1. INTRODUCTION

INTRUSION detection systems (IDS) are besides other protective measures such as virtual private networks, authentication mechanisms, or encryption techniques very important to guarantee information security. They help to defend against the various threats to which networks and hosts are exposed to by detecting the actions of attackers or attack tools in a network or host-based manner with misuse or anomaly detection techniques [1].
At present, most IDS are quite reliable in detecting suspicious actions by evaluating TCP/IP connections or log files, for instance. Once an IDS finds a suspicious action, it immediately creates an alert which contains information about the source, target, and estimated type of the attack (e.g., SQL injection, buffer overflow, or denial of service). As the intrusive actions caused by a single attack instance— which is the occurrence of an attack of a particular type that has been launched by a specific attacker at a certain point in time—are often spread over many network connections or log file entries, a single attack instance often results in hundreds or even thousands of alerts. IDS usually focus on detecting attack types, but not on distinguishing between different attack instances. In addition, even low rates of false alerts could easily result in a high total number of false alerts if thousands of network packets or log file entries are inspected. As a consequence, the IDS creates many alerts at a low level of abstraction. It is extremely difficult for a human security expert to inspect this flood of alerts, and decisions that follow from single alerts might be wrong with a relatively high probability.
 In our opinion, a “perfect” IDS should be situation-aware [2] in the sense that at any point in time it should “know” what is going on in its environment regarding attack instances (of various types) and attackers. In this paper, we make an important step toward this goal by introducing and evaluating a new technique for alert aggregation. Alerts may originate from low-level IDS such as those mentioned above, from firewalls (FW), etc. Alerts that belong to one attack instance must be clustered together and meta-alerts must be generated for these clusters. The main goal is to reduce the amount of alerts substantially without losing any important information which is necessary to identify ongoing attack instances. We want to have no missing metaalerts, but in turn we accept false or redundant meta-alerts to a certain degree.
This problem is not new, but current solutions are typically based on a quite simple sorting of alerts, e.g., according to their source, destination, and attack type. Under real conditions such as the presence of classification errors of the low-level IDS (e.g., false alerts), uncertainty with respect to the source of the attack due to spoofed IP addresses, or wrongly adjusted time windows, for instance, such an approach fails quite often.

PAGE
1

