33

 Dual-Link Failure Resiliency
 Through Backup Link Mutual Exclusion

Introduction

 THE ever-increasing transmission speed in the communication networks calls for efficient fault-tolerant network design. Today’s
backbone networks employ optical communication technology involving
wavelength division multiplexing (WDM). A link between two nodes
comprises of multiple fibers carrying several tens of wavelengths with
transmission speed on a wavelength at 40 Gb/s. Due to the large volume
of information transported, it is necessary to reduce the resource
unavailability time due to failures.
 Hence, efficient and fast recovery techniques from node and link failures are mandated in the design of high-speed networks. As link failures are the most common case of the failures seen in the networks, this paper restricts its scope to link failures alone. Optical networks of today operate in a circuit-switched manner as optical header processing and buffering technologies are still in the early stages of research for wide-scale commercial deployment. Protecting the circuits or connections established in such networks against single-link failures may be achieved in two ways: path protection or link protection.

Path protection attempts to restore a connection on an end-to-end basis by providing a backup path in case the primary (or working) path fails. The backup path assignment may be either independent or dependent on the link failure in the network. For example, a backup path that is link-disjoint with the primary path allows recovery from single-link failures without the precise knowledge of failure location. On the other hand, more than one backup path may be assigned for a primary path and the connection is reconfigured on the backup path corresponding to the failure scenario that resulted in the primary path failure.
 The former is referred to as failure-independent path protection (FIPP) while the latter is referred to as failure-dependent path protection (FDPP). Link protection recovers from a single link failure by rerouting connections around the failed link. Such a recovery may be achieved transparent to the source and destination of the connections passing through the failed link. Link protection at the granularity of a fiber switches all of the connections on a fiber to a separate (spare) fiber on the backup path. The time needed to detect the fault, communicate to the end-nodes, re-initiate connection requests on the backup paths, and reconfigure the switches at the intermediate nodes could sometimes cause the layers above the optical layer to resort to their own restoration solutions.
 Link protection reduces the communication requirement as compared to path protection, thus providing fast recovery. However, the downside of link protection is that its capacity requirement is higher than that of path protection, specifically when protection is employed at the connection granularity
 Algorithms for protection against link failures have traditionally considered single-link failures [3]–[5] (for a detailed description on protection approaches, refer to [6]). However, dual link failures are becoming increasingly important due to two reasons. First, links in the networks share resources such as conduits or ducts and the failure of such shared resources result in the failure of multiple links. Second, the average repair time for a failed link is in the order of a few hours to few days [6], and this repair time is sufficiently long for a second failure to occur. Although algorithms developed for single-link failure resiliency is shown to cover a good percentage of dual-link failures [7]–[10], these cases often include links that are far away from each other. Considering the fact that these algorithms are not developed for dual-link failures, they may serve as an alternative to recover from independent dual-link failures. However, reliance on such approaches may not be preferable when the links close to one another in the network share resources, leading to correlated link failures.

 Dual-link failures may be modeled as shared risk link group (SRLG) failures. A connection established in the network may be given a backup path under every possible SRLG failure. This approach assumes a precise knowledge of failure locations to reconfigure the failed connections on their backup paths. An alternative is to protect the connections using link protection, where only the nodes adjacent to the failed link (and those involved in the backup path of the link) will perform the recovery. The focus of this paper is to protect end-to-end connections from dual-link failures using link protection.
Abstract

 Networks employ link protection to achieve fast recovery from link failures. While the first link failure can be protected using link protection, there are several alternatives for protecting against the second failure. This paper formally classifies the approaches to dual-link failure resiliency. One of the strategies to recover from dual-link failures is to employ link protection for the two failed links independently, which requires that two links may not use each other in their backup paths if they may fail simultaneously.
 Such a requirement is referred to as backup link mutual
exclusion (BLME) constraint and the problem of identifying a backup path for every link that satisfies the above requirement is referred to as the BLME problem. This paper develops the necessary theory to establish the sufficient conditions for existence of a solution to the BLME problem. Solution methodologies for the BLME problem is developed using two approaches by: 1) formulating the backup path selection as an integer linear program; 2) developing a polynomial time heuristic based on minimum cost path routing. The ILP formulation and heuristic are applied to six networks and their performance is compared with approaches that assume precise knowledge of dual-link failure. It is observed that a solution exists for all of the six networks considered. The heuristic approach is shown to obtain feasible solutions that are resilient to most dual-link failures, although the backup path lengths may be
significantly higher than optimal. In addition, the paper illustrates the significance of the knowledge of failure location by illustrating that network with higher connectivity may require lesser capacity than one with a lower connectivity to recover from dual-link failures.
 THEORY
 Consider a network represented as a graph G(N, L), where N and L denote a set of nodes and undirected links, respectively. The nodes are numbered from 1 through |N|. A link l ∈ L is assumed to be bi-directional. Let x1 and yl denote the identifiers of the nodes connected by link l such that x Let A represent the set of directional links, or arcs, in the network. An arc from node i to j is denoted as (i, j).
 The failure of link l is assumed to affect the arcs in both directions. Let F denote the set of dual link failures to be tolerated.
An element f ∈ F consists of exactly two undirected links, or correspondingly four directed arcs.
[image:]

