CONCLUSIONS

 In the field of Computer-Supported Cooperative Work, the term awareness is used to describe a range of work practices by which social actors coordinate their work through (i) the display of their actions to their colleagues, and (ii) the monitoring of actions from their colleagues. Recently, this concept has been explored by software engineering researchers in the design of collaborative software development tools. Most empirical studies related to awareness focus on the identification of these coordinative practices and assume settings in which the social actors who display and monitor actions do not change often. However, the practices of displaying and monitoring actions associated with awareness are useful only to the extent that social actors know who they should monitor and to whom they should display their actions. In collocated settings, this information is intrinsic. However, there are settings where this information is not as clear, e.g., distributed software projects. Previous studies have largely overlooked the identification of these actors. Accordingly, this paper focuses on the software developers’ work practices necessary to identify the list of actors whose actions should be monitored and to whom actions should be displayed. We call this set of actors the awareness network. In shifting the focus, it is possible to observe a myriad of such practices, how they are influenced by the work setting (organization, software architecture, etc), the problems that arise when this identification is problematic, and, finally, software developers’ concern with the management of these networks.

 We have drawn our results from empirical data from three software development teams that were observed and interviewed. Results of our analysis suggest that the awareness network of a software developer is fluid (it changes during the course of software development work) and is influenced by three main factors: the organizational setting (e.g., the reuse program in the BSC corporation), the software architecture, and, finally, the recency developers try to manage their awareness networks to be able to handle the impact of interdependent actions. These results can lead to important contributions for collaborative Software Engineering. For instance, collaborative tools (like Ariadne CollabCVS Fast- DASH Jazz and Palantír)and theoretical approaches (like socio-technical congruence) that leverage software architecture to provide awareness have
provided some promising results. However, the problem with these approaches is that, in practice, the architecture is not fully disclosed to or fully understood by all developers.
 The fluidity of the awareness networks suggest that these same tools and approaches need to be flexible to easily adapt to a software developer’s current context, including task, and software process phase. Similarly, most approaches and tools do not properly describe the organizational context where they would be adequate leading to misinterpretation and generalization of results. Our results indicate that the ways people identify the colleagues that they need to be aware of is a necessary and integral aspect of collaborative work. Being aware, and identifying who one needs to be aware of, is a software developer’s ongoing achievement and needs to be properly studied and supported by software tools.
