Going Back and Forth: Efficient Multi deployment and

Multi snapshotting on Clouds
SYNOPSIS
Infrastructure as a Service (IaaS) cloud computing has transform the way we think of acquiring resources by introducing a simple change: allowing users to lease computational resources from the cloud provider’s datacenter for a short time by deploying virtual machines (VMs) on these resources. This new model raises new challenges in the design and development of IaaS middleware. One of those challenges is the need to deploy a large number (hundreds or

even thousands) of VM instances simultaneously. Once the VM instances are deployed, another challenge is to simultaneously take a snapshot of many images and transfer them to persistent storage to support management tasks, such as suspend-resume and migration. With datacenters growing rapidly and configurations becoming heterogeneous, it is important to enable efficient concurrent deployment and snapshotting that are at the same time hypervisor independent and ensure a maximum compatibility with different configurations. This paper addresses these challenges by proposing a virtual file system specifically optimized for virtual machine image storage. It is based on a lazy transfer scheme coupled with object versioning that handles snapshotting transparently in a hypervisor-independent fashion, ensuring high portability for different configurations. 
1. INTRODUCTION:
The Infrastructure as a Service cloud computing has emerged as a viable alternative to the acquisition and management of physical resources. With IaaS, users can lease storage and computation time from large datacenters. Leasing of computation time is accomplished by allowing users to deploy virtual machines (VMs) on the datacenter’s resources. Since the user has complete control over the configuration of the VMs using on-demand deployments, IaaS leasing is equivalent to purchasing dedicated hardware but without the long-term commitment and cost. The on-demand nature of IaaS is critical to making such leases attractive, since it enables users to expand or shrink their resources according to their computational needs, by using external resources to complement their local resource base.
This problem is particularly acute for VM images used in scientific computing where image sizes are large. A typical deployment consists of hundreds or even thousands of such images. Conventional deployment techniques broadcast the images to the nodes before starting the VM instances, a process that can take tens of minutes to hours, not counting the time to boot the operating system itself.
2. ANALYSIS AND DESIGN

2.1 ANALYSIS

2.1.1 EXISTING SYSTEM
The huge computational potential offered by large distributed systems is hindered by poor data sharing scalability.
We addressed several major requirements related to these challenges. One such requirement is the need to efficiently cope with massive unstructured data (organized as huge sequences of bytes - BLOBs that can grow to TB) in very large-scale distributed systems while maintaining a very high data throughput for highly concurrent, fine-grain data accesses.

The role of virtualization in Clouds is also emphasized by identifying it as a key component. Moreover, Clouds have been defined just as virtualized hardware and software plus the previous monitoring and provisioning technologies.
Cloud Computing is a “buzz word” around a wide variety of aspects such as deployment, load balancing, provisioning, and data and processing outsourcing.
DISADVANTAGE
To give an less performance and storage space. Network traffic consumption also very high due to non concentrating on application status. 

It is not possible to build a scalable, high-performance distributed data-storage service that facilitates data sharing at large scale.
2.1.2 PROPOSED SYSTEM
A distributed virtual file system specifically optimized for both the multi deployment and multi snapshotting patterns. Since the patterns are complementary, we investigate them in conjunction. Our proposal offers a good balance between performance, storage space, and network traffic consumption, while handling snapshotting transparently and exposing standalone, raw image files (understood by most hypervisors) to the outside. 
We introduce a series of design principles that optimize multi deployment and multi snapshotting patterns and describe how our design can be integrated with IaaS infrastructures.

We show how to realize these design principles by building a virtual file system that leverages versioning-based distributed storage services. To illustrate this point, we describe an implementation on top of Blob Seer, a versioning storage service specifically designed for high throughput under concurrency.

ADVANTAGE 
A good balance between performance, storage space, and network traffic consumption, while handling snapshotting transparently and exposing standalone, raw image files
2.2 DESIGN

2.2.1 SYSTEM FLOW DIAGRAM


2.2.3 SOFTWARE HARDWARE REQUIREMENTS

HARDWARE REQUIREMENT 

CPU type                      :    Intel Pentium 4

Clock speed                   :    3.0 GHz

Ram size                       :    512 MB
Hard disk capacity         :    40 GB

Monitor type                 :    15 Inch color monitor

Keyboard type               :     internet keyboard

SOFTWARE REQUIREMENT
Operating System:  Windows XP

Front End           :  JAVA 
Back End                    :    SQL SERVER

Documentation    :    Ms-Office
3. SOFTWARE DESCRIPTION
INTRODUCTION: 

Java is an object-oriented programming language developed by Sun Microsystems and it is also a powerful internet programming language. Java is a high-level programming language which has the following features:

·    Object oriented

·     Portable

·    Architecture-neutral

·    High-performance 

·    Multithreaded

·    Robust

·    Secure

Java is an efficient application programming language. It has APIs to support the GUI based application development. The following features of java, makes it more suitable for implementing this project.

