 ZIG-BEE MONITOING & CONTROL SYSTEM

ZIGBEE MONITORING & CONTROLLING
ABSTRACT

As zig-bee is the upcoming technology in wireless field, we had tried to demonstrate its way of functionality and various aspects like kinds, advantages and disadvantages using a small application of controlling the any kind of electronic devices and machines. The zig-bee technology is broadly adopted for bulk and fast data transmission over a dedicated channel. The other advantage using zig-bee is that we can build a network of several nodes.
Description:

In this project we are demonstrating the working principle of zig-bee modules and are controlling the devices connected by continuously monitoring them. Here we are continuously monitoring the temperature of a room and control it by turning ON/OFF Heater/Cooler. In this project one zig-bee module is connected to the PC through which we can transmit the control commands. The other zig-bee module is interfaced to the microcontroller. LM 35 is used for temperature sensing, ADC 0804 is used for converting the analog temperature to digital. Two Relays are connected to ULN 2083 driver for switching the heater and cooler.

The micro-controller reads the temperature through the ADC and transmits to the host. The users can in-turn send pre-determined commands to the end device. The micro-controller will switch ON/OFF the Heater/Cooler depending the message received.

CONTENTS

7INTRODUCTION …………………………………………………………………….

7EMBEDDED SYSTEMS

8WHAT IS ZIG-BEE?

13OBJECTIVE OF THIS PROJECT

14DESCRIPTION OF THE PROJECT

14BLOCK DIAGRAM

16CIRCUIT DESCRIPTION

17MICROCONTROLLER

32HARDWARE COMPONENTS-I

32LM 35

41ADC 0804

45HARDWARE COMPONENTS-II

49REGULATED POWER SUPPLY

58ULN 2803

41RELAY

67SOFTWARE

67PRINTED CIRCUIT BOARD

68µVISION

69BUILDING AN APPLICATION IN µVISION

81FUTURE ENHANCEMENT

82CONCLUSION

83APPENDIX A – SOURCE CODE

87BIBLIOGRAPHY

 INTRODUCTION
EMBEDDED SYSTEMS
 Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some also have real time performance constraints that must be met, for reason such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs.

 An embedded system is not always a separate block - very often it is physically built-in to the device it is controlling. The software written for embedded systems is often called firmware, and is stored in read-only memory or flash convector chips rather than a disk drive. It often runs with limited computer hardware resources: small or no keyboard, screen, and little memory.

 Wireless communication has become an important feature for commercial products and a popular research topic within the last ten years. There are now more mobile phone subscriptions than wired-line subscriptions. Lately, one area of commercial interest has been low-cost, low-power, and short-distance wireless communication used for \personal wireless networks." Technology advancements are providing smaller and more cost effective devices for integrating computational processing, wireless communication, and a host of other functionalities. These embedded communications devices will be integrated into applications ranging from homeland security to industry automation and monitoring. They will also enable custom tailored engineering solutions, creating a revolutionary way of disseminating and processing information. With new technologies and devices come new business activities, and the need for employees in these technological areas. Engineers who have knowledge of embedded systems and wireless communications will be in high demand. Unfortunately, there are few adorable environments available for development and classroom use, so students often do not learn about these technologies during hands-on lab exercises. The communication mediums were twisted pair, optical fiber, infrared, and generally wireless radio.
ZigBee

ZigBee is the name of a specification for a suite of high level communication protocols using small, low-power, low data rate digital radios based on the IEEE 802.15.4 standard for wireless personal area networks (WPANs), such as wireless headphones connecting with cell phones via short-range radio. The technology is intended to be simpler and cheaper than other WPANs, such as Bluetooth. ZigBee is targeted at radio-frequency (RF) applications which require a low data rate, long battery life, and secure networking.

 ZigBee is a low data rate, two-way standard for home automation and data networks. The standard specification for up to 254 nodes including one master, managed from a single remote control. Real usage examples of ZigBee includes home automation tasks such as turning lights on, setting the home security system, or starting the VCR. With ZigBee all these tasks can be done from anywhere in the home at the touch of a button. ZigBee also allows for dial-in access via the Internet for automation control.

The ZigBee standard uses small very low-power devices to connect together to form a wireless control web. A ZigBee network is capable of supporting up to 254 client nodes plus one full functional device (master). ZigBee protocol is optimized for very long battery life measured in months to years from inexpensive, off-the-shelf non-rechargeable batteries, and can control lighting, air conditioning and heating, smoke and fire alarms, and other security devices. The standard supports 2.4 GHz (worldwide), 868 MHz (Europe) and 915 MHz (Americas) unlicensed radio bands with range up to 75 meters.
IEEE 802.15.4
IEEE 802.15.4 is a standard which specifies the physical layer and medium access control for low-rate wireless personal area networks (LR-WPAN's).This standard was chartered to investigate a low data rate solution with multi-month to multi-year battery life and very low complexity. It is operating in an unlicensed, international frequency band. Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation.

802.15.4 Is part of the 802.15 wireless personal-area network effort at the IEEE? It is a simple packet-based radio protocol aimed at very low-cost, battery-operated widgets and sensors (whose batteries last years, not hours) that can intercommunicate and send low-bandwidth data to a centralized device.

As of 2007, the current version of the standard is the 2006 revision. It is maintained by the IEEE 802.15 working group.

It is the basis for the ZigBee specification, which further attempts to offer a complete networking solution by developing the upper layers which are not covered by the standard

802.15.4 Protocol

· Data rates of 250 kbps with 10-100 meter range.

· Two addressing modes; 16-bit short and 64-bit IEEE addressing.

· Support for critical latency devices, such as joysticks.

· CSMA-CA channel access.

· Automatic network establishment by the coordinator.

· Fully handshaked protocol for transfer reliability.

· Power management to ensure low power consumption.