 Sufficient condition for existence of a solution
Three-edge-connectivity is a necessary condition for a network to be resilient to dual link failures. It is also sufficient that a network is three-edge-connected in order to obtain a solution for BLME problem, proved as follows.
 Assume that the given network is divided into |L| auxiliary
graphs. An auxiliary graph Xl is constructed by removing link
l from the original network: Xl= G(N, L − {l}). In each auxiliary graph Xl, the goal is to identify a path Pl from node xl to yl. Let θll be a binary variable that indicates whether link l is present in the backup path of link l: 1 if true, 0 otherwise.

Let Γl be the boolean function that denotes the connectivity between nodes xl and yl in the auxiliary graph Xl, represented as a function of the variable set {θll: l ∈ Xl}.

Consider the example network shown in Figure 5(a). The auxiliary graph corresponding to link 1 is shown in Figure 5(b). The boolean function representing the connectivity between nodes A and B is shown in Equations (1) and (2) in Sum-of-Product and Product-of-Sum forms, respectively
 It may be observed that Γl is an unate function, hence has a trivial solution. If the function Γl evaluates to 1 (true) for some input combination of {θll: l ∈ Xl}, then there exists a path between the nodes xl and yl in Xl .Observation-1: The connectivity functions Γl and Γl are independent of each other for any two distinct links l, l ∈ L, i.e. the functions Γl and Γl do not have any variables in common.Observation-2: If Γl= 0 for some l ∈ L, then the network is one-edge connected. The failure of link l disconnects the network. Conversely, if a network is at least two-edge-connected, then Γl = 0, ∀l ∈ L.
 The different connectivity functions are related to each other through the BLME constraint. The BLME constraint corresponding to a dual link failure f ∈ F is written in the sum of-product and product-of-sum forms as shown Equations (3) and (4), respectively

 The BLME problem is then written as a boolean satisfia-
bility problem, denoted by Θ, as shown in Equation (5). It is
observed that Θ is a function of the set of variables {θll: l ∈ Xl, l ∈ L}. If the boolean function Θ is identically 0for all input combinations, then the BLME problem does not have a feasible solution. If Θ evaluates to a non-zero function, then there exists an input combination for which the function evaluates to 1 (true).

Theorem 1: If a network is at least two-edge-connected and
Θ = 0, then there exists a dual link failure f ∈ F that
disconnects the graph.

Proof: Given that the network is at least two-edge-connected,
Γl= 0, ∀l ∈ L. Clearly, ∆f= 0, ∀f ∈ F.
Therefore,
1) ∧l∈LΓl= 0 and
2) ∧f∈F∆f= 0.

Hence, for Θ = 0, the conjunction of a combination of connectivity terms (Γl) with one of the BLME constraints results in an identically zero function.

 A dual link failure scenario f involving links l and l has the BLME constraint as shown in Equation (3). If the BLME constraint corresponding to dual link failure f combines with the conjunction of the connectivity functions resulting in an identically zero-function, then the conjunction of the connectivity terms must take the form as shown in Equation (6). Note that the first term of Equation (6) cancels the BLME constraint involving the links l and l resulting in a zero function for Θ.
[image:]
[image:]
For any two distinct links l and l, Γl and Γl are independent of each other. Hence, Equation (6) implies that Γl and Γl must be of the form:Γl= θll∧ Γl|θll=1
 Γl= θl l∧ Γl|θl l=1

 The above equations imply that upon failure of link l, any path
from nodes xl and yl must traverse link l and on failure of link l , any path from xl to yl must traverse link l. Links l and l are mutually dependent on each other for their backup paths. Therefore, the dual link failure f involving links l and l disconnects the network.

Corollary: Given a three-edge-connected network, there exists a solution to the BLME problem under any arbitrary two link failures.

