Introduction

The exponential growth in the global economy is being supported by service systems, realized by recasting mission-critical applications as services accessed across organizational boundaries. Service-oriented architectures and associated interoperability standards provide key enablers for these service systems. Their actual building and deployment, however, continues to be fraught with problems: “most of our large software systems ... are now constructed as groups of interoperating systems (as systems of systems) ... made to interoperate through various forms of interfaces. Although we can conceive these large [service systems], we have trouble building them” [3]. Anecdotal accounts of systems integration efforts (e.g., [4], [5], [6], [7]) point to failures and underscore the need to address the underlying cause: rapidly changing Environmental forces. These changes challenge assumptions, such as stability and predictability, where well-specified business processes (with services to perform tasks) are identified in advance and are insulated from change. Instead, the open and distributed processes include tasks that are performed by services that are not centrally controlled, and hence, can be unpredictable. As a result, service outcomes themselves tend to be uncertain. Service monitoring, therefore, remains a significant challenge. The goal of this research is to develop a framework for monitoring such service systems. This paper presents the framework, establishes its feasibility, and evaluates it with scenarios and comparisons against existing proposals. To enhance policy specification and monitoring of service systems. We develop this contribution as an extension to prior work in monitoring, establish its feasibility, and demonstrate it with multiple scenarios.
1.1 Monitoring Software Systems

Monitoring software systems is closely tied to the monitoring of requirements and how they are realized in software. A monitor is a software system that “observes and analyzes the behavior of another (target) system, determining qualities of interest, such as the satisfaction of the target system’s requirements” [8]. A requirements monitor determines the requirements status from a stream of significant input events [9]. A monitor is, then, a function that processes its input event stream to derive the status of requirements. This characterization of monitors and monitoring assumes an event, that is, “a significant action in time, typically modeled as instantaneous state change, e.g., completion of a method call, a CPU reaching 90 percent utilization, a shipment arriving at a destination, or a person leaving their home” [8]. An event source presents a stream of software event objects that represent their real-world target) events. The central monitoring issues, therefore, include: 1) event acquisition and 2) event analysis [8]. Our research question, related to monitoring of service systems, asks: how can one use service interaction events to understand a service system in terms of service policies?

 It represents an instantiation of the more general question:

how can one use lower level runtime events to understand a system in terms of higher level requirements?

This bridging is facilitated by multiple abstraction layers (see Fig. 1). The lowest layer captures message exchanges with protocols such as SOAP or REST. They represent runtime events that comply with a specification, e.g., the Secure Electronic

Transactions protocol. The middle layers capture event sequences following interaction policies, e.g., a buyer must provide payment for services. The highest level, then, represents the monitor, which reports on the state of specified policies, e.g., 95 percent of agents comply with the service interaction policies. The selected ontologies and analysis techniques affect the monitor’s ability to provide feedback. Together, these layers provide the potential for effective monitoring. The key contribution of this paper is the introduction of ontology of communicative acts into these abstraction layers.

1.2 Service System Enablers

Service systems build upon the basic idea of software as a service [10], [11] that allows legacy and new applications to declare their capabilities in a machine-readable format [12] Once deployed, the services can be linked to support crossfunctional business processes. Core standards for publishing (WSDL 2001), finding (UDDI 2005), and binding (SOAP 2003) provide key enablers for these service systems. Prior work suggests Language-Action Perspective (LAP) as a theoretical foundation for a layered view [13], [14], [15] of these enablers. A building block in this perspective is a speech act. It conceptualizes an utterance as the performance of a purposeful act. Several frameworks have been developed for LAP, such as business model patterns [16] and an aggregative model [17]. Umapathy and Purao [18] synthesize these into a framework for the web services standards space with three layers: a communication platform, the communicative act itself, and the rational discourse. Table 1 maps the web service standardization initiatives against this framework. The table highlights a key sublayer not effectively addressed by existing standards: support for conversations between services, which can provide a loosely coupled, peer-to-peer interaction model. Formalizing and representing such conversations among web services is central to understanding how monitors may be designed for services and business processes in distributed, open environments.

1.3 Conversations among Web Services

Current models for interactions among web services use a vending machine metaphor. WSDL port types and operations resemble buttons, levers, and slots on a vending machine [18]. The WSDL does not reveal that one must deposit money in the slot before pushing any buttons. Web Service choreography languages [19] attempt to solve this by giving instructions on which buttons to push in what order. An alternative model is that of a telephone call, where two (or more) parties set up a session, exchange messages in that context, and then, finally, close it. Each message is

interpreted in relation to those previously exchanged.

 A conversation, thus, describes multistep exchanges of messages performed by participants. A prerequisite for this model, in the context of service systems, is a conversation policy [20], [21] that allows each party to maintain its own record of the conversation’s state. Realizing a conversation model, then, requires specification of conversation policies and the ability to transform these policies into messages that can facilitate the actual conversation. The conversations themselves are comparable to discourses, whose elemental units include clauses and discourse operators, i.e., communicative acts [22]. Other efforts related to this view of conversations include agent communications [23] (often restricted in scale), conversation structures [24] (that ignores the semantic content), and service interaction and enterprise integration patterns [25] (that focus on an operational perspective, relegating message exchanges to a secondary role). Our use of communicative acts is different. We focus on their use for monitoring. The conversation models we envision, therefore, include communicative acts, which result in standard as well as extended effects, i.e., operations on commitments and expectations of responses.

Fig. 2 shows an example of a loan approval process that uses the services: Customer, Loan Approver, and Loan Processor. The process begins with the Customer sending the loan request. The Loan Approver receives the request and invokes the Loan Processor to process the application. The Loan Processor sends approval information to the Loan Approver, who forwards it to the Customer. The tasks in the Process are achieved via two conversations between services: 1) Customer-Loan Approver, and 2) Loan Approver-Loan- Processor. Specific communicative acts may be specified for each conversation, e.g., the task “check credit” may require: 1) asking for credit information about a customer; 2) responding in the form of prepackaged information or refusing to send the answer; and 3) acknowledging receipt of the answer. The figure highlights three important points. First, processes can be modeled as a composition of conversations; second, conversation protocols can be specified for services; and third, conversations provide the possibility for monitoring at different levels of granularity and temporality. The next section elaborates these ideas further.

