A Unified Approach to Optimizing Performance in Networks Serving Heterogeneous Flows

ABSTRACT:
In this paper, we formulate a new network optimization problem that incorporates the performance requirements of inelastic and elastic traffic flows. The solution of this problem provides us with a new queuing architecture, and distributed load balancing and congestion control algorithm with provably optimal performance. In particular, we show that our algorithm achieves the dual goal of maximizing the aggregate utility gained by the elastic flows while satisfying the demands of inelastic flows. Our base optimal algorithm is extended to provide better delay performance for both types of traffic with minimal degradation in throughput. It is also extended to the practically relevant case of dynamic arrivals and departures. Our solution allows for a controlled interaction between the performance of inelastic and elastic traffic flows.
This performance can be tuned to achieve the appropriate design tradeoff. The network performance is studied both theoretically and through extensive simulations.

INTRODUCTION:

Over the last several years, we have witnessed the development of increasingly sophisticated optimization and control techniques to address a variety of resource allocation problems for communication networks. Much of this investigation has focused primarily on controllable or elastic traffic. However, networks are seeing a major growth in real-time traffic (voice and video), which is expected to consume an increasing fraction of the network services. This “inelastic” traffic does not lend itself to feedback control because of real-time constraints and its rate cannot be modulated without sacrificing quality. Thus, it is imperative that one develop efficient resource allocation strategies to jointly manage both inelastic and elastic traffic. Integration of elastic and inelastic flows in single-hop wireless systems has been studied it has been extended to a multiple-hop network, however with the restriction of every flow having a single route. The availability of multiple routes, which is studied in this paper, significantly changes the structure of the solution, and forces us to develop a joint congestion control and load balancing mechanism that is fully distributed, and achieves high throughput and good delay characteristics.

Our goal is to balance the load of the inelastic traffic in the network such that the elastic traffic intelligently exploits the time varying residual capacity (the link capacity minus the capacity needed to serve the inelastic flows) at each link in the network. To see the potential gains of such an interaction, consider the network shown in Figure 1, which serves one inelastic and one elastic flow over links of capacity 20. Assume that the inelastic flow has a fixed rate of 20 and has two routes to divide its traffic over as shown in the figure. It can be seen that the rate distribution decision of the inelastic flow will significantly affect the elastic flow performance. If it divides its traffic equally amongst the two routes as in Figure 1, the elastic flow cannot achieve a rate more than 10. However, if the inelastic flow can steer more of its traffic over the less congested route, more resources become available to the elastic traffic and it can achieve rates close to 20 as shown in Figure 2. With this intuition, we want to design a dynamic algorithm that automatically adapts the operation of inelastic and elastic flows to get the optimal performance.

[image:][image:]
 1. FIXED INELASTIC TRAFFIC	2. CONTROLLABLE INELASTIC TRAFFIC

This requires a solution that seamlessly and distributive balances the load of the inelastic traffic across the network as well as injects enough elastic traffic into the network so that no capacity is wasted while preventing network overloading. We begin first by providing the system model and general assumptions. We then formulate a problem that attempts to maximize the utility of the elastic flows in the network subject to the constraint that the data requirements of the inelastic flows are met. We solve this problem via a two-step approach.

First, we solve a simple version of the problem when the inelastic flow rates are deterministic. We then use the insights gained from that framework and extend the solution to the more general stochastic case. We then extend the work in two practically important directions. The first is to develop a virtual queue based solution that allows us to achieve low delays with a nominal and controllable sacrifice in the throughput of the elastic flows. The second is to extend the solution in the presence of flow arrivals and departures, where certain elastic flows may be very short and may leave the system before the algorithm has the opportunity to converge. We also present extensive simulations to demonstrate the interaction between the two types of flows under our proposed algorithms. In particular, we show that due to the dynamic nature of the load balancing mechanism implemented by inelastic sources, the elastic flows are able to push inelastic traffic onto less loaded routes and achieve higher rates. We show that this interaction maximizes the sum of the utilities of the elastic flows while satisfying the demands of the inelastic flows. We also compare the delay performance of our algorithm with and without the virtual queue implementation and illustrate that the virtual queue scheme can reduce the end-to-end delays significantly.