Proof: The corollary follows from Theorem 1 by considering all dual link combinations in F. Assume that the BLME problem does not have a solution for a three-edge-connected network. Hence, Θ = 0. By Theorem 1, there exists a dual link failure f ∈ F that disconnects the network. However, no two link failures can disconnect the network as the network is three-edge-connected, resulting in a contradiction.
Hence, Θ =0. Clearly, Θ = 1 (identically 1 for all input combinations).
Hence, for a three-edge-connected network Θ evaluates to a non-trivial (non-zero, non-unity) boolean function, thus must evaluate to 1 for some input combination
INTEGER LINEAR PROGRAM FORMULATION

 The BLME problem is formulated as an Integer Linear Program (ILP) using undirected links. The central idea behind this ILP formulation is to view the network as |L| distinct graphs. Each graph, denoted as Gl, will provide a backup path for link l. Equivalently, each graph Gl will have a ring traversing through link l. Let Fll denote the existence of a failure f ∈ F such that l ∈ ψ and l ∈ ψ; 1 if true,
 0 otherwise.
Let αll be a binary variable that indicates whether link l is present in graph Gl: 1 if present, 0 otherwise. Similarly,
let βli be a binary variable that indicates whether node i is present in graph Gl or not: set to 1 if present, 0 otherwise.
Let Cli denote whether node i is attached to link l or not: 1 if true,
0 otherwise.
 The formulation of backup path selection for all links satisfying BLME constraint is shown in Figure 6. The objective function is set to minimize the sum of the backup path lengths of all links, or equivalently the average backup path length of a link under a single link failure. The average backup path length under single link failure, denoted by H, is computed as:
[image:]
The constraints GC ensures that a graph Gl must contain a ring with link l present in the ring by forcing the corresponding link variables to take a value of 1. The BLME constraint ensures that for two links l and l that belong to L, if link l is present in Gl, then l is not present in graph Gl
if the two links l and l may be unavailable at the same time. Otherwise,
such a restriction is not imposed.
 The constraint RC ensures every graph has a ring, every node i that is present in a graph must have exactly two outgoing (or incoming) links. The above constraint introduces |L|×|N| additional variables βli to the formulation, however, they are strongly correlated to the link variables αll.
The variables employed in the formulation are limited to take binary values using Bounds.

[image:]

PERFORMANCE EVALUATION

 The performance of the ILP and heuristic algorithm developed in this paper are evaluated by applying them to six networks as shown in Figure 10: (a) ARPANET; (b) NSFNET;(c) Node-16; (d) Node-28; (e) Mesh-4×4; and (f) NJ-LATA. All networks except NJ-LATA are three-connected. The NJ-LATA network is not three-connected as nodes 1, 6, and 11 have degree 2 and is considered “as is” for performance evaluation. The formulation for the NJ-LATA network has been modified as outlined in Section III-B. The Node-16 and Node-28 networks are hypothetical networks used to test the limits of the ILP. All the nodes in these two networks have exactly three links connected to them, thus these two networks are minimally 3-connected.

 Dual-link failure scenarios occur in networks due to two reasons, as mentioned in Section I. First, link resources such as conduitor duct are shared by multiple links for ease of layout. Such sharing of resources is typically limited to links that are close to each other, such as adjacent links. Hence, dual-link failure scenarios under such shared resource failure typically affect only nearby links. The second case of dual-link failure scenario is due to the time required to repair a failed link. Before a failed link is repaired, another link in the network could fail; however,
such failures are typically rare. If it can be assumed that most of the dual-link failures may be caused because of failures of shared resources, then it is of interest to identify backup path assignments by considering only failures of nearby links. Three kinds of dual-link failures are considered: 1) any arbitrary two link failures; 2) links that are one node away; and 3) links that are two nodes away. Note that any dual-link failure that will disconnect the network is not considered in computing
the number of failures that can be tolerated.

Performance Metrics
 The performance metrics considered specifically for the ILP solutions are: 1) solution time and 2) optimality bound. The optimality
bound is relevant in scenarios where the ILP could not obtain optimal solution, but has a feasible solution with a known bound on optimality. The ILP is solved using the CPLEX 8.1 solver [15] on a single-processor Pentium4 2.53 GHz computer with 512 MB of RDRAM. The optimality bounds reported in this paper are those provided by the CPLEX solver. The metric that is considered specifically for heuristic is the number of dual-link failures that can be tolerated, as the heuristic is not guaranteed to recover from all dual-link failures.