           
Initially the languages was called as “OAK” but it was renamed as “Java” in 1995. the primary motivation of this language was the need for a platform independent language that could be used to create software to be embedded in various consumer electronic devices. 

· Java is programmer’s language. 

· Java is cohesive and consistent. 

· Except for those constraints imposed by the internet environment, Java give s the programmer, full control. 

TYPES OF JAVA PROGRAM

3.1.1. Applications 

An application is a program that runs on our computer under the operating system of that computer. It is more or less like on creating using C or C++. Java’s ability to create Applets makes it important.

3.1.2. Applets 

 An applet is an application designed to be transmitted over the internet and executed by a java – compatible web browser. An applet is actually a tiny java program, dynamically downloaded across the network, just like an image. But the difference is, it is an intelligent program, not just a media file. It can react to the user input the dynamically change. 

3.2 FEATURES OF JAVA 

3.2.1. Security 

Every time you that the download a “normal” program, you are risking a viral infection. Prior to java, most users did not download executable programs frequently. In addition, another type of malicious program exists that must be guarded against. This type of program can gather private information, such as credit card numbers, bank account balances, and passwords. Java answers both these concerns by providing a “firewall” between a network application and your computer. 

3.2.2. Portability 

For programs to be dynamically downloaded to all the various types of platforms connected to the internet, some means of generating portable executable code is needed. As you will see, the same mechanism that helps ensure security also helps create portability. Indeed, java’s solution to these two problems is both elegant and efficient. 

3.2.3 The Byte code

The key that allows the java to solve the security and portability problems is that the output of java compiler is byte code. Byte code is a highly optimized set of instructions designed to be executed by the java run – time system, which is called the java virtual machine (JVM). That is, in its standard form, the JVM is an interpreter for byte code. 

3.3 JAVA VIRTUAL MACHINE (JVM) 

Beyond the language, there is the java virtual machine. The java virtual machine is an important element of the java technology. The virtual machine can be embedded within a web browser or an operating system. Once a piece of java code is loaded onto a machine, it is verified. As part of the loading process, a class loader is invoked and the byte code verification makes sure that the code that has been generated by the compiler will not corrupt the machine it is loaded on. Byte code verification takes place at the end of the compilation process to make sure that it is accurate and correct. So byte code verification is integral to the compiling and executing of java code. 

3.4 JAVA ARCHITECTURE 

Java architecture provides a portable, robust, high performing environment for development. Java provides portability by compiling the byte codes for the java virtual machine, which is then interpreted on each platform by the run-time environment. Java is dynamic system, able to load code when needed from a machine in the same room or across the planet. 

3.5 COMPILATION OF CODE 

When you compile the code, the java compiler creates machine code (called byte code) for a hypothetical machine called java virtual machine (JVM). The JVM is supposed to execute the byte code. The JVM is created for overcoming the issue of portability. The code is written and compiled for one machine and interpreted on all machines. This machine is called Java Virtual Machine. 

3.6 PLATFORM INDEPENDENT

Platform independence, that means the ability of a program to move easily from one computer system to another. It is one of the most significant advantages that Java has over other programming languages. Java is platform independent at both the source and the binary level.

3.7 NETWORKING CLASSES IN THE JDK


Through the classes in java.net, Java programs can use TCP or UDP to communicate over the Internet. The Socket and Server Socket classes all use TCP to communicate over the network.

3.8 ADVANTAGES

1. By using Java, one program can be run on many different platforms1. This means that you do not need to put your efforts on developing a different version of software for each platform. 

2. There are many programmers who can understand and write code in Java, so that many people can participate in developing an open source software. 

3. In many cases, a Java virtual machine can prevent an incorrectly written application program from causing problems to the rest of your computing environment. 
4. SYSTEM TESTING

4.1 
Introduction

  
Information Processing has undergone major improvements in the past two decades in both hardware and software. Hardware has decreased in size and price, while providing more and faster processing power.  Software has become easier to use, while providing increased capabilities.  There is an abundance of products available to assist both end-users and software developers in their work. Software testing, however, has not progressed significantly. It is still largely a manual process conducted as an art rather than a methodology. It is almost an accepted practice to release software that contains defects.