EXISTING SYSTEM:

Existing method traffic is balanced through the first stage fabric, so that it is uniform when passing the second stage fabric. In this design, a centralized scheduler is omitted, but the high-capacity cross-bars are still required. The total switch capacity is limited by the cross-bar capacity. Also, synchronization on a cell-by-cell basis is needed across the fabric. The architecture in again assumes the small number of high-capacity line cards. Such line cards would require involved development. Also, it is not only the capacity that matters, but also the number of switch ports should be large as we noted.
However, assumed line-cards can be viewed as shared buffers to which multiple regular capacity line-cards (10 Gb/s) are attached. A general formula derived in our paper will be applied to assess the performance of the architecture proposed in delay sensitive traffic is a significant part of the Internet traffic which is ever increasing. The delay incurred by Close packet switches based on load balancing has not been previously assessed.

DISADVANTAGE:

· Traffic of each individual flow is balanced independently across the switching elements.

· If there are many flows that transmit cells across some switching elements at the same time, the cells will experience long delay

PROPOSED SYSTEM:

· Our proposed algorithms in particular, we show that due to the dynamic nature of the load balancing mechanism implemented by inelastic sources, the elastic flows are able to push inelastic traffic onto less loaded routes and achieve higher rates.

· We show that this interaction maximizes the sum of the utilities of the elastic flows while satisfying the demands of the inelastic flows. We also compare the delay performance of our algorithm with and without the virtual queue implementation and illustrate that the virtual queue scheme can reduce the end-to-end delays significantly.

· We formulated a new network optimization problem and proposed a novel queuing architecture, and develop a distributed load balancing and congestion control algorithm with provably optimal performance. We also provided an important improvement to our joint algorithm to achieve better delay performance.

· Inelastic applications are delay sensitive, hence we assume that packets from inelastic flows have strict priority over their elastic counterparts. Thus, the inelastic flows do not see the elastic flows in the queues they traverse. But in some cases a link might be critically loaded by the inelastic traffic itself.

We propose the following joint congestion control and load balancing algorithm:

JOINT CONGESTION CONTROL ALGORITHM:

[image:]
LOAD BALANCING ALGORITHM:

[image:]

ADVANTAGE:

· Close packet switches provide high capacity.
· No centralized admission control is required in the described architecture
· There is no need for the high-capacity shared buffers or cross-bars, there is no need for the cell-by-cell synchronization across the fabric, and there is no need for the centralized scheduler.
· It simplifies network design because the traffic passes the fabric as long as the output ports are not overloaded, and it enables distributed admission control which follows the fast traffic-pattern changes typical on the Internet.

HARDWARE &SOFTWARE REQUIREMENTS:
			
HARDWARE:
PROCESSOR			: 	PENTIUM IV 2.6 GHz
RAM				:	512 MB DD RAM
MONITOR			:	15” COLOR
HARD DISK 			:	20 GB
FLOPPY DRIVE 		:	1.44 MB
DDRIVE			:	LG 52X

SOFTWARE:
Front End 			: 	Java, Swing
Tools Used			: 	 JFrameBuilder
Operating System 		: 	WindowsXP

MODULE DESCRIPTION:

MODULE 1: PACKET FORWARDING
A packet consists of two kinds of data: control information and user data (also known as payload). The control information provides data the network needs to deliver the user data, for example: source and destination addresses, error detection codes like checksums, and sequencing information. Typically, control information is found in packet headers and trailers, with user data in between.
Different communications protocols use different conventions for distinguishing between the elements and for formatting the data. In Binary Synchronous Transmission, the packet is formatted in 8-bit bytes, and special characters are used to delimit the different elements. Other protocols, like Ethernet, establish the start of the header and data elements by their location relative to the start of the packet. Some protocols format the information at a bit level instead of a byte level.
A good analogy is to consider a packet to be like a letter: the header is like the envelope, and the data area is whatever the person puts inside the envelope. A difference, however, is that some networks can break a larger packet into smaller packets when necessary (note that these smaller data elements are still formatted as packets).
A network design can achieve two major results by using packets: error detection and multiple hosts addressing.