· 16 channels in the 2.4GHz ISM band

· Low duty cycle - Provides long battery life

· Low latency

· Support for multiple network topologies: Static, dynamic, star and mesh

· Direct Sequence Spread Spectrum (DSSS)

· Up to 65,000 nodes on a network

· 128-bit AES encryption – Provides secure connections between devices

ZigBee Applications

ZigBee enables broad-based deployment of wireless networks with low-cost, low-power solutions. It provides the ability to run for years on inexpensive batteries for a host of monitoring applications: Lighting controls, AMR (Automatic Meter Reading), smoke and CO detectors, wireless telemetry, HVAC control, heating control, home security, Environmental controls and shade controls, etc.

	Standard
	ZigBee®
802.15.4
	Wi-Fi™
802.11b
	Bluetooth™
802.15.1

	Transmission Range (meters)
	1 – 100*
	1 - 100
	1 – 10

	Battery Life (days)
	100 – 1,000
	0.5 – 5.0
	1 - 7

	Network Size (# of nodes)
	> 64,000
	32
	7

	Application
	Monitoring & Control
	Web, Email, Video
	Cable Replacement

	Stack Size (KB)
	4 – 32
	1,000
	250

	Throughput kb/s)
	20 – 250
	11,000
	720

Use Case Scenario

It is 4:00 a.m. on a farm in Iowa. Sensors distributed throughout the fields report the moisture content in the soil and humidity of the air. The staff on the farm uses this data to decide where and when to water for optimum effect. The information also serves as an early warning system for environmental issues such as frost. Precious resources are used more efficiently and productivity increases.

The sensors distributed in the field are interconnected in a “mesh” network. If a sensor node goes down, the network is self-healing; the nodes are able to connect with one another dynamically, finding another route to stay connected within the network.

Zigbee stack architecture

[image: image1.png]
 ZigBee stack architecture

It may be helpful to think of IEEE 802.15.4 as the physical radio and ZigBee as the logical network and application software, as Figure 1 illustrates. Following the standard Open Systems Interconnection (OSI) reference model, ZigBee's protocol stack is structured in layers. The first two layers, physical (PHY) and media access (MAC), are defined by the IEEE 802.15.4 standard. The layers above them are defined by the ZigBee Alliance. The IEEE working group passed the first draft of PHY and MAC in 2003. A final version of the network (NWK) layer is expected sometime this year.

ZigBee-compliant products operate in unlicensed bands worldwide, including 2.4GHz (global), 902 to 928MHz (Americas), and 868MHz (Europe). Raw data throughput rates of 250Kbps can be achieved at 2.4GHz (16 channels), 40Kbps at 915MHz (10 channels), and 20Kbps at 868MHz (1 channel). The transmission distance is expected to range from 10 to 75m, depending on power output and environmental characteristics. Like Wi-Fi, Zigbee uses direct-sequence spread spectrum in the 2.4GHz band, with offset-quadrature phase-shift keying modulation. Channel width is 2MHz with 5MHz channel spacing. The 868 and 900MHz bands also use direct-sequence spread spectrum but with binary-phase-shift keying modulation.

Frame structure

Figure 2 illustrates the four basic frame types defined in 802.15.4: data, ACK, MAC command, and beacon.

[image: image2.png]
The data frame provides a payload of up to 104 bytes. The frame is numbered to ensure that all packets are tracked. A frame-check sequence ensures that packets are received without error. This frame structure improves reliability in difficult conditions.

Another important structure for 802.15.4 is the acknowledgment (ACK) frame. It provides feedback from the receiver to the sender confirming that the packet was received without error. The device takes advantage of specified "quiet time" between frames to send a short packet immediately after the data-packet transmission.

A MAC command frame provides the mechanism for remote control and configuration of client nodes. A centralized network manager uses MAC to configure individual clients' command frames no matter how large the network.

Finally, the beacon frame wakes up client devices, which listen for their address and go back to sleep if they don't receive it. Beacons are important for mesh and cluster-tree networks to keep all the nodes synchronized without requiring those nodes to consume precious battery energy by listening for long periods of time.

Channel access, addressing

Two channel-access mechanisms are implemented in 802.15.4. For a none”beacon network, a standard CSMA-CA (carrier-sense medium-access with collision avoidance) communicates with positive acknowledgement for successfully received packets. In a beacon-enabled network, a super frame structure is used to control channel access. The super frame is set up by the network coordinator to transmit beacons at predetermined intervals (multiples of 15.38ms, up to 252s) and provides 16 equal-width time slots between beacons for contention-free channel access in each time slot. The structure guarantees dedicated bandwidth and low latency. Channel access in each time slot is contention-based. However, the network coordinator can dedicate up to seven guaranteed time slots per beacon interval for quality of service.

Device addresses employ 64-bit IEEE and optional 16-bit short addressing. The address field within the MAC can contain both source and destination address information (needed for peer-to-peer operation). This dual address information is used in mesh networks to prevent a single point of failure within the network.

Networks
A key component of the ZigBee protocol is the ability to support mesh networks. In a mesh network, nodes are interconnected with other nodes so that at least two pathways connect each node. Connections between nodes are dynamically updated and optimized in difficult conditions. In some cases, a partial mesh network is established with some of the nodes only connected to one other node.

Mesh networks are decentralized in nature; each node is self-routing, self healing and able to connect to other nodes as needed. The characteristics of mesh topology and ad-hoc routing provide greater stability in changing conditions or failure at single nodes.

The ZigBee specification identifies three kinds of devices that incorporate ZigBee radios, with all three found in a typical ZigBee network.

· A coordinator, which organizes the network and maintains routing tables.

· Routers, which can talk to the coordinator, to other routers and to reduced-function end devices.

· Reduced-function end devices, which can talk to routers and the coordinator, but not to each other.

[image: image3.png]
 ZigBee network model
In a star topology, one of the FFD/RFD-type devices assumes the role of network coordinator and is responsible for initiating and maintaining the devices on the network. All other devices, known as end devices, directly communicate with the coordinator.

In a mesh topology, the ZigBee coordinator is responsible for starting the network and for choosing key network parameters, but the network may be extended through the use of ZigBee routers. The routing algorithm uses a request-response protocol to eliminate sub-optimal routing. Ultimate network size can reach 264 nodes (more than we'll probably need). Using local addressing, you can configure simple networks of more than 65,000 (216) nodes, thereby reducing address overhead.