Software that is not thoroughly tested is released for production. This is true for both off-the-shelf software products and custom applications. Software vendor and in-house systems developers release an initial system and then deliver fixes to the code. They continue delivering fixes until they create a new system and stop supporting the old one. The user is then forced to convert to the new system, which again will require fixes.

  
In-house systems developers generally do not provide any better level of support. They require the users to submit Incident Reports specifying the system defects. The Incident Reports are then assigned a priority and the defects are fixed as time and budgets permit.

4.2
 Importance of Testing


Testing is difficult. It requires knowledge of the application and the system architecture. The majority of the preparation work is tedious.  The test conditions, test data, and expected results are generally created manually. System testing is also one of the final activities before the system is released for production.   There is always pressure to complete systems testing promptly to meet the deadline. Nevertheless, systems testing are important.


In mainframe when the system is distributed to multiple sites, any errors or omissions in the system will affect several groups of users. Any savings realized in downsizing the application will be negated by costs to correct software errors and reprocess information.

   
Software developers must deliver reliable and secure systems that satisfy the user’s requirements. A key item in successful systems testing is developing a testing methodology rather than relying on individual style of the test practitioner.  The systems testing effort must follow a defined strategy.  It must have an objective, a scope, and an approach.  Testing is not an art; it is a skill that can be taught.

 
 
Testing is generally associated with the execution of programs. The emphasis is on the outcome of the testing, rather than what is tested and how it’s tested.  Testing is not a one-step activity; execute the test.  It requires planning and design.  The tests should be reviewed prior to execution to verify their accuracy and completeness.  They must be documented and saved for reuse.

   
System testing is the most extensive testing of the system. It requires more manpower and machine processing time than any other testing level.  It is therefore the most expensive testing level.  It is critical process in the system development.  It verifies that the system performs the business requirements accurately, completely, and within the required performance limits.  It must be thorough, controlled and managed.

4.3 Testing Definitions

Software development has several levels of testing.

· Unit Testing

· Systems Testing

· Acceptance Testing

4.3.1 
Unit Testing

The first level of testing is called unit testing which is done during the development of the system. Unit testing is essential for verification of the code produced during the coding phase. Errors were been noted down and corrected immediately. It is performed by the programmer. It uses the program specifications and the program itself as its source. Thus, our modules are individually tested here. There is no formal documentation required for unit-testing program.

4.3.3 Integration Testing


The second level of testing includes integration testing. Here different dependent modules are assembled and tested for any bugs that may surface due to the integration of modules. Thus, the administrator module and various visa immigration modules are tested here.

4.3.3
Systems Testing

 
The third level of testing includes systems testing. Systems testing verify that the system performs the business functions while meeting the specified performance requirements. It is performed by a team consisting of software technicians and users. It uses the Systems Requirements document, the System Architectural Design and Detailed Design Documents, and the Information Systems Department standards as its sources. Documentation is recorded and saved for systems testing.

4.3.4 Acceptance Testing


 The final level of testing is the acceptance testing. Acceptance testing provides the users with assurance that the system is ready for production use; it is performed by the users. It uses the System Requirements document as its source.  There is no formal documentation required for acceptance testing.

 
 Systems testing are the major testing effort of the project.  It is the functional testing of the application and is concerned with following,

1. Quality/standards compliance

2. Business requirements

3. Performance capabilities

4. Operational capabilities

 
 Below are defined a few test cases which have been implemented for the various screens. The outputs have been registered and the required changes have been incorporated.

5. SYSTEM IMPLIMENTATION:

MODULES
· Cloud infrastructure

· Application state maintenance
· Application access pattern

· Aggregate the storage

· Image mirroring

· Striping the image
· Optimize multi snapshotting

· Zoom on mirroring
MODULE DESCRIPTION
CLOUD INFRASTRUCTURE
IaaS platforms are typically built on top of clusters made out of loosely-coupled commodity hardware that minimizes per unit cost and favors low power over maximum speed . Disk storage (cheap hard-drives with capacities in the order of several hundred GB) is attached to each machine, while the machines are interconnected with standard Ethernet links. The machines are configured with proper virtualization technology, in terms of both hardware and software, such that they are able to host the VMs. In order to provide persistent storage, a dedicated repository is deployed either as centralized or as distributed  storage service running on dedicated storage nodes. 
APPLICATION STATE MAINTENANCE
The VM deployment is defined at each moment in time by two main components: the state of each of the VM instances and the state of the communication channels between them (opened sockets, in-transit network packets, virtual topology, etc.). To saving the application state implies saving both the state of all VM instances and the state of all active communication channels among them. While several methods have been established in the virtualization community to capture the state of a running VM (CPU registers, RAM, state of devices, etc.), the issue of capturing the global state of the communication channels is difficult and still an open problem.
APPLICATION ACCESS PATTERN
A VM typically does not access the whole initial image. For example, it may never access some applications and utilities that are installed by default with the operating system. In order to model this aspect, it is useful to analyze the life-cycle of a VM instance, it will based on