MODULE 2: INPUT SWITCH TO CENTRALIZED SWITCH
	In this module the input switch is capable of getting N no of inputs. The user gives the input in each switch. Then all the input is transferred to the queue. Each switches having one buffered queue to serialize the data flow. Queue process based on the first come first serve. All the input data reaches the queue, and then the queue forwards the data to the centralized switch.

MODULE 3: LOAD BALANCING:
The solution of this problem provides us with a new queuing architecture, and distributed load balancing and congestion control algorithm with provably optimal performance. In particular, we show that our algorithm achieves the dual goal of maximizing the aggregate utility gained by the elastic flows while satisfying the demands of inelastic flows.

Our base optimal algorithm is extended to provide better delay performance for both types of traffic with minimal degradation in throughput. It is also extended to the practically relevant case of dynamic arrivals and departures. Our solution allows for a controlled interaction between the performance of inelastic and elastic traffic flows.

We show that due to the dynamic nature of the load balancing mechanism implemented by inelastic sources, the elastic flows are able to push inelastic traffic onto less loaded routes and achieve higher rates.

We show that this interaction maximizes the sum of the utilities of the elastic flows while satisfying the demands of the inelastic flows. We also compare the delay performance of our algorithm with and without the virtual queue implementation and illustrate that the virtual queue scheme can reduce the end-to-end delays significantly.

MODULE 4: Joint Congestion Control & LOAD BALANCING:

Our joint congestion control and load balancing algorithm in two important directions: we first provide a virtual queue based solution that reduces the overall queue length with a negligible sacrifice in capacity. We then provide a solution that takes flow arrivals and departures into account.
VIRTUAL QUEUE ALGORITHM:
Inelastic applications are delay sensitive, hence we assume that packets from inelastic flows have strict priority over their elastic counterparts. Thus, the inelastic flows do not see the elastic flows in the queues they traverse. But in some cases a link might be critically loaded by the inelastic traffic itself.

In the above algorithm, note that the congestion control algorithm only responds to the virtual queues for elastic flows, but the load balancing algorithm responds to both the virtual queues for elastic flow and inelastic flows. This algorithm equally splits the inelastic traffic onto each of its routes (assume it is feasible in the network), and does the congestion control of the elastic flows in the same manner as in our algorithm.

This algorithm is implemented for the scenario in Phase 5 with the average rates indicated. We see that due to the absence of dynamic load balancing, the elastic flows cannot utilize the network fully since the rates assigned to the inelastic flows are fixed. We use the joint congestion control and load balancing algorithm with virtual queue to show the impact of the virtual queue implementation on delay.

SYSTEM STUDY:

FEASIBILITY STUDY:
The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.
Three key considerations involved in the feasibility analysis are	
· ECONOMICAL FEASIBILITY
· TECHNICAL FEASIBILITY
· SOCIAL FEASIBILITY

ECONOMICAL FEASIBILITY:
 This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY:
This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.

SOCIAL FEASIBILITY:
 The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

SYSTEM TESTING:

 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

TYPES OF TESTS:

Unit testing:

 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing:

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

Functional test:

 Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals.
Functional testing is centered on the following items:
Valid Input 	: 	identified classes of valid input must be accepted.
Invalid Input 	: 	identified classes of invalid input must be rejected.
Functions 	: 	identified functions must be exercised.
Output 	 	: 	identified classes of application outputs must be exercised.
Systems/Procedures: interfacing systems or procedures must be invoked.

 	Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test:

 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

White Box Testing:

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level.

Black Box Testing:

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.

Unit Testing:

	Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach
	Field testing will be performed manually and functional tests will be written in detail.

Test objectives:
· All field entries must work properly.
· Pages must be activated from the identified link.
· The entry screen, messages and responses must not be delayed.

Features to be tested:
· Verify that the entries are of the correct format
· No duplicate entries should be allowed
· All links should take the user to the correct page.

Integration Testing:

	Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.
	The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

Acceptance Testing:

	User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

SOFTWARE ENVIRONMENT:

Java Technology

Java technology is both a programming language and a platform.