The General Operation Framework (GOF) is a glue layer between applications and rest of the protocol stack. The GOF currently covers various elements that are common for all devices. It includes sub addressing and addressing modes and device descriptions, such as type of device, power source, sleep modes, and coordinators. Using an object model, the GOF specifies methods, events, and data formats that are used by application profiles to construct set/get commands and their responses.

Actual application profiles are defined in the individual profiles of the IEEE's working groups. Each ZigBee device can support up to 30 different profiles. Currently, only one profile, Commercial and Residential Lighting, is defined. It includes switching and dimming load controllers, corresponding remote-control devices, and occupancy and light sensors.

The ZigBee stack is small in comparison to other wireless standards. For network-edge devices with limited capabilities, the stack requires about 4Kb of the memory. Full implementation of the protocol stack takes less than 32Kb of memory. The network coordinator may require extra RAM for a node devices database and for transaction and pairing tables. The 802.15.4 standard defines 26 primitives for the PHY and MAC layers; probably another dozen will be added after finalizing the NWK layer specification. Those numbers are still modest compared to 131 primitives defined for Bluetooth. Such a compact footprint enables you to run Zigbee on a simple 8-bit microcontroller such as an HC08- or 8051-based processor core.

Secure Connections

 ZigBee leverages the security model of the IEEE 802.15.4 MAC sub layer which specifies four security services:

· access control—the device maintains a list of trusted devices within the network

· Data encryption, which uses symmetric key 128-bit advanced encryption standard (AES).

· frame integrity to protect data from being modified by parties without cryptographic keys

· sequential freshness to reject data frames that have been replayed—the network controller compares the freshness value with the last known value from the device and rejects it if the freshness value has not been updated to a new value

The actual security implementation is specified by the implementer using a standardized toolbox of ZigBee security software.

 Power consumption

Ultra-low power consumption is how ZigBee technology promotes a long lifetime for devices with non rechargeable batteries. ZigBee networks are designed to conserve the power of the slave nodes. For most of the time, a slave device is in deep-sleep mode and wakes up only for a fraction of a second to confirm its presence in the network. For example, the transition from sleep mode to data transition is around 15ms and new slave enumeration typically takes just 30ms.

To minimize power consumption and promote long battery life in battery-powered devices, end devices can spend most of their time asleep, waking up only when they need to communicate and then going immediately back to sleep. ZigBee envisions that routers and the coordinator will be mains-powered and will not go to sleep.

Zigbee benefits

In all of its uses, ZigBee offers four inherent, beneficial characteristics:

· Low cost

· Range and obstruction issues avoidance

· Multi-source products

· Low power consumption

OBJECTIVE OF THIS PROJECT
The objective of the project is to develop a system, which demonstrate intelligent monitoring and control system which uses Zig-bee technology for communication. A temperature effect on devices and heavy machines is a major concern for many in the industrial and domestic applications. In such applications monitoring temperature and controlling it through some external solutions like coolants and heaters is done. In order to overcome these problems many industries and domestic users have been implementing many solutions. By our project we are demonstrating a cost effective and user friendly using ZIG-BEE modules.
 Zig-Bee offers many advantages like Low cost, Range and obstruction issues avoidance, Multi-source products, Low power consumption and a huge network of more than 64,000 devices can be connected. It offers secured environment for communication.
DESCRIPTION OF THE PROJECT
BLOCK DIAGRAM

The 230V/50HZ AC supply is given to the micro controller to supply 5v or 12 v to the controller to operate the devices through the voltage regulators. In this project we are designing a monitoring and controlling unit which consists three sections for specific purposes. The first section of the unit is designed using ADC0804 single channel Analog to Digital converter. A LM 35 Analog temperature is used for temperature detection, which is connected to the input pin of the ADC 0804. The output pins of the ADC are connected to the P0 of the microcontroller. The control pin CS (chip select) of the ADC 0804 is connected to the ground for selecting the device. The control pins RD (Read), WR (Write), and INTRB (interrupt) are connected to the P3.5, P3.6, P3.7 pins of the microcontroller respectively.

The second section of the unit is designed using ULN 2803 high current drivers and SPDT relays for controlling the devices connected across them. The input pins of the ULN 2803 IC are connected to the P1.5 and P1.6 pins of the microcontroller. The output pins of the ULN 2803 are connected to the Relays for controlling the AC devices connected to the Relays. The phase wire is connected to the common pin of the SPDT Relay and the Neutral wire directly to the AC device. The phase of the AC device is connected to the normally open pin of the Relay.

The third section is the microcontroller section with ZIG-BEE module interface. The Zig-bee module is connected to the RX, TX pins of the microcontroller through Max 232. Here the temperature reading is continuously transmitted to server through the Zig-Bee module. The unit can generate alert messages for different temperature values which are pre-determined low and high cut-off values. The server will transmit control commands to the unit depending on the temperature values transmitted by the unit. Before executing the commands received our system can verifies temperature for the low and high cut-off vaues. If the temperature value doesnot fall in the ranges of low and high cut-off values the commands will not be executed, thus avoids any irregularities associated with the transmission of control commands.
The Port Pin connections are described below:

This schematic explanation gives you in detail the pin connections of the various IC’s and components used in the project.
In this diagram the ADC data pins (pin11-pin18) are connected to the port P0 of the micro controller. The control pin RD (pin2) is connected to the port pinP3.5. The control pin WR (pin3) of the ADC is connected to the port pin P3.6 and the control pin INTR (pin5) is connected to the port pin P3.7.
The output pin of LM 35 is connected to the input pin (pin6) of ADC 0804. The input pin is connected to 5v and the ground pin to the ground

ULN 2803 is a High Voltage, High Current Darlington pair IC comprising 8 Darlington pairs. The inputs of ULN 2803 are connected to the pins P0.0, P0.1 and P0.2. SPDT Relays are connected at the output end of the IC. Devices are connected to the Relays.
Finally the power supply is given to the concerned IC’s from the Bridge Rectifier circuit specified.