ILP Results
 Table I shows the results for the six networks to be resilient to any arbitrary two-link failure obtained using ILP with the objective to optimize the average backup path length under single-link failure scenario. The CPLEX program terminated due to insufficient memory for Node-28 and Mesh-4 4 networks. While this is indicative of the complexity of the problem, feasible solutions were obtained as intermediate values. The best value obtained before termination is reported for these networks. It is observed that the solution time increases with increase in the network size but decreases with an increase in average node degree.
 Note that NSFNET and NJ-LATA networks both have 23 links, however, the solution times are significantly different due to their connectivity. For scenarios where an optimal solution is not found, the value of optimality bound indicates the worst case deviation of best value from the optimal. It is to be noted that, although an optimal solution may not be obtained, a feasible solution is obtained failure disconnects the network were not present in more than one backup path, thus a reduction of four fibers was obtained. The high connectivity in the NJ-LATA network results in this reduction even when the objective function is not set to minimize capacity, which is purely coincidental. Such a reduction cannot be guaranteed for all networks. It is also observed that the average backup path length under dual-link failures (for Node-16 and Node-28 networks) may be lower than the average backup path length under single-link failure scenarios due to path pruning. for all the networks considered, confirming the existence of a solution. It is observed that a 200% additional capacity (two spare fibers) is required in all of the links of all of the networks except NJ-LATA.
 Such a requirement can be immediately deduced from the connectivity of the network. For example, whenever a link is necessary3 to keep the network three-connected, then such a link must have two spare fibers. Thus, the networks Node-16 and Node-28 will require 200% additional capacity even when only adjacent links may fail together. Such a 200% requirement in capacity may be reduced only on those links whose removal does not affect the three-connectivity property of the network. For example, the link between WA and UT in the NSFNET may be removed without affecting the three-connectivity property of the network. However, such a solution would have an increased average backup path length. For the NJ-LATA network, two of the three link pairs whose failure disconnects the network were not present in more than one backup path, thus a reduction of four fibers was obtained.
 The high connectivity in the NJ-LATA network results in this
reduction even when the objective function is not set to minimize capacity, which is purely coincidental. Such a reduction cannot be guaranteed for all networks. It is also observed that the average backup path length under dual-link failures (for Node-16 and Node-28 networks) may be lower than the average backup path length under single-link failure scenarios due to path pruning.
CONCLUSION
This paper formally classifies the approaches for providing dual-link failure resiliency. Recovery from a dual-link failure using an extension of link protection for single link failure results in a constraint, referred to as BLME constraint, whose satisfiability allows the network to recover from dual-link failures without the need for broadcasting the failure location to all nodes. The paper develops the necessary theory for deriving the sufficiency condition for a solution to exist, formulates the
problem of finding backup paths for links satisfying the BLME
constraint as an ILP, and further develops a polynomial time heuristic algorithm. The formulation and heuristic are applied to six different networks and the results are compared. The heuristic is shown to obtain a solution for most scenarios with a high failure recovery guarantee, although such a solution may have longer average hop lengths compared with the optimal values. The paper also establishes the potential benefits of knowing the precise failure location in a four-connected network
that has lower installed capacity than a three-connected network for recovering from dual-link failures.

Java – Swing

Swing is a GUI toolkit for Java. Swing is one part of the Java Foundation Classes (JFC). Swing includes graphical user interface (GUI) widgets such as text boxes, buttons, split-panes, and tables.
Swing widgets provide more sophisticated GUI components than the earlier Abstract Windowing Toolkit. Since they are written in pure Java, they run the same on all platforms, unlike the AWT which is tied to the underlying platform's windowing system. Swing supports pluggable look and feel – not by using the native platform's facilities, but by roughly emulating them. This means you can get any supported look and feel on any platform. The disadvantage of lightweight components is possibly slower execution. The advantage is uniform behavior on all platforms.
"Just barely good enough" is a maxim that has defined Swing since its earliest release. Way back then, its MVC approach to lists and tables, its "platform look & feel" approach and its flexibility meant that in many ways it represented a giant leap forward in UI programming. Trouble is, Swing UIs were also pig-ugly and slow. The result was a toolkit that was just barely good enough for its purpose.
With J2SE 1.4.x and now 1.5, Sun have taken great strides in improving Swing. It's faster, and the new Ocean theme (though it still draws criticism) is a big step forward in the modernisation of Swing's look, if not its feel.
Trouble is, the rest of the world has advanced apace - and in certain cases (as we'll explore in this article) leapt ahead of Swing. As a result, Swing's recent improvements fail to address certain key issues that may prevent its wholesale adoption.
Not all of these issues are directly to do with Swing; some are to do with obstacles generally preventing widespread adoption of Java on the desktop. So with that in mind, let's explore the issues that really face Java's acceptance on the desktop - and what Sun needs to do to fix them.