The Java Programming Language
	The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

· Simple
· Architecture neutral
· Object oriented
· Portable
· Distributed	
· High performance
· Interpreted	
· Multithreaded
· Robust
· Dynamic
· Secure	

With most programming languages, you either compile or interpret a program so that you can run it on your computer. The Java programming language is unusual in that a program is both compiled and interpreted. With the compiler, first you translate a program into an intermediate language called Java byte codes —the platform-independent codes interpreted by the interpreter on the Java platform. The interpreter parses and runs each Java byte code instruction on the computer. Compilation happens just once; interpretation occurs each time the program is executed. The following figure illustrates how this works.

[image: g1]
	
	You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a development tool or a Web browser that can run applets, is an implementation of the Java VM. Java byte codes help make “write once, run anywhere” possible. You can compile your program into byte codes on any platform that has a Java compiler. The byte codes can then be run on any implementation of the Java VM. That means that as long as a computer has a Java VM, the same program written in the Java programming language can run on Windows 2000, a Solaris workstation, or on an iMac.

[image: helloWorld]

The Java Platform
A platform is the hardware or software environment in which a program runs. We’ve already mentioned some of the most popular platforms like Windows 2000, Linux, Solaris, and MacOS. Most platforms can be described as a combination of the operating system and hardware. The Java platform differs from most other platforms in that it’s a software-only platform that runs on top of other hardware-based platforms.
The Java platform has two components:
· The Java Virtual Machine (Java VM)
· The Java Application Programming Interface (Java API)
You’ve already been introduced to the Java VM. It’s the base for the Java platform and is ported onto various hardware-based platforms.
The Java API is a large collection of ready-made software components that provide many useful capabilities, such as graphical user interface (GUI) widgets. The Java API is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? Highlights what functionality some of the packages in the Java API provide.
The following figure depicts a program that’s running on the Java platform. As the figure shows, the Java API and the virtual machine insulate the program from the hardware.
[image: g3]
Native code is code that after you compile it, the compiled code runs on a specific hardware platform. As a platform-independent environment, the Java platform can be a bit slower than native code. However, smart compilers, well-tuned interpreters, and just-in-time byte code compilers can bring performance close to that of native code without threatening portability.

What Can Java Technology Do?

The most common types of programs written in the Java programming language are applets and applications. If you’ve surfed the Web, you’re probably already familiar with applets. An applet is a program that adheres to certain conventions that allow it to run within a Java-enabled browser.

However, the Java programming language is not just for writing cute, entertaining applets for the Web. The general-purpose, high-level Java programming language is also a powerful software platform. Using the generous API, you can write many types of programs.

An application is a standalone program that runs directly on the Java platform. A special kind of application known as a server serves and supports clients on a network. Examples of servers are Web servers, proxy servers, mail servers, and print servers. Another specialized program is a servlet. A servlet can almost be thought of as an applet that runs on the server side. Java Servlets are a popular choice for building interactive web applications, replacing the use of CGI scripts. Servlets are similar to applets in that they are runtime extensions of applications. Instead of working in browsers, though, servlets run within Java Web servers, configuring or tailoring the server.
How does the API support all these kinds of programs? It does so with packages of software components that provides a wide range of functionality. Every full implementation of the Java platform gives you the following features:

· The essentials: Objects, strings, threads, numbers, input and output, data structures, system properties, date and time, and so on.
· Applets: The set of conventions used by applets.
· Networking: URLs, TCP (Transmission Control Protocol), UDP (User Data gram Protocol) sockets, and IP (Internet Protocol) addresses.
· Internationalization: Help for writing programs that can be localized for users worldwide. Programs can automatically adapt to specific locales and be displayed in the appropriate language.
· Security: Both low level and high level, including electronic signatures, public and private key management, access control, and certificates.
· Software components: Known as JavaBeansTM, can plug into existing component architectures.
· Object serialization: Allows lightweight persistence and communication via Remote Method Invocation (RMI).
· Java Database Connectivity (JDBCTM): Provides uniform access to a wide range of relational databases.
The Java platform also has APIs for 2D and 3D graphics, accessibility, servers, collaboration, telephony, speech, animation, and more. The following figure depicts what is included in the Java 2 SDK.

