Delay Analysis and Optimality of Scheduling Policies for Multi-Hop Wireless Networks
By
A

PROJECT REPORT

Submitted to the Department of Computer Science & Engineering in the FACULTY OF ENGINEERING & TECHNOLOGY

In partial fulfillment of the requirements for the award of the degree
Of
MASTER OF TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

APRIL 2012
BONAFIDE CERTIFICATE

Certified that this project report titled “Delay Analysis and Optimality of Scheduling Policies for Multi-Hop Wireless Networks” is the bonafide work of Mr. _____________Who carried out the research under my supervision Certified further, that to the best of my knowledge the work reported herein does not form part of any other project report or dissertation on the basis of which a degree or award was conferred on an earlier occasion on this or any other candidate.
Signature of the Guide

 Signature of the H.O.D

Name

 Name

CHAPTER 01

ABSTRACT:

We analyze the delay performance of a multi-hop wireless network in which the routes between source-destination pairs are fixed. We develop a new queue grouping technique to handle the complex correlations of the service process resulting from the multi-hop nature of the flows and their mutual sharing of the wireless medium. A general setbased interference model is assumed that imposes constraints on links that can be served simultaneously at any given time. These interference constraints are used to obtain a fundamental lower bound on the delay performance of any scheduling policy for the system.

PROJECT PURPOSE:

We present a systematic methodology to derive such lower bounds. For a special wireless system, namely the clique, we design a policy that is sample path delay optimal. For the tandem queue network, where the delay optimal policy is known, the expected delay of the optimal policy numerically coincides with the lower bound. The lower bound analysis provides useful insights into the design and analysis of optimal or nearly optimal scheduling policies. We conduct extensive numerical studies to demonstrate that one can design policies whose average delay performance is close to the lower bound computed by the techniques presented in this paper.
PROJECT SCOPE:

A large number of studies on multi-hop wireless networks have been devoted to system stability while maximizing metrics like throughput or utility. These metrics measure the performance of a system over a long time-scale. The delay performance of wireless networks, however, has largely been an open problem.
This problem is notoriously difficult even in the context of wireline networks, primarily because of the complex interactions in the network that make its analysis amenable only in very special cases like the product form networks.
PRODUCT FEATURES:

We analyze a multi-hop wireless network with multiple source-destination pairs, given routing and traffic information. Each source injects packets in the network, which traverses through the network until it reaches the destination. A packet is queued at each node in its path where it waits for an opportunity to be transmitted. Since the transmission medium is shared, concurrent transmissions can interfere with each others’ transmissions.

INTRODUCTION:
A large number of studies on multi-hop wireless networks have been devoted to system stability while maximizing metrics like throughput or utility. These metrics measure the

performance of a system over a long time-scale. For a large class of applications such as video or voice over IP, embedded network control and for system design; metrics like delay are of prime importance. The delay performance of wireless networks, however, has largely been an open problem. This problem is notoriously difficult even in the context of wireline networks, primarily because of the complex interactions in the network (e.g., superposition, routing, departure, etc.) that make its analysis amenable only in very special cases like the product form networks. The problem is further exacerbated by the mutual interference inherent in wireless networks which, complicates both the scheduling mechanisms and their analysis. Some novel analytical techniques to compute useful lower bound and delay estimates for wireless networks with singlehop traffic were developed in. However, the analysis is not directly applicable to multi-hop wireless network with multihop flows, due to the difficulty in characterizing the departure process at intermediate links. The metric of interest in this paper is the system-wide average delay of a packet from the source to its corresponding destination. We present a new, systematic methodology to obtain a fundamental lower bound on the average packet delay in the system under any scheduling policy. Furthermore, we re-engineer well known scheduling policies to achieve good delay performance viz-a-viz the lower bound.

In this paper, we analyze a multi-hop wireless network with multiple source-destination pairs, given routing and traffic information. Each source injects packets in the network, which traverses through the network until it reaches the destination. For example, a multi-hop wireless network with three flows is shown in Fig. 1. The exogenous arrival processes AI (t), AII (t) and AIII (t) correspond to the number of packets injected in the system at time t. A packet is queued at each node in its path where it waits for an opportunity to be transmitted. Since the transmission medium is shared, concurrent transmissions can interfere with each others’ transmissions. The set of links that do not cause interference with each other can be scheduled simultaneously, and we call them activation vectors (matchings). We do not impose any a priori restriction on the set of allowed activation vectors, i.e., they can characterize any combinatorial interference model. For example, in a K-hop interference model, the links scheduled simultaneously are separated by at least K hops. In the example show in each link has unit capacity; i.e., at most one packet can be transmitted in a slot. For the above example, we assume a 1-hop interference model. The delay performance of any scheduling policy is primarily limited by the interference, which causes many bottlenecks to be formed in the network. We demonstrated the use of exclusive sets for the purpose of deriving lower bounds on

delay for a wireless network with single hop traffic in.