 Here the Modem is used to receive the messages; this is connected to the RS 232 pin to the modem pin. This RS 232 pin is connected to the Max 232 and then to the controller. The 3rd pin is connected to the 13th pin of the max 232. The 2nd pin is connected to the 14th pin of the max 232. The power supply is connected to the VCC pin of max 232.
CIRCUIT DESCRIPTION

In this project we are going to control general home appliances based on the mobile communication. The idea behind this particular work is to give user the full flexibility to control the appliances from remote distances when there is a busy schedule concerned to his daily routine.

The main parts of this schematic diagram are:

1. POWER SUPPLY.

2. (P89V51RD2) MICROCONTROLLER.

3. LM 35

4. ADC 0804

5. ULN 2803
6. RELAYS
7. ZIG-BEE MODULE
8. PRINTED CIRCUIT BOARDS
1. POWER SUPPLY

 In this power supply, a step down transformer is used to step down the current from 230V to 5V AC, next step is to convert this AC to DC which is done by using a Bridge Rectifier and additional Filter Circuits are used where the ripples or noised in the DC voltage are removed and at last a 7805 Regulator is used to makeup regulated a 5V DC, from the output of the 7805 IC we connect a 2 pin connector to make a connection with the corresponding Vcc(40) and Gnd(20) pins of the AT89C51 microcontroller. Now the microcontroller is powered up to do the specified controlling action given by the user.

2. MICROCONTROLLER
Microprocessor has following instructions to perform:

1. Reading instructions or data from program memory ROM.

2. Interpreting the instruction and executing it.

3. Microprocessor Program is a collection of instructions stored in a

 Nonvolatile memory.

4. Read Data from I/O device

5. Process the input read, as per the instructions read in program memory.

6. Read or write data to Data memory.

7. Write data to I/O device and output the result of processing to O/P device.

NECESSITY OF MICROCONTROLLERS:

 Microprocessors brought the concept of programmable devices and made many applications of intelligent equipment. Most applications, which do not need large amount of data and program memory, tended to be costly.
 The microprocessor system had to satisfy the data and program requirements so; sufficient RAM and ROM are used to satisfy most applications .The peripheral control equipment also had to be satisfied. Therefore, almost all-peripheral chips were used in the design. Because of these additional peripherals cost will be comparatively high.

An example:

8085 chip needs:

 An Address latch for separating address from multiplex address and data.32-KB RAM and 32-KB ROM to be able to satisfy most applications. As also Timer / Counter, Parallel programmable port, Serial port, and Interrupt controller are needed for its efficient applications.

In comparison a typical Micro controller 8051 chip has all that the 8051 board has except a reduced memory as follows.

4K bytes of ROM as compared to 32-KB, 128 Bytes of RAM as compared to 32-KB. Bulky:

On comparing a board full of chips (Microprocessors) with one chip with all components in it (Micro controller).

Debugging:

Lots of Microprocessor circuitry and program to debug. In Micro controller there is no Microprocessor circuitry to debug.

Slower Development time: As we have observed Microprocessors need a lot of debugging at board level and at program level, where as, Micro controller do not have the excessive circuitry and the built-in peripheral chips are easier to program for operation.

So peripheral devices like Timer/Counter, Parallel programmable port, Serial Communication Port, Interrupt controller and so on, which were most often used were integrated with the Microprocessor to present the Micro controller .RAM and ROM also were integrated in the same chip. The ROM size was anything from 256 bytes to 32Kb or more. RAM was optimized to minimum of 64 bytes to 256 bytes or more.

Typical Micro controller has all the following features:
· 8/16/32 CPU

· Instruction set rich in I/O & bit operations.

· One or more I/O ports.

· One or more timer/counters.

· One or more interrupt inputs and an interrupt controller

· One or more serial communication ports.

· Analog to Digital /Digital to Analog converter

· One or more PWM output

· Network controlled interface
Why AT 89C51? :

The system requirements and control specifications clearly rule out the use of 16, 32 or 64 bit micro controllers or microprocessors. Systems using these may be earlier to implement due to large number of internal features. They are also faster and more reliable but, the above application is satisfactorily served by 8-bit micro controller. Using an inexpensive 8-bit Microcontroller will doom the 32-bit product failure in any competitive market place.

Coming to the question of why to use P89V51RD2 of all the 8-bit Microcontroller available in the market the main answer would be because it has 64 kB Flash and 1024 bytes of data RAM. . The Flash program memory supports both parallel programming and in
serial In-System Programming (ISP). The P89V51RD2 is also In-Application Programmable (IAP), allowing the Flash program memory to be reconfigured even while the application is running.
8051 micro controller architecture:
The 8051 architecture consists of these specific features:

· Eight –bit CPU with registers A (the accumulator) and B

· Sixteen-bit program counter (PC) and data pointer (DPTR)

· Eight- bit stack pointer (PSW)

· Eight-bit stack pointer (Sp)

· Internal ROM or EPROM (8751) of 0(8031) to 4K (8051)

· Internal RAM of 128 bytes:

1. Four register banks, each containing eight registers

2. Sixteen bytes, which maybe addressed at the bit level

3. Eighty bytes of general- purpose data memory

· Thirty –two input/output pins arranged as four 8-bit ports:p0-p3

· Two 16-bit timer/counters: T0 and T1

· Full duplex serial data receiver/transmitter: SBUF

· Control registers: TCON, TMOD, SCON, PCON, IP, and IE

· Two external and three internal interrupts sources.

· Oscillator and clock circuits.

[image: image4.png]
FIG-2 PIN DIAGRAM OF 89C51 IC
.