[image: gs5]

How Will Java Technology Change My Life?
We can’t promise you fame, fortune, or even a job if you learn the Java programming language. Still, it is likely to make your programs better and requires less effort than other languages. We believe that Java technology will help you do the following:
· Get started quickly: Although the Java programming language is a powerful object-oriented language, it’s easy to learn, especially for programmers already familiar with C or C++.
· Write less code: Comparisons of program metrics (class counts, method counts, and so on) suggest that a program written in the Java programming language can be four times smaller than the same program in C++.
· Write better code: The Java programming language encourages good coding practices, and its garbage collection helps you avoid memory leaks. Its object orientation, its JavaBeans component architecture, and its wide-ranging, easily extendible API let you reuse other people’s tested code and introduce fewer bugs.
· Develop programs more quickly: Your development time may be as much as twice as fast versus writing the same program in C++. Why? You write fewer lines of code and it is a simpler programming language than C++.
· Avoid platform dependencies with 100% Pure Java: You can keep your program portable by avoiding the use of libraries written in other languages. The 100% Pure JavaTM Product Certification Program has a repository of historical process manuals, white papers, brochures, and similar materials online.
· Write once, run anywhere: Because 100% Pure Java programs are compiled into machine-independent byte codes, they run consistently on any Java platform.
· Distribute software more easily: You can upgrade applets easily from a central server. Applets take advantage of the feature of allowing new classes to be loaded “on the fly,” without recompiling the entire program.

ODBC:

Microsoft Open Database Connectivity (ODBC) is a standard programming interface for application developers and database systems providers. Before ODBC became a de facto standard for Windows programs to interface with database systems, programmers had to use proprietary languages for each database they wanted to connect to. Now, ODBC has made the choice of the database system almost irrelevant from a coding perspective, which is as it should be. Application developers have much more important things to worry about than the syntax that is needed to port their program from one database to another when business needs suddenly change.

Through the ODBC Administrator in Control Panel, you can specify the particular database that is associated with a data source that an ODBC application program is written to use. Think of an ODBC data source as a door with a name on it. Each door will lead you to a particular database. For example, the data source named Sales Figures might be a SQL Server database, whereas the Accounts Payable data source could refer to an Access database. The physical database referred to by a data source can reside anywhere on the LAN.

The ODBC system files are not installed on your system by Windows 95. Rather, they are installed when you setup a separate database application, such as SQL Server Client or Visual Basic 4.0. When the ODBC icon is installed in Control Panel, it uses a file called ODBCINST.DLL. It is also possible to administer your ODBC data sources through a stand-alone program called ODBCADM.EXE. There is a 16-bit and a 32-bit version of this program and each maintains a separate list of ODBC data sources.

From a programming perspective, the beauty of ODBC is that the application can be written to use the same set of function calls to interface with any data source, regardless of the database vendor. The source code of the application doesn’t change whether it talks to Oracle or SQL Server. We only mention these two as an example. There are ODBC drivers available for several dozen popular database systems. Even Excel spreadsheets and plain text files can be turned into data sources. The operating system uses the Registry information written by ODBC Administrator to determine which low-level ODBC drivers are needed to talk to the data source (such as the interface to Oracle or SQL Server). The loading of the ODBC drivers is transparent to the ODBC application program. In a client/server environment, the ODBC API even handles many of the network issues for the application programmer.

The advantages of this scheme are so numerous that you are probably thinking there must be some catch. The only disadvantage of ODBC is that it isn’t as efficient as talking directly to the native database interface. ODBC has had many detractors make the charge that it is too slow. Microsoft has always claimed that the critical factor in performance is the quality of the driver software that is used. In our humble opinion, this is true. The availability of good ODBC drivers has improved a great deal recently. And anyway, the criticism about performance is somewhat analogous to those who said that compilers would never match the speed of pure assembly language. Maybe not, but the compiler (or ODBC) gives you the opportunity to write cleaner programs, which means you finish sooner. Meanwhile, computers get faster every year.

JDBC:

In an effort to set an independent database standard API for Java; Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access mechanism that provides a consistent interface to a variety of RDBMSs. This consistent interface is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he or she must provide the driver for each platform that the database and Java run on.
To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC. As you discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing a completely new connectivity solution.
JDBC was announced in March of 1996. It was released for a 90 day public review that ended June 8, 1996. Because of user input, the final JDBC v1.0 specification was released soon after.