History
The Internet Foundation Classes (IFC) were a graphics library for Java originally developed by Netscape Communications Corporation and first released on December 16, 1996.
On April 2, 1996, Sun Microsystems and Netscape Communications Corporation announced their intention to combine IFC with other technologies to form the Java Foundation Classes. In addition to the components originally provided by IFC, Swing introduced a mechanism that allowed the look and feel of every component in an application to be altered without making substantial changes to the application code. The introduction of support for a pluggable look and feel allowed Swing components to emulate the appearance of native components while still retaining the benefits of platform independence.
Originally distributed as a separately downloadable library, Swing has been included as part of the Java Standard Edition since release 1.2. The Swing classes are contained in the javax.swing package hierarchy.

Relationship to AWT
Since early versions of Java, a portion of the Abstract Windowing Toolkit (AWT) has provided platform independent APIs for user interface components. In AWT, each component is rendered and controlled by a native peer component specific to the underlying windowing system.
By contrast, Swing components are often described as lightweight because they do not require allocation of native resources in the operating system's windowing toolkit. The AWT components are referred to as heavyweight components.
Much of the Swing API is generally a complementary extension of the AWT rather than a direct replacement. In fact, every Swing lightweight interface ultimately exists within an AWT heavyweight component because all of the top-level components in Swing (JApplet, JDialog, JFrame, and JWindow) extend an AWT top-level container. The core rendering functionality used by Swing to draw its lightweight components is provided by Java2D, a part of AWT. However, the use of lightweight and heavyweight components within the same window is generally discouraged due to Z-order incompatibilities.

Relationship to SWT
The Standard Widget Toolkit (SWT) is a competing toolkit originally developed by IBM and now maintained by the Eclipse Foundation. SWT's implementation has more in common with the heavyweight components of AWT. This confers benefits such as more accurate fidelity with the underlying native windowing toolkit, at the cost of an increased exposure to the native resources in the programming model.
The advent of SWT has given rise to a great deal of division among Java desktop developers with many strongly favouring either SWT or Swing. A renewed focus on Swing look and feel fidelity with the native windowing toolkit in the approaching Java SE 6 release (as of 2006) is probably a direct result of this.

The Swing Componenets
The standard Swing component set hasn't changed for the last 4-5 years. These components remain just barely good enough for the job: but as their competitors get better, the Swing component set has become, like, so 1998.
Swing needs a UI painter app, like Flash, where you paint UI elements and script them on a timeline. How easy is it to do animation in Swing? Hard. It should be easy to drop a panel of Swing components on a page, then set up a simple transition with elements flying onto the page, fading in and so on.
Swing needs to expose more of Java2D. Currently (for programmers new to Swing) it isn't obvious how to mix the two. Transition effects, animation and so forth should be built into the Swing components, and easy to create via an IDE.
Swing containers should be inherently dockable. Each container should have an isDockable() property. If it's set to true, then the container can be dislodged from its location on the screen, dragged around, and docked elsewhere. There should also be a concept of "docking groups", so the programmer can stipulate that only certain groups of containers can be docked together. Each component should also remember its original location so it's easy to revert everything back to its default layout.
JTable needs a super-powerful successor with Excel-like capabilities. The basic component shouldn't change (changing JTable now would be bad). But the javax.swing.table package needs to include at least one custom subclass (let's call it "JXTable").
For example, JXTable would allow sorting of columns, dragging columns around, easy keyboard navigation, multi-column and multi-row cells, mixed-size fonts and so forth. In short, adding a JXTable to your UI should be like dropping a modern spreadsheet into your application.
If you think about how powerful JTable/JXTable could be, you begin to realise how lame the current implementation actually is. Once again, it's "just barely good enough" (and barely even that).
 Improve IDE Support
If desktop Java is to stand a chance of staying relevant, it needs to be made very easy for web designers to create dynamic content. Sun could address this by improving applet support in NetBeans; creating a media-rich drag & drop environment in which beginner programmers can easily create and deploy graphical applets that look more like Flash movies than AWT "clunkettes".
Talking of NetBeans, their Swing form editor used to be cutting-edge, but it hasn't been updated for a long time (several years). It no longer looks the part; in fact it now looks distinctly tired; frayed around the edges.
To attract new client-side Java programmers, Sun badly needs a dynamic, cutting-edge Swing form editor. The quickest way they're going to get this is to build on the form editor in NetBeans. They also need to provide support for modern layout managers, particularly SpringLayout.
IDE support for individual components needs to be improved. For example, JTable (were JTable to be the super-powerful spreadsheet-like component that it should be) could have its own editor support for dragging and resizing cells, defining dynamic data-bound rows and so forth.
Customization of components' paint methods (paintBorder, paintComponent etc) should also be turned into a drag & drop process, e.g. defining a series of blending effects from a palette of presets, curvature of corners, component animations and so forth.
For an example of what a real Swing IDE should provide, take a look at SwishZone (a Flash IDE).

