                            Literature survey
Literature survey is the most important step in software development process. Before developing the tool it is necessary to determine the time factor, economy n company strength. Once these things r satisfied, ten next steps are to determine which operating system and language can be used for developing the tool. Once the programmers start building the tool the programmers need lot of external support. This support can be obtained from senior programmers, from book or from websites. Before building the system the above consideration r taken into account for developing the proposed system.
Overview of Public Key Cryptography:

Public Key cryptography uses two keys Private key (known only by the recipient) and a Public key (known to everybody). The public key is used to encrypt the message and then it is sent to the recipient who can decrypt the message using the private key. The message encrypted with the public key cannot be decrypted with any other key except for its corresponding private key. The following Diagram illustrates the encryption process in the public key cryptography


The following diagram illustrates the decryption process in the public key cryptography:


The public-key algorithm uses a one-way function to translate plaintext to ciphertext. Then, without the private key, it is very difficult for anyone (including the sender) to reverse the process (i.e., translate the ciphertext back to plaintext). A one-way function is a function that is easy to apply, but extremely difficult to invert. The most common one-way function used in public-key cryptography involves factoring very large numbers. The idea is that it is relatively easy to multiply numbers, even large ones, with a computer; however, it is very difficult to factor large numbers. The only known algorithms basically have to do a sort of exhaustive search (Does 2 go in to? Does 3? 4? 5? 6? and so on). With numbers 128 bits long, such a search requires performing as many tests as there are particles in the universe.

For instance, someone wishing to receive encrypted messages can multiply two very large numbers together. She keeps the two original numbers a secret, but sends the product to anyone who wishes to send her a message. The encryption/decryption algorithm is based upon combining the public number with the plaintext. Because it is a one-way function, the only way to reverse the process is to use one of the two original numbers. However, assuming the two original numbers are very large, their product is even bigger; it would be impractical for an adversary to try every possibility to determine what the two original numbers were.

4. RSA – Public Key Cryptography Algorithm:

4.1 Introduction to RSA Algorithm:

RSA is one of the most popular and successful public key cryptography algorithms. The algorithm has been implemented in many commercial applications. It is named after its inventor’s Ronald L. Rivest, Adi Shamir, and Leonard Adleman. They invented this algorithm in the year 1977. They utilized the fact that when prime numbers are chosen as a modulus, operations behave “conveniently”. They found that if we use a prime for the modulus, then raising a number to the power (prime ‑ 1) is 1.

RSA algorithm simply capitalizes on the fact that there is no efficient way to factor very large integers. The security of the whole algorithm relies on that fact. If someone comes up with an easy way of factoring a large number, then that’s the end of the RSA algorithm. Then any message encrypted with the RSA algorithm is no more secure.

4.2 RSA Algorithm:

The encryption and decryption in the RSA algorithm is done as follows. Before encryption and decryption is done, we have to generate the key pair and then those keys are used for encryption and decryption. 

4.2.1 Key Generation:

The first step in RSA encryption is to generate a key pair. Two keys are generated of which one is used as the public key and the other is used as the private key. The keys are generated with the help of two large prime numbers. The keys are generated as follows

1. Generate two large random primes p and q.

2. Compute n which is equal to product of those two prime numbers, n = pq 

3. Compute φ(n) = (p-1)(q-1). 

4. Choose an integer e, 1 < e < φ(n), such that gcd(e, φ(n)) = 1. 

5. Compute the secret exponent d, 1 < d < φ(n), such that ed ≡ 1 (mod φ(n)). 

6. The public key is (n, e) and the private key is (n, d). The values of p, q, and φ(n) should also be kept secret. 

· n is known as the modulus. 

· e is known as the public exponent or encryption exponent. 

· d is known as the secret exponent or decryption exponent. 
4.2.2 Encryption:

Encryption is done using the public key component e and the modulus n. To whomever we need to send the message, we encrypt the message with their public key (e,n). Encryption is done by taking an exponentiation of the message m with the public key e and then taking a modulus of it. The following steps are done in encryption.