The remainder of this section will cover enough information about JDBC for you to know what it is about and how to use it effectively. This is by no means a complete overview of JDBC. That would fill an entire book.

JDBC Goals:

Few software packages are designed without goals in mind. JDBC is one that, because of its many goals, drove the development of the API. These goals, in conjunction with early reviewer feedback, have finalized the JDBC class library into a solid framework for building database applications in Java.
The goals that were set for JDBC are important. They will give you some insight as to why certain classes and functionalities behave the way they do. The eight design goals for JDBC are as follows:

1. SQL Level API

 The designers felt that their main goal was to define a SQL interface for Java. Although not the lowest database interface level possible, it is at a low enough level for higher-level tools and APIs to be created. Conversely, it is at a high enough level for application programmers to use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code and to hide many of JDBC’s complexities from the end user.
2. SQL Conformance

SQL syntax varies as you move from database vendor to database vendor. In an effort to support a wide variety of vendors, JDBC will allow any query statement to be passed through it to the underlying database driver. This allows the connectivity module to handle non-standard functionality in a manner that is suitable for its users.

3. JDBC must be implemental on top of common database interfaces
 	 The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal allows JDBC to use existing ODBC level drivers by the use of a software interface. This interface would translate JDBC calls to ODBC and vice versa.

4. Provide a Java interface that is consistent with the rest of the Java system

Because of Java’s acceptance in the user community thus far, the designers feel that they should not stray from the current design of the core Java system.
5. Keep it simple

This goal probably appears in all software design goal listings. JDBC is no exception. Sun felt that the design of JDBC should be very simple, allowing for only one method of completing a task per mechanism. Allowing duplicate functionality only serves to confuse the users of the API.

6. Use strong, static typing wherever possible
 Strong typing allows for more error checking to be done at compile time; also, less error appear at runtime.
7. Keep the common cases simple
 Because more often than not, the usual SQL calls used by the programmer are simple SELECT’s, INSERT’s, DELETE’s and UPDATE’s, these queries should be simple to perform with JDBC. However, more complex SQL statements should also be possible.
Finally we decided to proceed the implementation using Java Networking.
And for dynamically updating the cache table we go for MS Access database.
 Java ha two things: a programming language and a platform.
 Java is a high-level programming language that is all of the following

			Simple			Architecture-neutral
			Object-oriented		Portable
Distributed 			High-performance
			Interpreted			multithreaded
			Robust			Dynamic
			Secure
		
Java is also unusual in that each Java program is both compiled and interpreted. With a compile you translate a Java program into an intermediate language called Java byte codes the platform-independent code instruction is passed and run on the computer.
Compilation happens just once; interpretation occurs each time the program is executed. The figure illustrates how this works.

 (
Java

Program
Compilers
Interpreter
My Program
)

You can think of Java byte codes as the machine code instructions for the Java Virtual Machine (Java VM). Every Java interpreter, whether it’s a Java development tool or a Web browser that can run Java applets, is an implementation of the Java VM. The Java VM can also be implemented in hardware.

Java byte codes help make “write once, run anywhere” possible. You can compile your Java program into byte codes on my platform that has a Java compiler. The byte codes can then be run any implementation of the Java VM. For example, the same Java program can run Windows NT, Solaris, and Macintosh.