Three phases. They are boot, application and shutdown.
AGGREGATE THE STORAGE
In most cloud deployments, the disks locally attached to the compute nodes are not exploited to their full potential. Most of the time, such disks are used to hold local copies of the images corresponding to the running VMs, as well as to provide temporary storage for them during their execution, which utilizes only a small fraction of the total disk size.
IMAGE MIRRORING
A new VM needs to be instantiated; the underlying VM image is presented to the hypervisor as a regular file accessible from the local disk. Read and write accesses to the file, however, are trapped and treated in a special fashion. A read that is issued on a fully or partially empty region in the file that has not been accessed before (by either a previous read or write) results in fetching the missing content remotely from the VM repository, mirroring it on the local disk and redirecting the read to the local copy. If the whole region is available locally, no remote read is performed. Writes, on the other hand, are always performed locally.
 STRIPING THE IMAGE
Each VM image is split into small, equal-sized chunks that are evenly distributed among the local disks participating in the shared pool. When a read accesses a region of the image that is not available locally, the chunks that hold this region are determined and transferred in parallel from the remote disks that are responsible for storing them. Under concurrency, this scheme effectively enables the distribution of the I/O workload, because accesses to different parts of the image are served by different disks.
OPTIMIZE MULTISNAPSHOTTING
Saving a full VM image for each VM is not feasible in the context of multi snapshotting. Since only small parts of the VMs are modified, this would mean massive unnecessary duplication of data, leading not only to an explosion of utilized storage space but also to unacceptably high snapshotting time and network bandwidth utilization.
ZOOM ON MIRRORING
One important aspect of on-demand mirroring is the decision of how much to read from the repository when data is unavailable locally, in such way as to obtain a good access performance. A straightforward approach is to translate every read issued by the hypervisor in either a local or remote read, depending on whether the requested content is locally available. While this approach works, its performance is questionable. More specifically, many small remote read requests to the same chunk generate significant network traffic overhead (because of the extra networking information encapsulated with each request), as well as low throughput (because of the latencies of the requests that add up).
6. FUTURE ENHANCEMENT
The  propose a lazy VM deployment scheme that fetches VM image content as needed by the application executing in the VM, thus reducing the pressure on the VM storage service for heavily concurrent deployment requests. Further- more, we leverage object versioning to save only local VM image differences back to persistent storage when a snap- shot is created, yet provide the illusion that the snapshot is a different, fully independent image. This has two important benefits. First, it handles the management of updates independently of the hypervisor, thus greatly improving the portability of VM images and compensating for the lack of VM image format standardization. Second, it handles snapshot ting transparently at the level of the VM image repository, greatly simplifying the management of snapshots. With respect to multi snapshot ting, interesting reductions in time and storage space can be obtained by introducing de duplication schemes. We also plan to fully integrate the current work with Nimbus and explore its benefits for more complex HPC applications in the real world.
7. CONCLUSIONS
The cloud computing becomes increasingly popular, efficient management of VM images, such as image propagation to compute nodes and image snapshotting for check pointing or migration, is critical. The performance of these operations directly affects the usability of the benefits offered by cloud computing systems. To introduced several techniques that integrate with cloud middleware to efficiently handle two patterns: multi deployment and multi snapshotting.   
8. REFFERENCE:
1. M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. A view of cloud computing. Commun. ACM, 53:50–58, April 2010.
2. Bar-Noy and S. Kipnis. Designing broadcasting algorithms in the postal model for message-passing systems. In SPAA ’92: Proceedings of the 4th Annual ACM Symposium on Parallel Algorithms and Architectures, pages 13–22, New York, 1992. ACM.
3. P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. Pvfs: A parallel file system for Linux clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages 317–327, Atlanta, GA, 2000. USENIX Association.
4. B. Claudel, G. Huard, and O. Richard. Taktuk, adaptive deployment of remote executions. In HPDC ’09: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, pages 91–100, New York, 2009. ACM.
5. G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value store. In SOSP ’07: Proceedings of 21st ACM SIGOPS Symposium on Operating Systems Principles, pages 205–220, New York, 2007. ACM.
6. M. Gagn´e. Cooking with Linux—still searching for the ultimate Linux distro? Linux J., 2007(161):9, 2007.
7. J. G. Hansen and E. Jul. Scalable virtual machine storage using local disks. SIGOPS Oper. Syst. Rev., 44:71–79, December 2010.
8. M. Hibler, L. Stoller, J. Lepreau, R. Ricci, and C. Barb. Fast, scalable disk imaging with Frisbee. In ATC ’03: Proceedings of the 2003 USENIX Annual Technical Conference, pages 283–296, San Antonio, TX, 2003.
9. Y. J´egou, S. Lant´eri, J. Leduc, M. Noredine, G. Mornet, R. Namyst, P. Primet, B. Quetier, O. Richard, E.-G. Talbi, and T. Ir´ea. Grid’5000: A large scale and highly reconfigurable experimental grid testbed. International Journal of High Performance Computing Applications, 20(4):481–494, November 2006.
10. K. Keahey and T. Freeman. Science clouds: Early experiences in cloud computing for scientific applications. In CCA’08: Proceedings of the 1st Conference on Cloud Computing and Its Applications, 2008.
9. APPENDIX