1. Obtain the recipient’s public key (n,e)


2. Represent the plaintext message as a positive integer m < n


3. Compute the ciphertext c = m^e mod n.


4. Send the ciphertext c to the recipient.

4.2.3 Decryption:

Decryption is done using the Private key. The person who is receiving the encrypted message uses his own private key to decrypt the message. Decryption is similar to the encryption except that the keys used are different. 


1. Recipient uses his private key (n,d) to compute m = c^d mod n.


2. Extract the plaintext from the integer representative m.

The RSA algorithm has been implemented in many applications and it is currently one of the most popularly used encryption algorithm. RSA algorithm is based fully on mathematics and in the next section we will see the mathematics behind RSA.

5. Mathematics behind RSA:

The RSA algorithm works as follows. It first finds two prime numbers and generates a key pair using those two prime numbers. Then the encryption and decryption are done using the key pair. 

p and q are distinct primes

N = p(q

Find a, b such that a(b = 1 mod (p-1)(q-1)

Encryption Key:  e = (b, n) 


Decryption Key: d = (a, n)

Encryption of message m: Ee(m) = mb mod n = C (cipher)

Decryption of C :   Dd(C) = ca mod n = m

So in-order for RSA to work we must have the property :

(mb)a = m mod n  

We have to prove that the above equation is true. If the above equation is proved then we can say that the RSA algorithm really works. In the coming sections we will prove the above equation and we will also look at the efficient ways of generating the prime numbers. We will also look at how to find the keys a & b. There are many methods of finding these numbers and we will see a few of them.

5.1 Preliminaries:

Before entering into the proofs, we must first know about the following terms and symbols in order to follow it. These are basics of the RSA proof.

1. Zn = {0, 1, 2, … n-1}. This set is very familiar. Zn is the set of integers from 0 to n-1.

2. Z*n = {x <n-1 | x and n are relatively prime}. Basically Z*n is the set that contains all the numbers that is less than n and are relatively prime to n.

3. ((n) = number of elements of Zn that are relatively prime to n. Hence ((n) = | Z*n|

How to find ((n)
We know that p and q are two prime numbers and n is the product of p and q. So n factors into p and q. Therefore all those number that are not multiples of p or q are in ((n). If we count all the multiples of p and q, we get ((n).

            0, 1

p, 2p, 3p,…. (q-1)p =
q-1

q, 2q, 3q,…. (p-1)q =
p-1

hence to find the ((n), we need to count all the multiples given above, which is nothing but
((n) = pq – 1 – (q– 1) – (p– 1) = pq – p – q +1 = (p– 1)(q– 1)

Example:   p=3, q=5   n=15. 

   Now ((n) = 2*4 = 8  = {1, 2, 4, 7, 8, 11, 13, 14}

Before going to the proof of RSA lets have a look at some of the rules in the modulo arithmetic. In the following sections, we will look at those rules and will prove some of them.

5.1.1 Z*n is closed under multiplication mod n:

If a,b ( Z*n then ab and n are relatively prime i.e. ab shares no primes with n. By definition of Z*n a, b do not share primes with n. Their product, ab, gets its primes from a and b and therefore does not share primes with n. 

The product can be written as ab = (n + (. We just need to show that ( is in Z*n . But if it is not, then it shares primes with n and the right hand side is divisible by some prime that is a factor of n. But then, so is the left side, which is impossible as we showed that it is relatively prime with n.

5.1.2 Sa ( Z*n:        

Lets first define what Sa is. Before that we know that we can represent Z*n as
 
Z*n = {b1, b2, … , b((n)}

Now for any a ( Z*n,    
                Let Sa = {a(b1 mod n,  a(b2 mod n, …, a(b((n) mod n}

First, by the proof shown in the section 5.1.1, all elements of Sa are in Z*n
Second, no two elements can be the same. Suppose they were, then for some bi and bj (bi < bj)

    a( bi = (n + (
    a( bj = (n + ( 

Subtracting, (bi – bj)(a = ((-()(n    or      x( a = y( n

x( a and y( n are the “same product of primes. Since a and n do not share any common primes. All primes that form n has to appear in x. 

