ; and Palantír . More recently, Treude and Storey investigated how awareness was achieved in a large-scale project through the usage of tools that aggregate information from different sources.