FUNCTIONAL BLOCK DIAGRAM OF MICROCONTROLLER

[image: image5.wmf]

FIG-3 Functional block diagram of micro controller

The 8051 Oscillator and Clock:

 The heart of the 8051 circuitry that generates the clock pulses by which all the internal all internal operations are synchronized. Pins XTAL1 And XTAL2 is provided for connecting a resonant network to form an oscillator. Typically a quartz crystal and capacitors are employed. The crystal frequency is the basic internal clock frequency of the microcontroller. The manufacturers make 8051 designs that run at specific minimum and maximum frequencies typically 1 to 16 MHz.
[image: image6.png]
Fig-4 Oscillator and timing circuit
Types of memory:

The 8051 have three general types of memory. They are on-chip memory, external Code memory and external Ram. On-Chip memory refers to physically existing memory on the micro controller itself. External code memory is the code memory that resides off chip. This is often in the form of an external EPROM. External RAM is the Ram that resides off chip. This often is in the form of standard static RAM or flash RAM.
a) Code memory

Code memory is the memory that holds the actual 8051 programs that is to be run. This memory is limited to 64K. Code memory may be found on-chip or off-chip. It is possible to have 4K of code memory on-chip and 60K off chip memory simultaneously. If only off-chip memory is available then there can be 64K of off chip ROM. This is controlled by pin provided as EA

b) Internal RAM

The 8051 have a bank of 128 bytes of internal RAM. The internal RAM is found on-chip. So it is the fastest Ram available. And also it is most flexible in terms of reading and writing. Internal Ram is volatile, so when 8051 is reset, this memory is cleared. 128 bytes of internal memory are subdivided. The first 32 bytes are divided into 4 register banks. Each bank contains 8 registers. Internal RAM also contains 128 bits, which are addressed from 20h to 2Fh. These bits are bit addressed i.e. each individual bit of a byte can be addressed by the user. They are numbered 00h to 7Fh. The user may make use of these variables with commands such as SETB and CLR.

Special Function registered memory:

Special function registers are the areas of memory that control specific functionality of the 8051 micro controller.
a) Accumulator (0E0h)

As its name suggests, it is used to accumulate the results of large no of instructions. It can hold 8 bit values.

b) B register (0F0h)

The B register is very similar to accumulator. It may hold 8-bit value. The b register is only used by MUL AB and DIV AB instructions. In MUL AB the higher byte of the product gets stored in B register. In div AB the quotient gets stored in B with the remainder in A.
c) Stack pointer (81h)

 The stack pointer holds 8-bit value. This is used to indicate where the next value to be removed from the stack should be taken from. When a value is to be pushed onto the stack, the 8051 first store the value of SP and then store the value at the resulting memory location. When a value is to be popped from the stack, the 8051 returns the value from the memory location indicated by SP and then decrements the value of SP.
d) Data pointer

The SFRs DPL and DPH work together work together to represent a 16-bit value called the data pointer. The data pointer is used in operations regarding external RAM and some instructions code memory. It is a 16-bit SFR and also an addressable SFR.
e) Program counter

The program counter is a 16 bit register, which contains the 2 byte address, which tells the 8051 where the next instruction to execute to be found in memory. When the 8051 is initialized PC starts at 0000h. And is incremented each time an instruction is executes. It is not addressable SFR.
f) PCON (power control, 87h)

The power control SFR is used to control the 8051’s power control modes. Certain operation modes of the 8051 allow the 8051 to go into a type of “sleep mode ” which consume much lee power.
[image: image7.png]
g) TCON (timer control, 88h)

The timer control SFR is used to configure and modify the way in which the 8051’s two timers operate. This SFR controls whether each of the two timers is running or stopped and contains a flag to indicate that each timer has overflowed. Additionally, some non-timer related bits are located in TCON SFR. These bits are used to configure the way in which the external interrupt flags are activated, which are set when an external interrupt occurs.
[image: image8.png]
h) TMOD (Timer Mode, 89h)

The timer mode SFR is used to configure the mode of operation of each of the two timers. Using this SFR your program may configure each timer to be a 16-bit timer, or 13 bit timer, 8-bit auto reload timer, or two separate timers. Additionally you may configure the timers to only count when an external pin is activated or to count “events ” that are indicated on an external pin.

[image: image9.png]
i) TO (Timer 0 low/high, address 8A/8C h)

These two SFRs taken together represent timer 0. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up. What is configurable is how and when they increment in value.
j) T1 (Timer 1 Low/High, address 8B/ 8D h)

These two SFRs, taken together, represent timer 1. Their exact behavior depends on how the timer is configured in the TMOD SFR; however, these timers always count up..
k) P0 (Port 0, address 90h, bit addressable)

This is port 0 latch. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P0.0, bit 7 is pin p0.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.
l) P1 (port 1, address 90h, bit addressable)

 This is port latch1. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P1.0, bit 7 is pin P1.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level

m) P2 (port 2, address 0A0h, bit addressable) :

 This is a port latch2. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P2.0, bit 7 is pin P2.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level.
n) P3(port 3,address B0h, bit addressable) :

 This is a port latch3. Each bit of this SFR corresponds to one of the pins on a micro controller. Any data to be outputted to port 0 is first written on P0 register. For e.g., bit 0 of port 0 is pin P3.0, bit 7 is pin P3.7. Writing a value of 1 to a bit of this SFR will send a high level on the corresponding I/O pin whereas a value of 0 will bring it to low level
o) IE (interrupt enable, 0A8h):

 The Interrupt Enable SFR is used to enable and disable specific interrupts. The low 7 bits of the SFR are used to enable/disable the specific interrupts, where the MSB bit is used to enable or disable all the interrupts. Thus, if the high bit of IE is 0 all interrupts are disabled regardless of whether an individual interrupt is enabled by setting a lower bit.

 [image: image10.png]
p) IP (Interrupt Priority, 0B8h)

 The interrupt priority SFR is used to specify the relative priority of each interrupt. On 8051, an interrupt maybe either low or high priority. An interrupt may interrupt interrupts. For e.g., if we configure all interrupts as low priority other than serial interrupt. The serial interrupt always interrupts the system, even if another interrupt is currently executing. However, if a serial interrupt is executing no other interrupt will be able to interrupt the serial interrupt routine since the serial interrupt routine has the highest priority.

 [image: image11.png]
q) PSW (Program Status Word, 0D0h)

 The program Status Word is used to store a number of important bits that are set and cleared by 8051 instructions. The PSW SFR contains the carry flag, the auxiliary carry flag, the parity flag and the overflow flag. Additionally, it also contains the register bank select flags, which are used to select, which of the “R” register banks currently in use.
[image: image12.png]
r) SBUF (Serial Buffer, 99h)

 SBUF is used to hold data in serial communication. It is physically two registers. One is writing only and is used to hold data to be transmitted out of 8051 via TXD. The other is read only and holds received data from external sources via RXD. Both mutually exclusive registers use address 99h.