Improve Connectivity
In recent years, Macromedia have shown how easy it can be to create a stunning looking web-based front-end that connects to a J2EE back-end. Winning the battle for the desktop is as much about enterprise development as it is about widgets and toggles.
With Flash, it's possible to (or more to the point, it's easy to) create a rich-client browser-based application that connects to a J2EE (or other) application server. The resultant UI (see Macromedia's Pet Market example) is a striking example of what's possible, and is absolutely streets ahead of what Swing can currently do. If Sun don't recognise that Flash is the true competitor to desktop Java, then Swing is frankly doomed.
Luckily, desktop Java does have some pretty major advantages over Flash:
	[image: bullet2]
	Java is a true object-oriented programming language; it's also mature and has lots of libraries

	[image: bullet2]
	It's difficult to auto-generate Flash apps. With Java it's easy

	[image: bullet2]
	Java has RMI, Flash doesn't. This means that Java applets can communicate with a J2EE server using remote objects. Flash has to rely on "kludges" (or web services, which are less than ideal) to communicate with a remote server. This is possibly the single most important advantage that Java has over Flash (but as killer advantages go, it's woefully under-utilised)

For these advantages to make a difference, Sun needs to capitalise on them and make it easy for developers to create amazing-looking rich-client applets that connect to a J2EE server (which brings us back to the need for better IDE support). Java is easily powerful enough to do all this already, but it needs killer IDE support to make it easy to do this sort of thing (just like Flash already has).
To do a proper job of this, the Swing team need to identify the most common tasks that programmers use Swing (and Flash!) for in a networked environment. For example, simply filling out a form and submitting it. This is probably the most common task for a browser app (rich-client or otherwise). So Swing (or its IDE support) needs to make it very easy to create network-aware forms, and to hook these forms up to a server-side form handler.
Ideally there should be a package of network-ready extensions to Swing (e.g. javax.swing.net, or javax.swing.netforms) that IDEs can readily take advantage of.
Make Swing Simpler (but Keep the Flexibility)
One of Swing's main advantages is its incredible flexibility. If there's something you need to do with your UI, Swing will get you there. You might have to write a custom tree-cell renderer, or even your own custom look & feel, but ultimately you will be able to achieve what you need to using Swing.
Unfortunately, this flexibility comes at a price. Swing has a steep learning curve for novices. It's also difficult to master.
To attract new developers, Swing needs a shallower learning curve. There are currently too many "gotchas" and inconsistencies facing the novice Swing programmer. A common mistake is to try to add a component to a JFrame using frame.add(..) rather than using frame.getContentPane().add(). (Thankfully J2SE 1.5 fixes this). Same for JScrollPane.setViewportView().
Talking about scroll panes, it should be possible to simply tell a component that it's scrollable. Having to add a component to a separate JScrollPane component might be a great design pattern, but it confuses the hell out of beginners. Why can't they just set textArea.setScrollable(true) - which probably should be the default - and let the component take care of the rest? Swing components need to work with the programmer to get results quickly, not sit there blithely insisting that the programmer follow some ivory-tower design pattern.
JTrees are also too complex for most common uses. The flexibility - the ability to customise any aspect of a JTree - is great, but the need for customisation kicks in too early. It should be possible to do more with the DefaultTreeModel and default renderers.
Perhaps it isn't Swing itself that needs to be simpler. Rather, the GUI form designers need to be more powerful. NetBeans makes some steps down this road, but falls far short of what's needed.
 Fix Bugs Faster
As we all know, some Swing bugs have been lying dormant in the Java Bug Parade for years. It's getting beyond a joke. If Sun doesn't have the resources to fix these bugs in-house whilst still providing the next-generation UI toolkit that Swing so desperately needs to be, then perhaps open-sourcing Swing is the answer.
I'm not actually a great advocate of open-sourcing Swing (or Java, for that matter). Why should Sun "give Java up" after they've invested so much time and money in it? But if it's the only way they can produce the software they need to compete, then it might just be their best option.
 Improve the Layout Managers
These days, I've grown used to creating Swing UIs using a mixture of BorderLayout, FlowLayout and GridBagLayout. These three layout managers used together are good enough for most layout purposes. But (and you can probably see a theme emerging here), "good enough" just doesn't cut it any more. Swing needs to be inspired; a shining example of simple, elegant yet powerful design. GridBagLayout doesn't really give us that.
Swing's layout managers need to be rethought so that they're easy to use. They also need to be more IDE-friendly. If it was easy to create a drag-and-drop, WYSIWYG Swing form designer, every IDE would have one.
SpringLayout gets us part-way there, but we're still not seeing the all-important IDE support.
 More Optimisation Needed
Swing has become a lot faster and more responsive in recent releases. And yet, for some reason, using a Swing app still feels like running through treacle. Actually that's not entirely fair: if all you used was Swing apps, they would seem responsive enough.