In this paper, we further generalize the typical notion of a bottleneck. In our terminology, we define a (K, X)-bottleneck to be a set of links X such that no more than K of them can simultaneously transmit. Figure 1 shows (1, X) bottlenecks for a network under the 1-hop interference model. In this paper, we develop new analytical techniques that focus on the queueing due to the (K, X)-bottlenecks. One of the techniques, which we call the “reduction technique”, simplifies the analysis of the queueing upstream of a (K, X)-bottleneck to the study of a single queue system with K servers as indicated in the figure. Furthermore, our analysis needs only the exogenous inputs to the system and thereby avoids the need to characterize departure processes on intermediate links in the network. For a large class of input traffic, the lower bound on the expected delay can be computed using only the statistics of the exogenous arrival processes and not their sample paths. To obtain a lower bound on the system wide average queueing delay, we analyze queueing in multiple bottlenecks by relaxing the interference constraints in the system. Our relaxation approach is novel and leads to nontrivial lower bounds.

CHAPTER 02

SYSTEM ANALYSIS:

PROBLEM DEFINITION:

The delay performance of wireless networks, however, has largely been an open problem. This problem is notoriously difficult even in the context of wireline networks, primarily because of the complex interactions in the network (e.g., superposition, routing, departure, etc.) that make its analysis amenable only in very special cases like the product form networks. The problem is further exacerbated by the mutual interference inherent in wireless networks which, complicates both the scheduling mechanisms and their analysis.
EXISTING SYSTEM:

We consider a simple distributed scheduling strategy, maximal scheduling, and prove that it attains a guaranteed fraction of the maximum throughput region in arbitrary wireless networks. The guaranteed fraction depends on “interference degree” of the network which is the maximum number of sessions that interfere with any given session in the network and do not interfere with each other. Depending on the nature of communication, the transmission powers and the propagation models, the guaranteed fraction can be lower bounded by the maximum link degrees in the underlying topology, or even by constants that are independent of the topology. The guarantees also hold in networks with multicast communication and an arbitrary number of frequencies. We prove that the guarantees are tight in that they cannot be improved any further with maximal scheduling.

LIMITATIONS OF EXISTING SYSTEM:

A clique network is a special graph where at most one link can be scheduled at any given time. Using existing results on work conserving queues, we design a delay optimal policy for a clique network and compare it to the lower bound.
PROPOSED SYSTEM:
We consider the lower bound analysis as an important first step towards a complete delay analysis of multi-hop wireless systems. For a network with node exclusive interference, our lower bound is tight in the sense that it goes to infinity whenever the delay of any throughput optimal policy is unbounded. For a tandem queueing network, the average delay of a delay optimal policy proposed numerically coincides with the lower bound provided in this paper.
We are able to apply known techniques to obtain a sample path delay-optimal scheduling policy. We also obtain policies that minimize a function of queue lengths at all times on a sample path basis. Further, for a tandem queueing system, we show numerically that the expected delay of a previously known delay-optimal policy coincides with the lower bound.
ADVANTAGES OF PROPOSED SYSTEM:

We show that our analysis captures the essential features of the wireless network and is useful since, in many cases, we can design a policy that performs close to the lower bound. Perhaps, the most important advantage of the lower bound is that it can be used for analyzing a large class of arrival processes using known results in the queueing flows.
PROCESS FLOW DIAGRAMS FOR EXISTING AND PROPOSED SYSTEM:

FEASIBILITY STUDY:
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

· ECONOMICAL FEASIBILITY
· TECHNICAL FEASIBILITY
· SOCIAL FEASIBILITY
ECONOMICAL FEASIBILITY:
This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY:
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.
SOCIAL FEASIBILITY

The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

HARDWARE AND SOFTWARE REQUIREMENTS
:
HARDWARE REQUIREMENTS:
Processor

:

Pentium 4 Cpu 2.40ghz

Ram

:

512 Mb Ram

Hard Disk

:

40 Gb

Keyboard
:
Standard

Monitor
:
15”

SOFTWARE REQUIREMENTS:
Front End

:
C#.Net Coding
Operating System
:
Windows Xp

Documentation
:
Ms-Office 2007

FUNCTIONAL REQUIREMENTS:

Functional requirements specify which output file should be produced from the given file they describe the relationship between the input and output of the system, for each functional requirement a detailed description of all data inputs and their source and the range of valid inputs must be specified.