I/O ports:

 One major feature of a microcontroller is the versatility built into the input/output (I/O) circuits that connect the 8051 to the outside world. The main constraint that limits numerous functions is the number of pins available in the 8051 circuit. The DIP had 40 pins and the success of the design depends on the flexibility incorporated into use of these pins. For this reason, 24 of the pins may each used for one of the two entirely different functions which depend, first, on what is physically connected to it and, then, on what software programs are used to “program” the pins.
PORT 0

 Port 0 pins may serve as inputs, outputs, or, when used together, as a bi directional low-order address and data bus for external memory. To configure a pin as input, 1 must be written into the corresponding port 0 latch by the program. When used for interfacing with the external memory, the lower byte of address is first sent via PORT0, latched using Address latch enable (ALE) pulse and then the bus is turned around to become the data bus for external memory.

PORT 1

 Port 1 is exclusively used for input/output operations. PORT 1 pins have no dual function. When a pin is to be configured as input, 1 is to be written into the corresponding Port 1 latch.

PORT 2

 Port 2 maybe used as an input/output port. It may also be used to supply a high –order address byte in conjunction with Port 0 low-order byte to address external memory. Port 2 pins are momentarily changed by the address control signals when supplying the high byte a 16-bit address. Port 2 latches remain stable when external memory is addressed, as they do not have to be turned around (set to 1) for data input as in the case for Port 0.

PORT 3

 Port 3 may be used to input /output port. The input and output functions can be programmed under the control of the P3 latches or under the control of various special function registers. Unlike Port 0 and Port 2, which can have external addressing functions and change all eight-port b se, each pin of port 3 maybe individually programmed to be used as I/O or as one of the alternate functions. The Port 3 alternate uses are:
	Pin (SFR)
	Alternate Use

	P3.0-RXD (SBUF)
	Serial data input

	P3.1-TXD (SBUF)
	Serial data output

	P3.2-INTO 0 (TCON.1)
	External interrupt 0

	P3.3 - INTO 1 (TCON.3)
	External interrupt 1

	P3.4 - T0 (TMOD)
	External Timer 0 input

	P3.5 – T1 (TMOD)
	External timer 1 input

	P3.6 - WR
	External memory write pulse

	P3.7 - RD
	External memory read pulse

Table-1: Port 3 Alternate Uses

INTERRUPTS:

 Interrupts are hardware signals that are used to determine conditions that exist in external and internal circuits. Any interrupt can cause the 8051 to perform a hardware call to an interrupt –handling subroutine that is located at a predetermined absolute address in the program memory.

 Five interrupts are provided in the 8051. Three of these are generated automatically by the internal operations: Timer flag 0, Timer Flag 1, and the serial port interrupt (RI or TI) Two interrupts are triggered by external signals provided by the circuitry that is connected to the pins INTO 0 and INTO1. The interrupts maybe enable or disabled, given priority or otherwise controlled by altering the bits in the Interrupt Enabled (IE) register, Interrupt Priority (IP) register, and the Timer Control (TCON) register. . These interrupts are mask able i.e. they can be disabled. Reset is a non maskable interrupt which has the highest priority. It is generated when a high is applied to the reset pin. Upon reset, the registers are loaded with the default values.

 Each interrupt source causes the program to do store the address in PC onto the stack and causes a hardware call to one of the dedicated addresses in the program memory. The appropriate memory locations for each for each interrupt are as follows:
	Interrupt
	Address

	RESET
	0000

	IE0 (External interrupt 0)
	0003

	TF0 (Timer 0 interrupt)
	000B

	IE1 (External interrupt 1)
	0013

	TF1 (Timer 1 interrupt)
	001B

	SERIAL
	0023

Table-2: Interrupts
 HARDWARE COMPONENTS-I

 TEMPERATURE SENSOR
 The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.
FEATURES:
· Calibrated directly in ° Celsius (Centigrade)
· Linear + 10.0 mV/°C scale factor
· 0.5°C accuracy guarantee able (at +25°C)
· Rated for full -55° to +150°C range
· Suitable for remote applications
· Low cost due to wafer-level trimming
· Operates from 4 to 30 volts
· Less than 60 µA current drain
· Low self-heating, 0.08°C in still air
· Non-linearity only ±¼°C typical
· Low impedance output, 0.1 Ohm for 1 mA load
Why to Use LM35s to Measure Temperature?

You can measure temperature more accurately than a using a thermistor. The sensor circuitry is sealed and not subject to oxidation, etc.

The LM35 generates a higher output voltage than thermocouples and may not require that the output voltage be amplified.

 What Does An LM35 Look Like?

[image: image13.jpg]
 What Does an LM35 Do? How does it work?

· It has an output voltage that is proportional to the Celsius temperature.

· The scale factor is .01V/oC

· The LM35 does not require any external calibration or trimming and maintains an accuracy of +/-0.4 oC at room temperature and +/- 0.8 oC over a range of 0 oC to +100 oC.

· Another important characteristic of the LM35DZ is that it draws only 60 micro amps from its supply and possesses a low self-heating capability. The sensor self-heating causes less than 0.1 oC temperature rise in still air.

The LM35 comes in many different packages, including the following.

· TO-92 plastic transistor-like package,

· T0-46 metal can transistor-like package

· 8-lead surface mount SO-8 small outline package

 What Can You Expect When You Use An LM35?

 You will need to use a voltmeter to sense Vout.
· The output voltage is converted to temperature by a simple conversion factor.

· The sensor has a sensitivity of 10mV / oC.

· Use a conversion factor that is the reciprocal that is 100V / oC.

The general equation used to convert output voltage to temperature is:

· Temperature (oC) = Vout * (100 oC/V)

· So if Vout is 1V , then, Temperature = 100 oC

· The output voltage varies linearly with temperature.

How Do You Use An LM35? (Electrical Connections)

Here is a commonly used circuit. For connections refer to the picture above.