But as soon as you switch to a well-written native app, you immediately see the difference. These days we're using 2-3 Ghz PCs: our UIs should be incredibly snappy, not "just snappy enough".
The impression I get is that Swing needs to be rewritten from the inside out: have its guts ripped out, replaced with new, super-efficient code that paints at lightning speeds.

 Make Anti-Aliased Fonts Easier to Use
Java2D obviously has support for anti-aliased fonts. And yet, bizarrely, Swing doesn't use these by default, or make it easy to switch them on. Currently you have to override a component's paintComponent method and set its graphics context's rendering hint to use text antialiasing -- which essentially means you need to create custom components just to use antialiased text. A simple "isAntialiased" property would be nicer, and more obvious for programmers who are new to Swing.
Antialiased text in Swing appears to be on its way, but the solution-in-progress seems unneccessarily complicated (why not a simple isAntialiased property?). While Sun makes big noises about making Java simpler, Swing continues to complexify.
Human nature is to use whatever defaults they're presented with and to leave it at that. Programmers work to tight deadlines. So if their Swing app is just barely good enough (like Swing itself), they won't go the extra mile to make it look smooth and shiny. They might not even be aware that the extra mile is available to them.
The result is that most Swing apps look horrible (and will continue to do so, it seems), even though the option is there, just hidden beneath the surface, to make them shine.
 Conclusion for using Swing
Adoption of Java on the desktop is improving; big-name PC OEM bundling deals are being secured; and Sun's Java Desktop (Linux with a bundled JRE) also appears to be doing rather well. To really win the desktop war, though, Java needs a built-in windowing toolkit which is more than just barely good enough. SWT isn't it; it's basically doing the same things as Swing using a different approach to rendering.
What Java desperately needs is a butt-kicking GUI toolkit that's as powerful and creatively inspiring as Flash but with the inherent maturity and power of Java. Luckily, the improvements that Swing needs are very clear-cut and obvious.
You may have noticed a certain preoccupation with Flash in this article. That isn't by coincidence. Considering what Swing is capable of, and the areas where Swing should be the only serious choice, it turns out that Flash is Swing's most dangerous competitor - much more so than SWT.Java/Swing should be the first choice for creating easily deployable dynamic web content. But in terms of looks, responsiveness and ease of development, Flash wins hands-down.
In short, Sun need to recognise who their real competitor is, and improve the client-side Java experience by taking their inspiration from Flash. The result - a vector-based UI that loves web browsers, with excellent IDE support and J2EE connectivity - combined with the advantages that Java already has (a mature, multi-platform OO language, "built-in" remote object broker, increasingly common runtime on new PCs etc) would make Java on the desktop virtually unstoppable.

Testing
INTRODUCTION:
After finishing the development of any computer based system the next complicated time consuming process is system testing. During the time of testing only the development company can know that, how far the user requirements have been met out, and so on.
Following are the some of the testing methods applied to this effective project:
SOURCE CODE TESTING:
This examines the logic of the system. If we are getting the output that is required by the user, then we can say that the logic is perfect.
SPECIFICATION TESTING:
We can set with, what program should do and how it should perform under various condition. This testing is a comparative study of evolution of system performance and system requirements.
MODULE LEVEL TESTING:
In this the error will be found at each individual module, it encourages the programmer to find and rectify the errors without affecting the other modules.

UNIT TESTING:
Unit testing focuses on verifying the effort on the smallest unit of software-module. The local data structure is examined to ensure that the date stored temporarily maintains its integrity during all steps in the algorithm’s execution. Boundary conditions are tested to ensure that the module operates properly at boundaries established to limit or restrict processing.
INTEGRATION TESTING:
Data can be tested across an interface. One module can have an inadvertent, adverse effect on the other. Integration testing is a systematic technique for constructing a program structure while conducting tests to uncover errors associated with interring.
VALIDATION TESTING:
It begins after the integration testing is successfully assembled. Validation succeeds when the software functions in a manner that can be reasonably accepted by the client. In this the majority of the validation is done during the data entry operation where there is a maximum possibility of entering wrong data. Other validation will be performed in all process where correct details and data should be entered to get the required results.
RECOVERY TESTING:
Recovery Testing is a system that forces the software to fail in variety of ways and verifies that the recovery is properly performed. If recovery is automatic, re-initialization, and data recovery are each evaluated for correctness.