NON FUNCTIONAL REQUIREMENTS:

Describe user-visible aspects of the system that are not directly related with the functional behavior of the system. Non-Functional requirements include quantitative constraints, such as response time (i.e. how fast the system reacts to user commands.) or accuracy ((.e. how precise are the systems numerical answers.)

PSEUDO REQUIREMENTS:

The client that restricts the implementation of the system imposes these requirements. Typical pseudo requirements are the implementation language and the platform on which the system is to be implemented. These have usually no direct effect on the users view of the system.

LITERATURE SURVEY:

Literature survey is the most important step in software development process. Before developing the tool it is necessary to determine the time factor, economy n company strength. Once these things r satisfied, ten next steps is to determine which operating system and language can be used for developing the tool. Once the programmers start building the tool the programmers need lot of external support. This support can be obtained from senior programmers, from book or from websites. Before building the system the above consideration r taken into account for developing the proposed system.

Delay analysis for multi-hop wireless networks has been limited to establishing the stability of the system. Whenever there exists a scheme that can stabilize the system for a given load, the back-pressure policy is also guaranteed to keep the system stable. Hence, it is referred to as a throughput-optimal policy. It also has the advantage of being a myopic policy in that it does not require knowledge of the arrival process.
In this paper, we have taken an important step towards the expected delay analysis of these systems. The general research on the delay analysis of scheduling policies has progressed in the following main directions:
Heavy traffic regime using fluid models: Fluid models have typically been used to either establish the stability of the system or to study the workload process in the heavy traffic regime. Maximum-pressure policy (similar to the back-pressure policy) minimizes the workload process for a stochastic processing network in the heavy traffic regime when processor splitting is allowed.
• Stochastic Bounds using Lyapunov drifts: This method is developed in used to derive upper bounds on the average queue length for these systems. However, these results are order results and provide only a limited characterization of the delay of the system. For example, it has been shown in that the maximal matching policies achieve O(1) delay for networks with single-hop traffic when the input load is in the reduced capacity region. This analysis however, has not been extended to the multi-hop traffic case, because of the lack of an analogous Lyapunov function for the back-pressure policy.
• Large Deviations: Large deviation results for cellular and multi-hop systems with single hop traffic have been obtained in to estimate the decay rate of the queue-overflow probability. Similar analysis is much more difficult for the multi-hop wireless network considered here, due to the complex interactions between the arrival, service, and backlog process.
MODULES:
· SERVER CLIENT MODULE
· MANAGED DELAY NETWORK
· TRANSMITTER MODULE

· QUEUEING ANALYSIS
· SCHEDULING POLICIES
MODULES DESCRIPTION:
SERVER CLIENT MODULE:

In computing, a server is any combination of hardware or software designed to provide services to clients. When used alone, the term typically refers to a computer which may be running a server operating system, but is commonly used to refer to any software or dedicated hardware capable of providing services.
A client is an application or system that accesses a remote service on another computer system, known as a server, by way of a network. The term was first applied to devices that were not capable of running their own stand-alone programs, but could interact with remote computers via a network. These dumb terminals were clients of the time-sharing mainframe computer.
MANAGED DELAY NETWORK:

We analyze a multi-hop wireless network with multiple source-destination pairs, given routing and traffic information. Each source injects packets in the network, which traverses through the network until it reaches the destinations a multi-hop wireless network flows.
TRANSMITTER MODULE:
A packet is queued at each node in its path where it waits for an opportunity to be transmitted. Since the transmission medium is shared, concurrent transmissions can interfere with each others’ transmissions. The set of links that do not cause interference with each other can be scheduled simultaneously, and we call them activation vectors.
QUEUEING ANALYSIS:
We develop new analytical techniques that focus on the queueing due to the (K, X)-bottlenecks. One of the techniques, which we call the “reduction technique”, simplifies the analysis of the queueing upstream of a (K, X)-bottleneck to the study of a single queue system with K servers as indicated in the figure. Furthermore, our analysis needs only the exogenous inputs to the system and thereby avoids the need to characterize departure processes on intermediate links in the network. For a large class of input traffic, the lower bound on the expected delay can be computed using only the statistics of the exogenous arrival processes and not their sample paths. To obtain a lower bound on the system wide average queueing delay, we analyze queueing in multiple bottlenecks by relaxing the interference constraints in the system.
SCHEDULING POLICIES:
Finally, we also present a case where neither back-pressure policy nor the shadow queue approach proposes are close to the lower bound. For this case, we design a new handcrafted policy whose delay performance is actually close to the lower bound, thus demonstrating that the lower bound analysis provides useful insights into the design and analysis of optimal or nearly optimal scheduling policies.

We now summarize our main contributions in this paper:

· Development of a new queue grouping technique to handle the complex correlations of the service process resulting from the multi-hop nature of the flows. We also introduce a novel concept of (K, X)-bottlenecks in the network.

· Development of a new technique to reduce the analysis of queueing upstream of a bottleneck to studying simple single queue systems. We derive sample path bounds on a group of queues upstream of a bottleneck.

· Derivation of a fundamental lower bound on the systemwide average queuing delay of a packet in multi-hop wireless network, regardless of the scheduling policy used, by analyzing the single queue systems obtained above.

· Extensive numerical studies and discussion on useful insights into the design of optimal or nearly optimal scheduling policies gained by the lower bound analysis.
CHAPTER 03
SYSTEM DESIGN:

Data Flow Diagram / Use Case Diagram / Flow Diagram:
· The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to represent a system in terms of the input data to the system, various processing carried out on these data, and the output data is generated by the system
· The data flow diagram (DFD) is one of the most important modeling tools. It is used to model the system components. These components are the system process, the data used by the process, an external entity that interacts with the system and the information flows in the system.

· DFD shows how the information moves through the system and how it is modified by a series of transformations. It is a graphical technique that depicts information flow and the transformations that are applied as data moves from input to output.

· DFD is also known as bubble chart. A DFD may be used to represent a system at any level of abstraction. DFD may be partitioned into levels that represent increasing information flow and functional detail.

NOTATION:

SOURCE OR DESTINATION OF DATA:

[image: image1.png]External sources or destinations, which may be people or organizations or other entities.

DATA SOURCE:

Here the data referenced by a process is stored and retrieved.

[image: image4.png]

PROCESS:

People, procedures or devices that produce data. The physical component is not identified.

[image: image5.png]

DATA FLOW:

Data moves in a specific direction from an origin to a destination. The data flow is a “packet” of data.
[image: image6.png]
MODELING RULES:
There are several common modeling rules when creating DFDs:

1. All processes must have at least one data flow in and one data flow out.

2. All processes should modify the incoming data, producing new forms of outgoing data.

3. Each data store must be involved with at least one data flow.

4. Each external entity must be involved with at least one data flow.

5. A data flow must be attached to at least one process.

SDLC:
SPIRAL MODEL:

PROJECT ARCHITECTURE:

UML DIAGRAMS:
USE CASE DIAGRAM:

CLASS DIAGRAM:
SERVER:
[image: image7.png]
CLIENT:

[image: image2.png]
SEQUENCE DIAGRAM:

ACTIVITY DIAGRAM:
DATA DICTIONARY
ER DIAGRAM
DATA FLOW DIAGRAM:

 SHAPE * MERGEFORMAT

CHAPTER 04
PROCESS SPECIFICATION:
TECHNIQUES AND ALGORITHM USED:
We then implement the Shadow scheme proposed in to alleviate the problem of large backlogs associated with back-pressure algorithm by using counters called shadow queues to allocate service rates to each flow on each link in an adaptive fashion without knowing the set of packet arrival rates.
However, we find that it does not reduce the queueing in the system. Comparing the performance of these algorithms with the lower bound. We inferred that there must be policies that incur smaller delay in the system. We then design a new scheduling policy, which although is not guaranteed to be optimal, has much better delay performance. In fact, its performance is close to the lower bound.
The scheme New Policy is based on the observation that the packet closer to the destination must be given higher priority. We implement the scheduling rule followed by Tassiulas’ optimal policy. Thus, we schedule links beginning from last link and go up to the first link. Note that the packets do not have a common destination. Thus, once the link schedule is obtained, we schedule the flow on the link for which the packet is closest to its destination; i.e. we schedule the short flow in preference to the long flow.