A. Screen Shots

Login:

[image: image1.png]LOGIN FORM

USERNAME

PASSIWORD

NOT VALID USERY CREATE USER





Create User:

[image: image2.png]NEW USER ENTRY

PASSWORD

CONFORM PASSIWORD




 

[image: image3.png]CLOUD INFRASTRUCTURE





[image: image4.png]APPLICATION STATE MAINTENANCE

VM DOMAIN. uisa

/192681008
/192168.100.9
/192.68.100.10

NO. OF CLIENTS





[image: image5.png]AGGREGATE THE STORAGE AND IMAGE MIRRORING

SERVER VM SERVER

CELLNUMEER 9087563234 9087563234





[image: image6.png]AGGREGATE THE STORAGE AND IMAGE MIRRORING

SERVER VM SERVER

ADDRESS chennai

CELLNUMEER 9786543653

inserted.





[image: image7.png]AGGREGATE THE STORAGE AND IMAGE MIRRORING

SERVER VM SERVER

vinath

ADDRESS salem rasipuram

CELLNUMEER 7865453289 7865453278

update.





[image: image8.png]C:iDocuments and SettingsiadminiDeskiop

Home Director
4 CADocuments and SefingsiadminiDeskiop

Is Drive

Total Space
78650003560

Usable Space 45531467776

[SEARCH]|





[image: image9.png]OPTIMIZE MULTI SNAPSHOTTING

sNO

ADDRESS NO. OF DUPLICATES.

CELL NUMBER o





[image: image10.png]ZOOM ON MIRRORING

CELL NUMBER





[image: image11.png]ZOOM ON MIRRORING

CELL NUMBER 7865453243

[ v ]





     B. Source Code
LOGIN CODING
package multideployment;

import java.sql.*; 

import java.util.logging.Level;

import java.util.logging.Logger;

public class loginform extends javax.swing.JFrame {

    private int o;

    public loginform() {

        initComponents();

    }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

                String u=jTextField1.getText();

                            String p=jPasswordField1.getText();

                                            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                           Connection c = DriverManager.getConnection("jdbc:odbc:multi");

                                           Statement st = c.createStatement();

                                           ResultSet rs = st.executeQuery("select * from userdetails");

                                           while (rs.next()) {

                                               String user = rs.getString("uname");

                                               String pass = rs.getString("pword");

                                 if(user.equals(u)&&pass.equals(p))

                               {  

                                   infrastructure t=new infrastructure();

                                   t.setVisible(true);

                               }

                               else

                               {

                                   jLabel4.setText("NOT VALID USER!!!!!!!!");

                               }

                                   }

                                           rs.close();

                                           c.close();

        } catch (SQLException ex) {

            Logger.getLogger(loginform.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(loginform.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    userdetails s=new  userdetails();

    s.setVisible(true);

}                                        

   public static void main(String args[]) {

        java.awt.EventQueue.invokeLater(new Runnable() {

            public void run() {

                new loginform().setVisible(true);

            }

        });

    }

USER CREATION

package multideployment;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

public class userdetails extends javax.swing.JFrame {

        public userdetails() {

        initComponents();

    }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                              Connection c = DriverManager.getConnection("jdbc:odbc:multi");

                                              Statement st = c.createStatement();

                                              ResultSet rs;

                                              String uname=jTextField1.getText();