Networking TCP/IP stack:
The TCP/IP stack is shorter than the OSI one:
[image: xxx_files/tcp_stack.gif]
TCP is a connection-oriented protocol; UDP (User Datagram Protocol) is a connectionless protocol.
IP datagram’s:
The IP layer provides a connectionless and unreliable delivery system. It considers each datagram independently of the others. Any association between datagram must be supplied by the higher layers. The IP layer supplies a checksum that includes its own header. The header includes the source and destination addresses. The IP layer handles routing through an Internet. It is also responsible for breaking up large datagram into smaller ones for transmission and reassembling them at the other end.
 UDP:
UDP is also connectionless and unreliable. What it adds to IP is a checksum for the contents of the datagram and port numbers. These are used to give a client/server model - see later.
TCP:
TCP supplies logic to give a reliable connection-oriented protocol above IP. It provides a virtual circuit that two processes can use to communicate.
 Internet addresses
In order to use a service, you must be able to find it. The Internet uses an address scheme for machines so that they can be located. The address is a 32 bit integer which gives the IP address. This encodes a network ID and more addressing. The network ID falls into various classes according to the size of the network address.
Network address:
Class A uses 8 bits for the network address with 24 bits left over for other addressing. Class B uses 16 bit network addressing. Class C uses 24 bit network addressing and class D uses all 32.
Subnet address:
Internally, the UNIX network is divided into sub networks. Building 11 is currently on one sub network and uses 10-bit addressing, allowing 1024 different hosts.
Host address:
8 bits are finally used for host addresses within our subnet. This places a limit of 256 machines that can be on the subnet.
Total address:

[image: xxx_files/inet_addr.gif]
The 32 bit address is usually written as 4 integers separated by dots.
Port addresses
A service exists on a host, and is identified by its port. This is a 16 bit number. To send a message to a server, you send it to the port for that service of the host that it is running on. This is not location transparency! Certain of these ports are "well known".
Sockets:
A socket is a data structure maintained by the system to handle network connections. A socket is created using the call socket. It returns an integer that is like a file descriptor. In fact, under Windows, this handle can be used with Read File and Write File functions.
#include <sys/types.h>
#include <sys/socket.h>
int socket(int family, int type, int protocol);
Here "family" will be AF_INET for IP communications, protocol will be zero, and type will depend on whether TCP or UDP is used. Two processes wishing to communicate over a network create a socket each. These are similar to two ends of a pipe - but the actual pipe does not yet exist.
JFree Chart:
JFreeChart is a free 100% Java chart library that makes it easy for developers to display professional quality charts in their applications. JFreeChart's extensive feature set includes:
A consistent and well-documented API, supporting a wide range of chart types;
A flexible design that is easy to extend, and targets both server-side and client-side applications;
Support for many output types, including Swing components, image files (including PNG and JPEG), and vector graphics file formats (including PDF, EPS and SVG);
JFreeChart is "open source" or, more specifically, free software. It is distributed under the terms of the GNU Lesser General Public Licence (LGPL), which permits use in proprietary applications.
1. Map Visualizations:
Charts showing values that relate to geographical areas. Some examples include: (a) population density in each state of the United States, (b) income per capita for each country in Europe, (c) life expectancy in each country of the world. The tasks in this project include: Sourcing freely redistributable vector outlines for the countries of the world, states/provinces in particular countries (USA in particular, but also other areas);
Creating an appropriate dataset interface (plus default implementation), a rendered, and integrating this with the existing XYPlot class in JFreeChart;
Testing, documenting, testing some more, documenting some more.
2. Time Series Chart Interactivity
Implement a new (to JFreeChart) feature for interactive time series charts --- to display a separate control that shows a small version of ALL the time series data, with a sliding "view" rectangle that allows you to select the subset of the time series data to display in the main chart.
3. Dashboards
There is currently a lot of interest in dashboard displays. Create a flexible dashboard mechanism that supports a subset of JFreeChart chart types (dials, pies, thermometers, bars, and lines/time series) that can be delivered easily via both Java Web Start and an applet.
4. Property Editors
The property editor mechanism in JFreeChart only handles a small subset of the properties that can be set for charts. Extend (or reimplement) this mechanism to provide greater end-user control over the appearance of the charts.

CONCLUSION:
In this work, we consider the optimal control of networks that serve heterogeneous traffic types with diverse demands, namely inelastic and elastic traffic. We formulated a new network optimization problem and proposed a novel queuing architecture, and develop a distributed load balancing and congestion control algorithm with provably optimal performance. We also provided an important improvement to our joint algorithm to achieve better delay performance introducing new design parameters (_1, _2) together with a set of virtual queues. We have also extended our algorithm to the case of dynamic arrivals and departures of the flows. Such a scenario is relevant to real-world operation as the real-world applications randomly initiate flows that lasts for a random duration.