We conclude that the lower bound analysis presented here can play an important role in obtaining insights into the design and evaluation of scheduling policies for multi-hop wireless networks. The following section provides a perspective on the research on delay analysis in multi-hop wireless networks and the contributions made in this paper.
SCREEN SHOTS:
CHAPTER 05:
TECHNOLOGY DESCRIPTION:
Features OF. Net:
Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script. The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.

 “.NET” is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).

THE .NET FRAMEWORK

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are
· Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.

· Memory management, notably including garbage collection.

· Checking and enforcing security restrictions on the running code.

· Loading and executing programs, with version control and other such features.

· The following features of the .NET framework are also worth description:

Managed Code
The code that targets .NET, and which contains certain extra

Information - “metadata” - to describe itself. Whilst both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data

 With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications - data that doesn’t get garbage collected but instead is looked after by unmanaged code.

Common Type System

 The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.

Common Language Specification

 The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.

Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.
Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.
C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.
Other languages for which .NET compilers are available include

· FORTRAN

· COBOL

· Eiffel

Fig1 .Net Framework

	 ASP.NET

 XML WEB SERVICES
	 Windows Forms

	 Base Class Libraries

	 Common Language Runtime

	 Operating System

C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.

C#.NET is a CLS-compliant language. Any objects, classes, or components that created in C#.NET can be used in any other CLS-compliant language. In addition, we can use objects, classes, and components created in other CLS-compliant languages in C#.NET .The use of CLS ensures complete interoperability among applications, regardless of the languages used to create the application.

CONSTRUCTORS AND DESTRUCTORS:

 Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.
GARBAGE COLLECTION
Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables. In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.
OVERLOADING
Overloading is another feature in C#. Overloading enables us to define multiple procedures with the same name, where each procedure has a different set of arguments. Besides using overloading for procedures, we can use it for constructors and properties in a class.

MULTITHREADING:

C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.

STRUCTURED EXCEPTION HANDLING

C#.NET supports structured handling, which enables us to detect and remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally statements to create exception handlers. Using Try…Catch…Finally statements, we can create robust and effective exception handlers to improve the performance of our application.
THE .NET FRAMEWORK
 The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.

OBJECTIVES OF. NET FRAMEWORK
1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

3. Eliminates the performance problems.

There are different types of application, such as Windows-based applications and Web-based applications.

Features of SQL-SERVER

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services

SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

FULL PROJECT CODING, DATABASE WITH VIDEO TUTORIAL
How to Install Document:
SEE VIDEO FILE:
CHAPTER 06
TYPE OF TESTING:

BLOCK & WHITE BOX TESTING:
Black Box Testing

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.

White Box Testing

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level.

UNIT TESTING:

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

Test objectives

· All field entries must work properly.
· Pages must be activated from the identified link.
· The entry screen, messages and responses must not be delayed.
Features to be tested

· Verify that the entries are of the correct format
· No duplicate entries should be allowed
All links should take the user to the correct page.
SYSTEM TESTING:

The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

INTEGRATION TESTING:
Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

FUNCTIONAL TESTING:
Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output
 : identified classes of application outputs must be exercised.

Systems/Procedures : interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

TEST CASE TABLE:

TABLE:

 A database is a collection of data about a specific topic.

VIEWS OF TABLE:

 We can work with a table in two types,

1. Design View

2. Datasheet View

Design View

 To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.

Datasheet View

 To add, edit or analyses the data itself we work in tables datasheet view mode.

QUERY:

 A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dynaset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dynaset. Access either displays the dynaset or snapshot for us to view or perform an action on it, such as deleting or updating.