                                              String pword=jPasswordField1.getText();

                                              String compword=jPasswordField2.getText();

                                              String network=jTextField2.getText();

                                              //String nlp=list5.toString();

                                              st.executeUpdate("insert into userdetails values('" + uname+ "','"+pword+"','"+compword+"','"+network+"')");

                                             //  st.executeUpdate("insert into results values('1','ddf','yy','tw','lp')");

                                             System.out.println("add...");

                                             loginform d=new loginform();

                                             d.setVisible(true);

        } catch (SQLException ex) {

            Logger.getLogger(userdetails.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(userdetails.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

    public static void main(String args[]) {

        try {

            for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) {

                if ("Nimbus".equals(info.getName())) {

                    javax.swing.UIManager.setLookAndFeel(info.getClassName());

                    break;

                }

            }

        } catch (ClassNotFoundException ex) {

            java.util.logging.Logger.getLogger(userdetails.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (InstantiationException ex) {

            java.util.logging.Logger.getLogger(userdetails.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (IllegalAccessException ex) {

            java.util.logging.Logger.getLogger(userdetails.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (javax.swing.UnsupportedLookAndFeelException ex) {

            java.util.logging.Logger.getLogger(userdetails.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        }

        java.awt.EventQueue.invokeLater(new Runnable() {

            public void run() {

                new userdetails().setVisible(true);

            }

        });

    }

CLOUD INFRASTRUCTURE
package multideployment;

public class infrastructure extends javax.swing.JFrame {

    public infrastructure() {

        initComponents();

    }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    applicationstatus s=new applicationstatus();

    s.setVisible(true);

}                                        

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    aggregatethestorage v=new  aggregatethestorage();

    v.setVisible(true);

}                                        

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    zooming r=new zooming();

    r.setVisible(true);

}                                        

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    patterns f=new patterns();

    f.setVisible(true);

}                                        

private void jButton6ActionPerformed(java.awt.event.ActionEvent evt) {

    optimem n= new optimem();

    n.setVisible(true);

}

APPLICATION STATE MAINTENANCE
package multideployment;

import java.io.IOException;

import java.net.*;

import java.util.logging.Level;

import java.util.logging.Logger;

import sun.security.x509.IPAddressName;

public class applicationstatus extends javax.swing.JFrame {

    public applicationstatus() {

        initComponents();

         loads();

    }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

               {

            try {

                   InetAddress local =InetAddress.getLocalHost();

                      byte[] ip =local .getAddress();

              for(int i =1 ; i<254;i++)

              {

              ip[3]=(byte)i;

              InetAddress add= InetAddress.getByAddress(ip);

              if (add.isReachable(2000))

               {

                     list1.addItem(add.toString());

               }   } } catch (IOException ex) {

                Logger.getLogger(applicationstatus.class.getName()).log(Level.SEVERE, null, ex);

            }    }        

}

public void  loads()

{

               InetAddress local;

        try {

            local = InetAddress.getByName("uis9");

            String d =local.toString();

            String[] s=d.split("/");                 

            jTextField1.setText(s[0].toString());

        } catch (UnknownHostException ex) {

            Logger.getLogger(applicationstatus.class.getName()).log(Level.SEVERE, null, ex);

        }

     }

public static void main(String args[]) {

        try {

            for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) {

                if ("Nimbus".equals(info.getName())) {

                    javax.swing.UIManager.setLookAndFeel(info.getClassName());

                    break;

                }  }  } catch (ClassNotFoundException ex) {

java.util.logging.Logger.getLogger(applicationstatus.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (InstantiationException ex) {

java.util.logging.Logger.getLogger(applicationstatus.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (IllegalAccessException ex) {

java.util.logging.Logger.getLogger(applicationstatus.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (javax.swing.UnsupportedLookAndFeelException ex) {

APPLICATION ACCESS PATTERN

package multideployment;

import java.io.File;

import javax.swing.filechooser.FileSystemView;

public class patterns extends javax.swing.JFrame {

    public patterns() {

        initComponents();

    }

private void button1ActionPerformed(java.awt.event.ActionEvent evt) {                                        

    String r;

  FileSystemView fsw = FileSystemView.getFileSystemView();

  File[] roots = fsw.getRoots();

  for (int i=0;i<roots.length;i++)

  {

      jTextField1.setText(roots[i].toString());

      System.out.println("Root"+roots[i]);

      System.out.println("Home Directory:"+fsw.getHomeDirectory());

      jTextField2.setText(fsw.getHomeDirectory().toString());