In this circuit, parameter values commonly used are:

· Vc = 4 to 30v

· 5v or 12 v are typical values used.

· Ra = Vc /10-6

· Actually, it can range from 80 KW to 600 KW , but most just use
8 KW

 [image: image14.png]
 Here is a the LM 35 wired on a circuit board.

· The white wire in to the power supply.

· Both the resistor and the black wire go to ground.

· The output voltage is measured from the middle pin to ground 1

.

 ADC DEVICE (0804)

 Analog-to-digital converters are among the most widely used devices for data acquisition. Digital Computers use binary (discrete) values, but in the physical world everything is analog (continuous). Temperature, pressure, humidity, and velocity are a few examples of physical quantities that we deal with every day. Physical quantity is converted to electrical (voltage, current) signals using a device called a transducer. Transducers are also referred to as sensors. Although there are sensors for temperature, velocity, pressure, light, and many other natural quantities, they produce an output that is voltage (or current). Therefore, we need an analog-to-digital converter to translate the analog signals to digital numbers so that the micro controller can read them.

· FEATURES:

· Compatible with 8080 μP derivatives—no interfacing logic needed - access time - 135 ns

· Easy interface to all microprocessors, or operates “stand alone”

· Differential analog voltage inputs

· Logic inputs and outputs meet both MOS and TTL

· Voltage level specifications

· Works with 2.5V (LM336) voltage reference

· On-chip clock generator

· 0V to 5V analog input voltage range with single 5V supply

· No zero adjust required

· 0.3 standard width 20-pin DIP package

· 20-pin molded chip carrier or small outline package

FUNCTIONAL DESCREPTION:

 The ADC0804 IC is an analog-to-digital converter in the family of the ADC800 series from National Semiconductors. It works with 5V and as a resolution of 8 bits in addition to resolution; conversion time is another major factor in judging an ADC. Conversion time is defined as the time it takes the ADC to convert the analog input to a digital (binary) number. In the ADC 0804, the conversion time varies depending on the clocking signals apply to the CLK R and CLK IN pins, but it cannot be faster than 110 micro seconds.

PIN DIAGRAM:

[image: image15.emf]
PIN DESCRIPTION:
CS:

 Chip select is an active low input used to activate the ADC 0804 chip. To accesses the ADC 0804, this pin must be low.

RD:
 This is an input signal and is active low. The ADC converts the analog input to its binary equivalent and holds it in an internal register. RD is used to get the converted data out of the ADC 0804 chip. When CS=0, if a high to low pulse is applied to RD pin, the 8 bit digital output shows up at the D0-D7 data pins. The RD pin is also referred to as output enable.

WR:

 This is an active low input used to inform the ADC 0804 to start the conversion process. If CS=0 when WR makes a low to high transition, the ADC 0804 starts converting the analog input value of Van to an 8 bit digital number the amount of time it takes to convert it varies depending on the CLK IN and CLK R values. When the data conversion is complete, the ADC 0804 forces the INTR pin low.

CLK IN and CLK R:

 CLK IN is an input pin connected to an external clock source when an external clock is used for timing. However the 0804 have an internal clock generator. To use the internal clock generator of the ADC 0804, the CLK IN and CLK R pins are connected to a capacitor and resistor; in that case the clock frequency is determined by the equation

 F= 1/1.1 R

INTR:
 This is an output pin and is active low. It is a normally high pin and when the conversion is finished, it goes low to signal the CPU that the converted data is ready t be picked up. After INTR goes low, we make CS=0 and send a high to low pulse to the RD pin t get the data out of the ADC 0804 chip.

Vin (+) and Vin (-):

 This are the differential analog inputs where Vin= Vin (+)- Vin(-). Often the Vin (–) connected to ground and the Vin (+) pin used as the analog input to the converted to digital.

VCC:

 This is the +5V power supply. It is also used as a reference voltage when the Vref/2 Vcc: input is open (not connected).

D0-D7:
 D0-D7 (whereD7is the MSB, D0 the LSB) is the digital data output pins. These are tri state buffered and the converted data is accessed only CS=0 and RD is forced low. To calculate the output voltage, use the following formula.

 Dout =Vin/step size

 ANALOG AND DIGITAL GROUND
 These are the input pins providing the ground for both analog signal and digital signal and the digital signal. Analog ground is connected to the ground and of the analog Vin while digital ground is connected to the ground of Vcc pin. The reason that we have two ground pins is to isolate the analog vin signal from transient voltages caused by digital switching of the digital data output. D0-D7. Such isolation contributes to the accuracy of digital data output

1. Make CS=0 and send a low to high pulse to pin WR to start the conversion.

2. Keep monitoring the INTR pin. If INTR is low, low, the conversion is finished and we can go the next step. If INTR is high, keep polling until goes low.

3. After the INTR has become low, we make CS=0 and send a high to low pulse to the RD pin to get the data out of the ADC 0804 IC chip.
Liquid Crystal Display (LCD):

Liquid crystal display a type of display used in digital watches and many portable computers.

[image: image16.emf]
LCD displays utilize two sheets of polarizing material with a liquid crystal solution between them. An electric current passed through the liquid causes the crystals to align so that light cannot pass through them. Each crystal, therefore, is like a shutter, either allowing light to pass through or blocking the light.

 The liquid crystals can be manipulated through an applied electric voltage so that light is allowed to pass or is blocked.

By carefully controlling where and what wavelength (color) of light is allowed to pass, the LCD monitor is able to display images. A back light provides LCD monitor’s brightness.

Other advances have allowed LCD’s to greatly reduce liquid crystal cell response times.

 Response time is basically the amount of time it takes for a pixel to “change colors”. In reality response time is the amount of time it takes a liquid crystal cell to go from being active to inactive

Here the LCD is used at both the Transmitter as well as the receiver side.

The input which we give to the microcontroller is displayed on the LCD of the transmitter side and the message sent is received at the receiver side which displays at the receiver end of the LCD and the corresponding operation is performed

They make complicated equipment easier to operate. LCDs come in many shapes and sizes but the most common is the 16 character x 4 line display with no backlight.

