Literature survey
Literature survey is the most important step in software development process. Before developing the tool it is necessary to determine the time factor, economy n company strength. Once these things r satisfied, ten next step is to determine which operating system and language can be used for developing the tool. Once the programmers start building the tool the programmers need lot of external support. This support can be obtained from senior programmers, from book or from websites. Before building the system the above consideration r taken into account for developing the proposed system.

Most existing IDS are optimized to detect attacks with high accuracy. However, they still have various disadvantages that have been outlined in a number of publications and a lot of work has been done to analyze IDS in order to direct future research (cf. [5], for instance). Besides others, one drawback is the large amount of alerts produced. Recent research focuses on the correlation of alerts from (possibly multiple) IDS. If not stated otherwise, all approaches outlined in the following present either online algorithms or—as we see it—can easily be extended to an online version. Probably, the most comprehensive approach to alert correlation is introduced in [6]. One step in the presented correlation approach is attack thread reconstruction, which can be seen as a kind of attack instance recognition. No clustering algorithm is used, but a strict sorting of alerts within a temporal window of fixed length according to the source, destination, and attack classification (attack type). In [7], a similar approach is used to eliminate duplicates, i.e., alerts that share the same quadruple of source and destination address as well as source and destination port. In addition, alerts are aggregated (online) into predefined clusters (so-called situations) in order to provide a more condensed view of the current attack situation. The definition of such situations is also used in [8] to cluster alerts. In [9], alert clustering is used to group alerts that belong to the same attack occurrence. Even though called clustering, there is no clustering algorithm in a classic sense. The alerts from one (or possibly several) IDS are stored in a relational database and a similarity relation—which is based on expert rules—is used to group similar alerts together. Two alerts are defined to be similar, for instance, if both occur within a fixed time window and their source and target match exactly. As already mentioned, these approaches are likely to fail under real-life conditions with imperfect classifiers (i.e., low-level IDS) with false alerts or wrongly adjusted time windows. Another approach to alert correlation is presented in [10].
A weighted, attribute-wise similarity operator is used to decide whether to fuse two alerts or not. However, as already stated in [11] and [12], this approach suffers from the high number of parameters that need to be set. The similarity operator presented in [13] has the same disadvantage— there are lots of parameters that must be set by the user and there is no or only little guidance in order to find good values. In [14], another clustering algorithm that is based on attribute-wise similarity measures with user defined parameters is presented. However, a closer look at the parameter setting reveals that the similarity measure, in fact, degenerates to a strict sorting according to the source and destination IP addresses and ports of the alerts. The drawbacks that arise thereof are the same as those mentioned above. In [15], three different approaches are presented to fuse alerts. The first, quite simple one groups alerts according to their source IP address only. 
The other two approaches are based on different supervised learning techniques. Besides a basic least-squares error approach, multilayer perceptrons, radial basis function networks, and decision trees are used to decide whether to fuse a new alert with an already existing meta-alert (called scenario) or not. Due to the supervised nature, labeled training data need to be generated which could be quite difficult in case of various attack instances. 

The same or quite similar techniques as described so far are also applied in many other approaches to alert correlation, especially in the field of intrusion scenario detection. Prominent research in scenario detection is described in [16], [17], [18], for example. More details can be found in [19].

In [20], an offline clustering solution based on the CURE algorithm is presented. The solution is restricted to numerical attributes. In addition, the number of clusters must be set manually. This is problematic, as in fact it assumes that the security expert has knowledge about the actual number of ongoing attack instances. The alert clustering solution described in [11] is more related to ours. A link-based clustering approach is used to repeatedly fuse alerts into more generalized ones. The intention is to discover the reasons for the existence of the majority of alerts, the so called root causes, and to eliminate them subsequently. An attack instance in our sense can also be seen as a kind of root cause, but in [11] root causes are regarded as “generally persistent” which does not hold for attack instances that occur only within a limited time window. 
Furthermore, only root causes that are responsible for a majority of alerts are of interest and the attribute-oriented induction algorithm is forced “to find large clusters” as the alert load can thus be reduced at most. Attack instances that result in a small number of alerts (such as PHF or FFB) are likely to be ignored completely. The main difference to our approach is that the algorithm can only be used in an offline setting and is intended to analyze historical alert logs. In contrast, we use an online approach to model the current attack situation. The alert clustering approach described in [12] is based on [11] but aims at reducing the false positive rate. The created cluster structure is used as a filter to reduce the amount of created alerts. Those alerts that are similar to already known false positives are kept back, whereas alerts that are considered to be legitimate (i.e., dissimilar to all known false positives) are reported and not further aggregated. The same idea—but based on a different offline clustering algorithm—is presented in