Hence x>= n. That is a contradiction, as bj <n.

Since all elements of Sa are distinct, and in Z*n, then Sa and Z*n are identical. Note that since all elements of Z*n are produced when a is multiplied by each element of Z*n, then the element 1 is also a result of such a multiplication. Hence we get the following condition: 

if a ( Z*n then ( bk ( Z*n, s.t. abk = 1 mod n

5.1.3 if a ( Z*n then a((n) = 1 mod n

To prove this, lets first define c and A such that:  

 b1 ( b2 ( … ( b((n)         =   c mod n
    
(ab1 ( ab2 ( … ( ab((n)) =   A mod n  [Note, A and c are less than n]

Now since    ab1 mod n ( ab2 mod n ( … ( ab((n)  = A mod n 

By the proof in the section 5.1.2,  ab1 mod n, ab2 mod n,… ( ab((n) mod n is a permutation of Z*n
Hence:         A = c   (plain arithmetic)

Now distributing the sequence differently: 

    (ab1 ( ab2 ( … ( ab((n)) = a((n)( (b1 ( b2 ( … ( b((n))  …..   [1]

Let a((n) = ( mod n
Taking the modulo of both sides of [1] uses rule given below

              A =  ( ( c, 
              Replacing A with c,  c = ( ( c , (plain arithmetic, not modulo). 

              Hence ( = 1.

Thus:  
a((n) = 1 mod n
For all a, b ( Zn  (not Z*n)

   if (ab = c mod n) and (a = x mod n) and (b = y mod n)  and (xy = z mod n)

    then    c = z

5.1.4 If a and ((n) are relatively prime then ( b, s.t. ab = 1 mod ((n)

If a and ((n) are relatively prime, then a ( Z* ((n) and from Corollary of Claim 2 we know that b exists (and is a member of Z* ((n)). 

Thus there exists a and b, both relatively prime to ((n), such that:

        a(b = k((n) + 1 (regular arithmetic)

5.1.5 Proof of RSA (for all messages in Z*n)
Take a message m < n and choose a relatively prime to ((n) and find b such that a( b=1 mod ((n). 

Now compute  (ma)b using modulo n arithmetic:

(ma)b = mk((n) + 1 = mk((n) m = m((n) m((n) … … m((n)  m

Take the modulo of the last term and since m((n)  = 1 mod n, then result is m.

Hence   (ma)b = m mod n
Deficiency of this proof: The proof is for all messages in Z*n
If n=512 bit number, then the chance of a number being in Zn but not in Z*n is about 10–25. That is negligible.

5.1.6 How to really find a, b?

We know that given a, b exists, but how to find them?

Find a, relatively prime number to n (3, 5, 7 etc – start with a small odd number and work your way up). Note that ((n) is even. To find b using extended Euclidean algorithm as follows

Extended Euclidean Algorithm:

   Given p and q, p>q the algorithm finds x and y, such that 
            x(p * y(q = GCD(p, q)    [note: regular arithmetic, x or y is negative]

So we use it as follows:

· We provide n and a as input and get x and y [note: GCD(a,n) = 1]

· We know a(b = α(n + 1 

               Or    – α(n + a(b = 1
               So b =  y 

Hence in modulo arithmetic, 

· b =  y,   if y is positive and 

· b = ((n) – y,   if y is negative

Hence the keys, a and b can be computed easily using the Extended Euclidian algorithm.

5.2 Finding Prime Numbers and hence the modulus N:

p and q are large prime numbers. So the problem is to find large prime numbers. Till recently there was no good deterministic way of doing this. Very recently a Professor from the IIT Kanpur, India and two of his students came up with a deterministic polynomial time algorithm for finding if a number is prime or not. However, in prior years this was done with probabilistic algorithms. There are very good probabilistic algorithms, which can generate prime numbers in a very fast rate at 99.99% probability that the number given by that algorithm is a prime. The actual fact is that there are lots of large prime numbers. The number of prime numbers below N is about N/(ln n) and hence for a random 2048 bit number, the probability of it being prime is about 0.0007(one in 1500).

