3. SYSTEM ANALYSIS
EXISTING SYSTEM:
A growing number of companies have to process huge amounts of data in a cost-efficient manner. Classic representatives for these companies are operators of Internet search engines. The vast amount of data they have to deal with every day has made traditional database solutions prohibitively

Expensive .Instead, these companies have popularized an architectural paradigm based on a large number of commodity servers. Problems like processing crawled documents or regenerating a web index are split into several independent subtasks, distributed among the available nodes, and computed in parallel.

 PROPOSED SYSTEM:

In recent years a variety of systems to facilitate MTC has been developed. Although these systems typically share common goals (e.g. to hide issues of parallelism or fault tolerance), they aim at different fields of application. MapReduce is designed to run data analysis jobs on a large amount of data, which is expected to be stored across a large set of share-nothing commodity servers.

Once a user has fit his program into the required map and reduce pattern, the execution framework takes care of splitting the job into subtasks, distributing and executing them. A single Map Reduce job always consists of a distinct map and reduce program.

ALGORITHMS:

1. Job Scheduling and Execution:

After having received a valid Job Graph from the user, Nephele’s Job Manager transforms it into a so-called Execution Graph. An Execution Graph is Nephele’s primary data structure for scheduling and monitoring the execution of a Nephele job. Unlike the abstract Job Graph, the Execution Graph contains all the concrete information required to schedule and execute the received job on the cloud.

2. Parallelization and Scheduling Strategies:
If constructing an Execution Graph from a user’s submitted Job Graph may leave different degrees of freedom to Nephele. The user provides any job annotation which contains more specific instructions we currently pursue simple default strategy: Each vertex of the Job Graph is transformed into one Execution Vertex. The default channel types are network channels. Each Execution Vertex is by default assigned to its own Execution Instance unless the user’s annotations or other scheduling restrictions (e.g. the usage of in-memory channels) prohibit it.

PAGE
2