CHAPTER 07
CONCLUSION:
The delay analysis of wireless networks is largely an open problem. In fact, even in the wireline setting, obtaining analytical results on the delay beyond the product form types of networks has posed great challenges. These are further exacerbated in the wireless setting due to complexity of scheduling needed to mitigate interference. Thus, new approaches are required to address the delay problem in multi-hop wireless systems. To this end, we develop a new approach to reduce the bottlenecks in a multi-hop wireless to single queue systems to carry out lower bound analysis.
We are able to apply known techniques to obtain a sample path delay-optimal scheduling policy. We also obtain policies that minimize a function of queue lengths at all times on a sample path basis. Further, for a tandem queueing system, we show numerically that the expected delay of a previously known delay-optimal policy coincides with the lower bound. The analysis is very general and admits a large class of arrival processes. Also, the analysis can be readily extended to handle channel variations. The main difficulty, however is in identifying the bottlenecks in the system. The lower bound not only helps us identify near-optimal policies, but may also help in the design of a delay-efficient policy as indicated by the numerical studies.
LIMITATIONS & FUTURE ENHANCEMENTS :
We show that our analysis captures the essential features of the wireless network and is useful since, in many cases, we can design a policy that performs close to the lower bound. Perhaps, the most important advantage of the lower bound is that it can be used for analyzing a large class of arrival processes using known results in the queueing literature.

Our approach, however, depends on the efficient computation of the bottlenecks in the system. A complete characterization of the bottlenecks in a multi-hop wireless network is

an extremely difficult problem. Exclusive sets characterized in prove to be a good beginning for delay analysis.

However, they are not enough to obtain tight lower bounds, as shown in the case of a cyclic network. The design of a delay optimal policy that achieves minimum possible average delay of packets in the network for a given routing matrix has proved to be very challenging. Except for a delay optimal scheduling scheme for the tandem queueing network under the node exclusive interference model derived in and small switches, no result is known for other topologies and interference models.
In, delay optimal schemes for wireless networks have been proposed, which typically minimize an expected delay metric assuming that the system behaves as M/M/1. Given

the complexity involved in scheduling link transmissions in a multi-hop wireless system, the M/M/1 approximation is too coarse.
REFERENCE & BIBLIOGRAPHY :
Good Teachers are worth more than thousand books, we have them in Our Department

[1] H. Balakrishnan, C. Barrett, V. Kumar, M. Marathe, and S. Thite. The distance-2 matching problem and its relationship to the maclayer capacity of ad hoc networks. IEEE Journal on Selected Area in Communications, 22, 2004.
[2] L. Bui, R. Srikant, and A. L. Stolyar. Novel architectures and algorithms for delay reduction in back-pressure scheduling and routing. INFOCOM Mini-Conference, 2009.
[3] P. Chaporkar, K. Kar, and S. Sarkar. Throughput guarantees through maximal scheduling in wireless networks. In 43rd Annual Allerton Conference on Communication, Control, and Computing, 2005.
[4] J. G. Dai and W. Lin. Maximum pressure policies in stochastic processing networks. Operations Research, 53:197–218, 2005.
[5] J. G. Dai and W. Lin. Asymptotic optimality of maximum pressure policies in stochastic processing networks. Preprint, October 2007.
[6] H. Dupuis and B. Hajek. A simple formula for mean multiplexing delay for indep endent regenerative sources. Queueing Systems Theory and Applications, 16:195–239, 1994.
[7] A. Feldmann, N. Kammenhuber, O. Maennel, B. Maggs, R. D. Prisco, and R. Sundaram. A methodology for estimating interdomain web traffic demand. In IMC, 2004.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and Cross-Layer Control in Wireless Networks, Foundations and Trends in Networking, volume 1. Now Publishers, 2006.

[9] G. R. Gupta. Delay Efficient Control Policies for Wireless Networks. Ph.D. Dissertation, Purdue University, 2009.
[10] G. R. Gupta, S. Sanghavi, and N. B. Shroff. Node weighted scheduling. SIGMETRICS-Performance’09, June 2009
SITES REFERRED:
http://www.asp.net.com
http://www.dotnetspider.com/
http://www.almaden.ibm.com/software/quest/Resources/
http://www.computer.org/publications/dlib

http://www.developerfusion.com/

Client 3

Server

Queue Flow Network

Destination

Client

Network Routers

Source Router

Client

Client 2

Client 1

Queuing Analysis

Server

Connect to

Connect to

Connect to

Client Request

Client 3

Client 2

Client 1

Queuing Analysis

Server

QUEUE

ON/OFF

QUEUE

ON/OFF

Send

Send

Sheduling

Policies

File

QUEUEING ANALYSIS

Send

Client 3

Client 2

Client 1

QUEUE

ON/OFF

Receiver

Server

