1. INTRODUCTION
Today a growing number of companies have to process huge amounts of data in a cost-efficient manner. Classic representatives for these companies are operators of Internet search engines, like Google, Yahoo, or Microsoft. The vast amount of data they have to deal with every day has made traditional database solutions prohibitively expensive [5]. Instead, these companies have popularized an architectural paradigm based on a large number of commodity servers. Problems like processing crawled documents or regenerating a web index are split into several independent subtasks, distributed among the available nodes, and computed in parallel. In order to simplify the development of distributed applications on top of such architectures, many of these companies have also built customized data processing frameworks. Examples are Google’s MapReduce [9], Microsoft’s Dryad [14], or Yahoo!’s Map-Reduce-Merge [6]. They can be classified by terms like high throughput computing (HTC) or many-task computing (MTC), depending on the amount of data and the number of tasks involved in the computation [20]. Although these systems differ in design, their programming models share similar objectives, namely hiding the hassle of parallel programming, fault tolerance, and execution optimizations from the developer. Developers can typically continue to write sequential programs. The processing framework then takes care of distributing the program among the available nodes and executes each instance of the program on the appropriate fragment of data. For companies that only have to process large amounts of data occasionally running their own data center is obviously not an option. Instead, Cloud computing has emerged as a promising approach to rent a large IT infrastructure on a short-term pay-per-usage basis. Operators of so-called Infrastructure-as-a-Service (IaaS) clouds, like Amazon EC2 [1], let their customers allocate, access, and control a set of virtual machines (VMs) which run inside their data centers and only charge them for the period of time the machines are allocated. The VMs are typically offered in different types, each type with its own characteristics (number of CPU cores, amount of main memory, etc.) and cost. Since the VM abstraction of IaaS clouds fits the architectural paradigm assumed by the data processing frameworks described above, projects like Hadoop [25], a popular open source implementation of Google’s MapReduce framework, already have begun to promote using their frameworks in the cloud [29]. Only recently, Amazon has integrated Hadoop as one of its core infrastructure services [2]. However, instead of embracing its dynamic resource allocation, current data processing frameworks rather expect the cloud to imitate the static nature of the cluster environments they were originally designed for. E.g., at the moment the types and number of VMs allocated at the beginning of a compute job cannot be changed in the course of processing, although the tasks the job consists of might have completely different demands on the environment. As a result, rented resources may be inadequate for big parts of the processing job, which may lower the overall processing performance and increase the cost. In this paper we want to discuss the particular challenges and opportunities for efficient parallel data processing in clouds and present Nephele, a new processing framework explicitly designed for cloud environments. Most notably, Nephele is the first data processing framework to include the possibility of dynamically allocating/ deallocating different compute resources from a cloud in its scheduling and during job execution.

PAGE
3