5.2.1 Prime Number Hunt:

But how would we really find the prime numbers? There are many theorems available that can be used to find if the given number is prime or not. One of the most popularly used theorems for finding if a given number is prime or not is the Fermat’s little theorem. It states that for any a that is less than p,  ap-1 = 1 mod p. We can use this theorem to test the primality of a number, called as primality testing. The proof of the theorem is given below.

Since p is prime, a ( Z* p and ((p) = p – 1

   Thus    ap-1 = a((p) = 1 mod p.

Now to find the prime number, we can do the following steps

· Choose a number p, randomly. This number, if large has a chance of being prime in the order of 1 in several thousand. 

· Then choose a number a < p, randomly. We will use a to test the primality of p. First, we know that if p is prime, ap-1 is 1 (mod p). Secondly, we know that if for some x (where x is not 1 or p-1), if x2 is 1 or p-1 (mod p) then p is not prime.

6. Computational complexity of the RSA algorithm:

The computational complexity of the RSA algorithm completely depends upon the key length and the length of the modulus n. We exponent the key with the message and take a modulus of that value with the modulus n. So the computational complexity will depend upon these two factors. To find the exponentiation, we can square the message and then multiply it again with the squared value. For example to find 5^8, we can first find 5^2 by squaring 5 and then can find 5^4 by squaring the resulted value of 5^2 and then can find 5^8 by squaring the resulted value of 5^4. Hence the complexity of the encryption and decryption depends on how long the key is.

Well, when we compute the complexity of the RSA we will have to look at all the steps involved in the protocol right from the Prime number generation. Lets leave the complexity of generating prime numbers aside for a while, as we are going to look at a deterministic polynomial time algorithm in order to find the prime p. So lets start with computing the complexities of the other steps in RSA. 
The computational complexity of RSA encryption and decryption of a single n bit block is approximately O(n^3), with n is denoting both the block length and key length (exponent and modulus). This is due to the complexity of multiplication is O(n^2 ), and the complexity of exponentiation is O(n) when square and multiply is used. Although multiplication and exponentiation algorithms exist that have lower asymptotic complexity, they are of limited technical interest when n<1000 is assumed. If the message length m is sufficiently larger than the block length n, the number of steps required to process a single message bit is of complexity O(n^2 ). If a k bit datapath is used to speed up computation of n bit key length RSA, with k = n + epsilon , the number of steps required to process a single message bit is O(n), as the complexity of hardware is also O(n). When using shorter keys, e.g. 512 bit, the execution time decreases approximately linearly. 

The complexity of O(n^3) is clearly not a very high complexity since it is in polynomial time. Next, we have to calculate the computational complexity of finding the encryption component e and a decryption component d. This is done using the Extended Euclidian algorithm. That is we need to find a number e, such that gcd(e, ((n)) = 1. All the powering and gcd calculations are clearly in polynomial time in the number of bits of n. Our task is to find a number e such that gcd(e, ((n)) = 1. We know that the fraction of elements, which are relatively prime to N, is (1/ logN). So setting N = ((n), after o(logN) random trials for e, we should be able to get an e which is prime to ((n). This is still all polynomial in the number of bits of n.
Hence the complexity of the RSA algorithm is polynomial in time with respect to the length of the key and the modulus, n.

7. Primes is in P:

As we saw in the previous sections, Prime numbers are basis for RSA encryption and decryption. But how do you know that the number we chose is prime or not? There has been research going on for more than 200 years in finding out a good deterministic polynomial time algorithm which will take a number as a input and will tell if it is prime or not in polynomial time. Till recently no one was able to produce a deterministic polynomial time algorithm for this problem, though there had been lot of random polynomial time algorithm and probabilistic algorithms available. Recently in the year 2002, a professor and two of his students from the Indian Institute of Technology, Kanpur came up with a deterministic polynomial time algorithm for this problem. Thanks to them as the 200 year problem has been solved. In this section we will look at that algorithm and how it works. In the next section, we will look at the complexity of the algorithm.