      System.out.println("Is Drive:"+fsw.isDrive(roots[i]) );

      String t=""+fsw.isDrive(roots[i]);

      jTextField3.setText(t);

      System.out.println("Total Space:"+roots[i].getTotalSpace() );

      String d=""+roots[i].getTotalSpace();

      jTextField4.setText(d);

      System.out.println("Usable Space:"+roots[i].getUsableSpace());

      String u=""+roots[i].getUsableSpace();

      jTextField5.setText(u);

  }

   File[] f = File.listRoots();

   for (int j=0;j<f.length;j++)

  {

    System.out.println("Drive"+f[j]); 

    System.out.println("Display name "+fsw.getSystemDisplayName(f[j]));

    System.out.println("Display name "+f[j].canRead());

   String u1=""+f[j].canRead();

      jTextField6.setText(u1);

    System.out.println("Display name "+f[j].toPath());

  }

}     
AGGREGATE THE STORAGE 
package multideployment;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

public class AGGREGATETHESTORAGE extends javax.swing.JFrame {

        public AGGREGATETHESTORAGE() {

        initComponents();

    }

private void jButton3ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                          Connection c = DriverManager.getConnection("jdbc:odbc:multi");

                                                          Statement st = c.createStatement();

                                                          ResultSet rs;

                                                          String sno=jTextField6.getText();

                                                          String sname=jTextField7.getText();

                                                          String age=jTextField8.getText();

                                                          String address=jTextField9.getText();

                                                           String cellno=jTextField10.getText();

        } catch (SQLException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

                           Connection c;

                                           Statement st;

                                                          Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                            c = DriverManager.getConnection("jdbc:odbc:multi");

                                                            st = c.createStatement();

                                                            String i= jTextField1.getText();

                                                            ResultSet rs = st.executeQuery("select * from stud where                                             sno='"+i+"'");

                                                                if (rs.next())

                                          {

                                              jTextField2.setText(rs.getString("sname"));

                                              jTextField3.setText(rs.getString("age"));

                                              jTextField4.setText(rs.getString("address"));

                                              jTextField5.setText(rs.getString("cellno"));

                                          }

                                                                else

                                                                {

                                                                    System.out.println("Invalid number....");

                                                                      }

        } catch (SQLException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    jTextField6.setText(jTextField1.getText());

    jTextField7.setText(jTextField2.getText());

    jTextField8.setText(jTextField3.getText());

    jTextField9.setText(jTextField4.getText());

    jTextField10.setText(jTextField5.getText());

    }                                        

public void vms()

{

    try {

                Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                          Connection c = DriverManager.getConnection("jdbc:odbc:multi");

                                                          Statement st = c.createStatement();

                                                          ResultSet rs;

                                                          String sno=jTextField6.getText();

                                                          String sname=jTextField7.getText();

                                                          String age=jTextField8.getText();

                                                          String address=jTextField9.getText();

                                                           String cellno=jTextField10.getText();

                                                            System.out.println("update...");

        } catch (SQLException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        }

}

public void servers()

{

    try {

               Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                          Connection c = DriverManager.getConnection("jdbc:odbc:multi");

                                                          Statement st = c.createStatement();

                                                          ResultSet rs;

                                                          String sno=jTextField6.getText();

                                                          String sname=jTextField7.getText();

                                                          String age=jTextField8.getText();

                                                          String address=jTextField9.getText();

                                                           String cellno=jTextField10.getText();

                                                           jLabel1.setText("update.......");

        } catch (SQLException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        }

}

private void jButton4ActionPerformed(java.awt.event.ActionEvent evt) {                                         

    servers();  

    vms(); 

}    
OPTIMIZE MULTISNAPSHOTTING
package multideployment;

import java.sql.*;

import java.util.logging.Level;

import java.util.logging.Logger;

    public optimem() {

        initComponents();

    }

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

                          Connection c;

                                                       Statement st;

                                                                                            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                                        c = DriverManager.getConnection("jdbc:odbc:multi");

                                                                        st = c.createStatement();

                                                                        String i= jTextField1.getText();

                                                                        ResultSet rs = st.executeQuery("select * from stud where sno='"+i+"'");

                                                                            if (rs.next())

                                                      {

                                                          jTextField2.setText(rs.getString("sname"));

                                                          jTextField3.setText(rs.getString("age"));

                                                          jTextField4.setText(rs.getString("address"));

                                                          jTextField5.setText(rs.getString("cellno"));

                                                      }

                                                                            else

                                                                            {

                                                                                System.out.println("Invalid number....");