FEATURE ENHANCEMENT:

· One future direction is to extend our results to multi-hop wireless networks with fading channels and interference, and develop joint load-balancing/congestion control/routing/scheduling algorithms.
· Here, we considered a time-slotted system, and assumed that the network is perfectly synchronized. The impact of possible synchronism on the algorithm performance needs to be studied.
· We adopted a link-centric formulation, which assumes instantaneous arrivals of the packets at all the links on their routes. An alternative is to consider a nodecentric formulation, where packets are sequentially transferred, and a source only requires the information of the queues at the source.
· Here we restricted each elastic flow to a single route. An extension to multiple routes or dynamic routing for elastic flow constitutes a part of our ongoing work.
· So far, we have focused on the stability and long term guarantees for the traffic types. We aim to investigate oscillatory behavior and delay characteristics in our future work.

REFERENCES:

[1] E. Altman, T. Bas¸ar, Congestion control as a stochastic control problem with action delays. Control Methods for communication networks, V. Anantharam and J. Walrand, editors.

[2] J. Bolot and A. Shankar. Dynamic behavior of rate-based flow control mechanisms. ACM Comput. Commun. Rev., 20(2), 1992.

[3] S. Borst and N. Hegde. Integration of streaming and elastic traffic in wireless networks. In Proc. INFOCOM, May 2007.

[4] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.

[5] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu. Joint asynchronous congestion control and distributed scheduling for wireless networks. Proceedings of IEEE Infocom 2006.

[6] A. Eryilmaz and R. Srikant. Fair resource allocation in wireless networks using queue-length based scheduling and congestion control. In Proceedings of IEEE Infocom, volume 3, pages 1794–1803, Miami, FL, March 2005.

[7] A. Eryilmaz and R. Srikant. Resource allocation of multi-hop wireless networks. In Proceedings of International Zurich Seminar on Communications, February 2006.

[8] L. Georgiadis, M. J. Neely, and L. Tassiulas. Resource Allocation and Cross-Layer Control in Wireless Networks. 2006. Foundations and Trends in Networking.

[9] P. Hande, S. Zhang, and M. Chiang. Distributed rate allocation for inelastic flows. Networking, IEEE/ACM Transactions on, 15(6):1240– 1253, Dec. 2007.
[10] K. Kar, S. Sarkar, and L. Tassiulas. A simple rate control algorithm for maximizing total user utillity. In Proceedings of IEEE INFOCOM, Anchorage, Alaska, 2001.

REFERENCES MADE FROM:

1. Professional Java Network Programming
2. Java Complete Reference
4. Data Communications and Networking, by Behrouz A Forouzan.
5. Computer Networking: A Top-Down Approach, by James F. Kurose.
6. Operating System Concepts, by Abraham Silberschatz.

SITES REFERRED:

http://java.sun.com
http://www.sourcefordgde.com
http://www.networkcomputing.com/

image6.png
oy afrodram

HelloHorldepp . java

image7.png
yProgran.java

Tava APl
Sstraane || b o i
Hardware-Based Plaiom)

image8.png
SDK 13

Java IDE

Java Compiler

oth

er Dev. Tools

Java Debugger

Client Compiler
P e) @) @ =
HotSpot () (et) (e El
Runtime Ten) (_wi) (acosssiiny) (__swing) (_oora

(Solars) (W32) [Linux

Y (Mac

1 (Gther

€1 3ur wnejeq

image9.png
application | | application| OSI 5-7
TCP UDP Osl 4
P 0Osl 3
[

Y
h/w interface oSl 1-2

image10.png
137.92.11.13
N

/]

network subnet host

image1.emf

image2.emf

image3.png
Joint Congestion Control and Load Balancing Algorithm
for the SNO-K problem:
« Queue evolution for a

pilt+1] = (@lt] + 2] +ult] - o)
+ Congestion Controller for clastic flow f,:

el = min {0,027 (om0}

ik I

image4.png
+ Load Balancing implemented for nelastic flow f;:
§ +
227l = (@) - apgole])
or equivalently,
eDle+ 1= (a1 + 6l - apgolt])

where gf] satisfies

=]

+

1R N
3 (@l - anolt) o, = A+ 1= Al

=
Rl

and 3”2 [0] = A0
=

image5.png
myProgran. java

nyProgran.class

Compiler