7.1 Basic notations:

In this section, we will look at some algebraic and number theoretic results, which the author of this algorithm has used in the proofs. The symbol Fpd denotes the finite field, where p is a prime. Recall that if p is a prime and h(x) is a polynomial of degree d and irreducible in Fp, then Fp[x]=(h(x)) is a finite field of order pd.

Next h(x) will be a factor of xr-1/x-1 unless stated otherwise. The author has used the symbol ~O(t(n)) for O(t(n)poly(log t(n))), where t(n) is some function of n. Unless stated otherwise, the author uses log with respect to base 2. 

Next look at some of the algebraic results that are useful in understanding this algorithm. Let p and r be prime numbers, p != r. the following results are observed and some of the results were proved by the author. In this section I am just producing the rules that are used and for the proofs, please refer to the original paper by the authors.

1. The multiplicative group of any field Fpt for t > 0, denoted by F*pt is cyclic.

2. Let f(x) be a polynomial with integral coefficients. Then

f(x)p ( f(xp) (mod p)

3. Let h(x) be any factor of xr - 1. Let m ( mr (mod r). Then

xm ( xmr (mod h(x)):

4. Let or(p) be the order of p modulo r. Then in Fp, xr-1/x-1 factorises into irreducible polynomials each of degree or(p).

In addition to the above algebraic facts, we will need the following two number theoretic facts.

· Let P(n) denote the greatest prime divisor of n. There exist constants c > 0 and n0 such that, for all x >= n0
|{P| P is prime, P<=x and P(p-1) > x2/3}| >= C x/log x

· Let ((n) be the number of primes <= n. Then for n >= 1

n/6log n <=  ((n) <= 8n/log n
7.2 Algorithm:

The algorithm that computes and tells if the given number is prime or not is given below. This algorithm gets an input that is greater than 1 and computes and outputs either COMPOSITE or PRIME.

Input: integer n > 1

1.
if ( n is of the form ab, b > 1 ) output COMPOSITE;

2. 
r = 2;

3.
while(r < n) {

4. 

if ( gcd(n,r) != 1 ) output COMPOSITE;

5. 

if (r is prime)

6.


 let q be the largest prime factor of r - 1;

7. 


if (q >=  4(r log n) and (nr-1/q ! ( (mod r)
8. 



break;

9.

 r  = r + 1;

10.
 }

11. 
for a = 1 to 2(r log n 

12.
 
if ( (x - a)n ! (  (xn - a) (mod xr – 1, n)) output COMPOSITE;

13. 
output PRIME;

The above algorithm returns PRIME is n is prime and returns COMPOSITE if n is composite. Lets look at how it works by looking at the correctness of the algorithm. The author has proved that the above algorithm works properly. Lets look at how it works.

7.3 Correctness of the Algorithm:

7.3.1 If n is prime, the algorithm returns PRIME.

The while loop cannot return COMPOSITE since gcd(n, r) = 1 for all r <= c2(log n)6, where c2 is defined in one of the lemmas given by the author. We know by the fact 2 that the for loop also cannot return COMPOSITE. Thus, algorithm will identify n as PRIME. Now let us turn our attention to the case where a composite n is input to our algorithm. The significance of the r found by the while loop arises when n is composite with say pi; 1 <=  i <=  k, as its prime factors. In this case or(n) | lcmi{or(pi)} and hence there exists a prime factor p of n such that q | or(p), where q is the largest prime factor of r-1. For the remainder of the argument, let p be such a prime factor of n.