SECURITY TESTING:
Security testing attempts to verify that protection mechanism built into system will in fact protect it from improper penetration. The tester may attempt to acquire password through external clerical means, may attack the system with custom software design to break down any defenses to others, and may purposely cause errors.
PERFORMANCE TESTING:
Performance Testing is used to test runtime performance of software within the context of an integrated system. Performance test are often coupled with stress testing and require both software instrumentation.
BLACKBOX TESTING:
Black- box testing focuses on functional requirement of software. It enables to derive ets of input conditions that will fully exercise all functional requirements for a program.
Black box testing attempts to find error in the following category:
	Incorrect or missing function
	Interface errors
	Errors in data structures or external database access and performance errors.

OUTPUT TESTING:
After performing the validation testing, the next step is output testing of the proposed system since no system would be termed as useful until it does produce the required output in the specified format. Output format is considered in two ways, the screen format and the printer format.

USER ACCEPTANCE TESTING:
User Acceptance Testing is the key factor for the success of any system. The system under consideration is tested for user acceptance by constantly keeping in touch with prospective system users at the time of developing and making changes whenever required.

Reference:
[1] A. Chandak and S. Ramasubramanian, “Dual-link failure resiliency
through backup link mutual exclusion,” in Proc. IEEE Int. Conf. Broadband
Networks, Boston, MA, Oct. 2005, pp. 258–267.
[2] J. Doucette and W. D. Grover, “Comparison of mesh protection and
restoration schemes and the dependency on graph connectivity,” in
Proc. 3rd Int. Workshop Design of Reliable Communication Networks
(DRCN 2001), Budapest, Hungary, Oct. 2001, pp. 121–128.

[3] M. Medard, S. G. Finn, and R. A. Barry, “WDM loop-back recovery
in mesh networks,” in Proc. IEEE INFOCOM, 1999, pp. 752–759.

[4] S. S. Lumetta, M. Medard, and Y. C. Tseng, “Capacity versus robustness:
A tradeoff for link restoration in mesh networks,” J. Lightw.
Technol., vol. 18, no. 12, pp. 1765–1775, Dec. 2000.

[5] G. Ellinas, G. Halemariam, and T. Stern, “Protection cycles in WDM
networks,” IEEE J. Sel. Areas Commun., vol. 8, no. 10, pp. 1924–1937,
Oct. 2000.

[6] W. D. Grover, Mesh-Based Survivable Networks: Options and Strategies
for Optical, MPLS, SONET and ATMNetworking. Upper Saddle
River, NJ: Prentice-Hall, 2003.

[7] M. Fredrick, P. Datta, and A. K. Somani, “Sub-graph routing: A novel
fault-tolerant architecture for shared-risk link group failures in WDM
optical networks,” in Proc. 4th Int. Workshop Design of Reliable Communication Networks (DRCN 2003), Banff, AB, Canada, Oct. 2003,
pp. 296–303.
[8] M. Clouqueur and W. Grover, “Availability analysis of span-restorable
mesh networks,” IEEE J. Sel. Areas Commun., vol. 20, no. 4, pp.
810–821, May 2002.

[9] M. Clouqueur and W. D. Grover, “Mesh-restorable networks with
complete dual-failure restorability and with selectively enhanced
dual-failure restorability properties,” in Proc. OPTICOMM, 2002, pp.
1–12.

[10] J. Doucette and W. D. Grover, “Shared-risk logical san groups in spanrestorable
optical networks: Analysis and capacity planning model,”
Photon. Netw. Commun., vol. 9, no. 1, pp. 35–53, Jan. 2005.

[11] J. A. Bondy and U. S. R. Murthy, Graph Theory With Applications.
New York: Elsevier, 1976.

[12] H. Choi, S. Subramaniam, and H. Choi, “On double-link failure recovery
in WDM optical networks,” in Proc. IEEE INFOCOM, 2002,
pp. 808–816.

[13] H. Choi, S. Subramaniam, and H. Choi, “Loopback recovery from
double-link failures in optical mesh networks,” IEEE/ACM Trans.
Netw., vol. 12, no. 6, pp. 1119–1130, Dec. 2004.

[14] H. Choi, S. Subramaniam, and H.-A. Choi, “Loopback recovery from
neighboring double-link failures in WDM mesh networks,” Inf. Sci. J.,
vol. 149, no. 1, pp. 197–209, Jan. 2003.

[15] CPLEX Solver. [Online]. Available: http://www.cplex.com
image3.png

image4.png

image5.png

image6.png

image1.png

image2.png