                                                                               }

        } catch (SQLException ex) {

            Logger.getLogger(optimem.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(optimem.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

        try {

                            Connection c;

                                                                   Statement st;                                                                             Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

  c = DriverManager.getConnection("jdbc:odbc:multi");

                 st = c.createStatement();

                String i= jTextField1.getText();

           ResultSet rs = st.executeQuery("select count(sno) from stud where sno='"+i+"'");

                                                                 if (rs.next())

                                                                  {

                                                                     jTextField6.setText(rs.getString(1));

                                                                  }

                                                                                        else

                                                                                        {

                                                          System.out.println("Invalid number....");

                                                                            }

        } catch (SQLException ex) {

            Logger.getLogger(optimem.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(optimem.class.getName()).log(Level.SEVERE, null, ex);

        }

}                                        

    public static void main(String args[]) {

        try {

            for (javax.swing.UIManager.LookAndFeelInfo info : javax.swing.UIManager.getInstalledLookAndFeels()) {

                if ("Nimbus".equals(info.getName())) {

                    javax.swing.UIManager.setLookAndFeel(info.getClassName());

                    break;

                }

            }

        } catch (ClassNotFoundException ex) {

            java.util.logging.Logger.getLogger(optimem.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (InstantiationException ex) {

            java.util.logging.Logger.getLogger(optimem.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (IllegalAccessException ex) {

            java.util.logging.Logger.getLogger(optimem.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        } catch (javax.swing.UnsupportedLookAndFeelException ex) {

            java.util.logging.Logger.getLogger(optimem.class.getName()).log(java.util.logging.Level.SEVERE, null, ex);

        }

        java.awt.EventQueue.invokeLater(new Runnable() {

            public void run() {

                new optimem().setVisible(true);

            }

        });

    }

ZOOM ON MIRRORING
package multideployment;

import java.sql.*; 

import java.util.logging.Level;

import java.util.logging.Logger;

    public zooming() {

        initComponents();

    }

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {                                         

      jLabel8.setText("THE SEARCHING PROCESS IS GOING ....................");

      Thread t=Thread.currentThread();

      {

            try {

                t.sleep(3000);

                Connection c;

                                           Statement st;                                                                                                            Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                            c = DriverManager.getConnection("jdbc:odbc:multi");

                                                            st = c.createStatement();

                                                            String i= jTextField1.getText();

                                 ResultSet rs = st.executeQuery("select * from stud where sno='"+i+"'");

                                                                if (rs.next())

                                          {

                                              jTextField2.setText(rs.getString("sname"));

                                              jTextField3.setText(rs.getString("age"));

                                              jTextField4.setText(rs.getString("address"));

                                              jTextField5.setText(rs.getString("cellno"));

                                          }

                                                                else

                                                                {

                                                                    System.out.println("Invalid number....");

                                                                    }

        } 

            catch (SQLException ex) {

                Logger.getLogger(zooming.class.getName()).log(Level.SEVERE, null, ex);

            }            catch (InterruptedException ex) {

                Logger.getLogger(zooming.class.getName()).log(Level.SEVERE, null, ex);

            }            catch (ClassNotFoundException ex) {

                Logger.getLogger(zooming.class.getName()).log(Level.SEVERE, null, ex);

            }               }

private void jButton2ActionPerformed(java.awt.event.ActionEvent evt) {                                         

      try {

                 Connection c;

                                           Statement st;                     Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

                                                            c = DriverManager.getConnection("jdbc:odbc:multi");

                                                            st = c.createStatement();

                                                            String i= jTextField1.getText();

                                 ResultSet rs = st.executeQuery("select * from studs where sno='"+i+"'");

                                                                if (rs.next())

                                          {

                                              jTextField2.setText(rs.getString("sname"));

                                              jTextField3.setText(rs.getString("age"));

                                              jTextField4.setText(rs.getString("address"));

                                              jTextField5.setText(rs.getString("cellno"));

                                          }

                                                                else

                                                                {

                                                                    System.out.println("Invalid number....");                                                        

                                                    }

        } catch (SQLException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        } catch (ClassNotFoundException ex) {

            Logger.getLogger(AGGREGATETHESTORAGE.class.getName()).log(Level.SEVERE, null, ex);

        }

}            








































Request





Requesting files 





CONTROL     API





HYPERVISOR





LOCAL DISK





CENTRALIZED DATA STORAGE





VM





VM








RESOURCES


RESOURCE1,


RESOURCE


2








DATACENTER





GETTING AUTHORIZATION TO STORE RESOURCES





REGISTER





User system