The second loop of the algorithm uses the value of r obtained to do polynomial computations on l = 2(r log n binomials: (x-a) for 1 <= a <= l. By fact 4, we have a polynomial h(x) (factor of xr _ 1) of degree d = or(p) irreducible in Fp. Note that

(x - a)n ( (xn - a)(mod xr - 1, n)

the above equation implies that

(x - a)n ( (xn - a)(mod h(x), p)

So the identities on each binomial hold in the field Fp[x]/(h(x)). The set of l binomials form a large cyclic group in this field.

7.3.2 If n is composite, the algorithm returns COMPOSITE.

Suppose that the algorithm returns PRIME instead. Thus, the for loop ensures that for all

1 <=  a  <=  2(r log n,

(x - a)n ( (xn - a)(mod xr - 1, p)

Notice that g(x) is just a product of powers of l binomials (x _ a), (1 <=  a <= l) all of which satisfy the above equation. Thus,


g(x)n ( g(xn) (mod xr _ 1, p)

Then author goes on to use two more lemmas that he has showed in his paper to determine the values of Ig(x). Finally he proves that n = p is a contradictory. Hence the algorithm returns COMPOSITE if n is composite.

7.4 Time Complexity Analysis of the algorithm:

The author has calculated the time complexity of the algorithm in a pretty straightforward manner and the asymptotic time complexity of the algorithm turns out to be O(log12 n).

Calculation of the time complexity:

The first step of the algorithm takes asymptotic time O(log3 n). As noted during the analysis of the algorithm in the previous section, the while loop makes O(log6 n) iterations. Let us now measure the work done in one iteration of the while loop. The first step (gcd computation) takes poly(log log r) asymptotic time. The next two steps would take atmost r1/2poly(log log n) time in the brute-force implementation. The next three steps take atmost poly(log log n) steps. Thus, total asymptotic time taken by the while loop is

O(log6n . r1/2 ) =  O(log9 n).

The for loop does modular computation over polynomials. If repeated-squaring and Fast-Fourier Multiplication is used then one iteration of this for loop takes O(log n_r log n) steps. Thus, the for loop takes asymptotic time 

O(r3/2 log3 n) = O(log12 n).

In practice, however, this algorithm is likely to work much faster. The reason is that even though we only know that there are “many" primes r such that P(r - 1) > r2/3, a stronger property is believed to be true. In fact it is believed that for many primes r, 

P(r - 1) = (r –1)/2 . 

Such primes are called Sophie Germain primes.

This ends the time complexity computation of the algorithm. As per the author, they are trying to improve the running time complexity of the algorithm to O(log3 n).

8. Comparison of the RSA algorithm with other algorithms:

RSA is one of the most popularly used cryptography algorithms, but still there are many other algorithms that are being used today. One of the popularly used algorithms other than RSA is Elliptic Curve (EC) cryptography algorithm. Let’s first see a comparison with the EC algorithm

8.1 Comparison with EC algorithm:

People say that ECC is very much faster than RSA, but actually ECC is significantly faster than RSA only when used with precomputed values. That is, you can store your ECC key in a small space, but if you want to get the performance advantage, you also have to store some tables of precomputed values. These tables can be as many as 20,000 bytes. But if you don’t have 20,000 bytes of storage space lying around (say your smart card), you may not be able to use the precomputed tables. But if you don’t, the ECC is not that much faster than RSA. With ECC you can sign fast or save storage space, but you can’t do both. Of course, saving storage space and transmission size may be reason enough.

Furthermore, using ECC with or without precomputed values to perform key exchange is not that much faster than RSA. So the only real advantage to using ECC to perform key exchange is key and transmission size.

Another disadvantage to ECC is certificates. Public-key crypto does not really work without digital certificates, and digital certificates don’t really work without certificate authorities. It’s hard to find ECC digital certificates. So even if you want to use ECC, you might not be able to get a certificate.

Currently in the industry, RSA is winning. The key size, transmission size and signature performance issues concern makers of small devices. But they often find that RSA is fast and small enough. Sure, it’s not the fastest signer or the smallest key, but it still works just fine. And RSA has a well-developed certificate infrastructure.
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