 It requires only 11 connections – eight bits for data (which can be reduced to four if necessary) and three control lines (we have only used two here). It runs off a 5V DC supply and only needs about 1mA of current.

 The display contrast can be varied by changing the voltage into pin 3 of the display,

Pin description of LCD:

[image: image17.emf]
]

From this description, the interface is a parallel bus, allowing simple and fast reading/writing of data to and from the LCD. This waveform will write an ASCII Byte out to the LCD's screen.

Article I. PIN DESCRIPTIONS

Vcc, Vss and Vee

 While Vcc and Vss provide +5V and ground respectively, Vee is used for controlling LCD contrast.

	PIN
	SYMBOL
	I/O
	DESCRIPTION

	1
	Vss
	--
	Ground

	2
	Vcc
	--
	+5V power supply

	3
	Vee
	--
	Power supply to control contrast

	4
	RS
	I
	RS=0 to select command register

RS=1 to select data register

	5
	R/W
	I
	R/W=0 for write

R/W=1 for read

	6
	EN
	I/O
	Enable

	7
	DB0
	I/O
	The 8-bit data bus

	8
	DB1
	I/O
	The 8-bit data bus

	9
	DB2
	I/O
	The 8-bit data bus

	10
	DB3
	I/O
	The 8-bit data bus

	11
	DB4
	I/O
	The 8-bit data bus

	12
	DB5
	I/O
	The 8-bit data bus

	13
	DB6
	I/O
	The 8-bit data bus

	14
	DB7
	I/O
	The 8-bit data bus

The ASCII code to be displayed is eight bits long and is sent to the LCD either four or eight bits at a time.

If four bit mode is used, two "nibbles" of data (Sent high four bits and then low four bits with an "E" Clock pulse with each nibble) are sent to make up a full eight bit transfer.

The "E" Clock is used to initiate the data transfer within the LCD.

Deciding how to send the data to the LCD is most critical decision to be made for an LCD interface application.

Eight-bit mode is best used when speed is required in an application and at least ten I/O pins are available.

The "R/S" bit is used to select whether data or an instruction is being transferred between the microcontroller and the LCD.

If the Bit is set, then the byte at the current LCD "Cursor" Position can be reader written.

 When the Bit is reset, either an instruction is being sent to the LCD or the execution status of the last instruction is read back
INTERFACING LCD WITH CONTROLLER:

Interfacing a LCD with a microcontroller.

Advantages:

 LCD interfacing with 8051 is a real-world application. In recent years the LCD is finding widespread use replacing LEDs (seven segment LEDs or other multisegment LEDs).

This is due to following reasons:

1. The declining prices of LCDs.

2. The ability to display numbers, characters and graphics. This is in contrast to LEDs, which are limited to numbers and a few characters. An intelligent LCD display of two lines, 20 characters per line, which is interfaced to the 8051.

3. Incorporation of a refreshing controller into the LCD, thereby relieving the CPU to keep displaying the data.

4. Ease of programming for characters and graphics.

Basic commands of LCD:

 When LCD is powered up, the display should show a series of dark squares, possibly only on part of display.

These characters are actually in their off state, so the contrast control should be adjusted anti-clockwise until the squares are just visible.

The display module resets itself to an initial state when power is applied, which curiously the display has blanked off so that even if characters are entered, they cannot be seen.

 It is therefore necessary to issue a command at this point, to switch the display on.

 Prototype circuit:

 For a LCD module to be used effectively in any piece of equipment, a microprocessor or a micro controller is usually required to drive it.

 However, before attempting to wire the two together, some initial experiments can be performed by connecting a series of switches to the pins of the module.

This can be a quite beneficial step, if even you are thoroughly conversant with the workings of microprocessors.
i) Circuit description of LCD experiment:
 The circuit can be wired up on a “plug-in-style” prototyping board, using dual-in-line switches for the data lines (S1-S8)

A toggle switch for the RS input (S10) and a momentary action switch (or macro switch) for usage.

 Most of the LCD modules conform to a standard interface specification. A 14pin access is provided having eight data lines, three control lines and three power lines.

The connections are laid out in one of the two common configurations, either two rows of seven pins, or a single row of 14 pins.
One of the, pins are numbered on the LCD’s print circuit board (PCB), but if not, it is quite easy to locate pin1.

Since this pin is connected to ground, it often has a thicker PCB track, connected to it, and it is generally connected to metalwork at same point.
Pin description:

 G +5V -5v

 D0 D1 D2 D3 D4 D5 D6 D7 RS R/W EN

The LCD plays a major role in the entire operation as it has the ability to display the certain data that the user has entitled.

LCD display varies from input to input as there is no specific outline for it to operate.
HARDWARE COMPONENTS-II

REGULATED POWER SUPPLY

DESCRIPTION
A variable regulated power supply, also called a variable bench power supply, is one where you can continuously adjust the output voltage to your requirements. Varying the output of the power supply is the recommended way to test a project after having double checked parts placement against circuit drawings and the parts placement guide. This type of regulation is ideal for having a simple variable bench power supply. Actually this is quite important because one of the first projects a hobbyist should undertake is the construction of a variable regulated power supply. While a dedicated supply is quite handy e.g. 5V or 12V, it's much handier to have a variable supply on hand, especially for testing. Most digital logic circuits and processors need a 5 volt power supply. To use these parts we need to build a regulated 5 volt source. Usually you start with an unregulated power supply ranging from 9 volts to 24 volts DC (A 12 volt power supply is included with the Beginner Kit and the Microcontroller Beginner Kit.). To make a 5 volt power supply, we use a LM7805 voltage regulator IC .
[image: image18.jpg]
FIG-10 Voltage Regulator-LM7805
The LM7805 is simple to use. You simply connect the positive lead of your unregulated DC power supply (anything from 9VDC to 24VDC) to the Input pin, connect the negative lead to the Common pin and then when you turn on the power, you get a 5 volt supply from the Output pin.

CIRCUIT FEATURES

Brief description of operation: Gives out well regulated +5V output, output current capability of 100 mA

Circuit protection: Built-in overheating protection shuts down output when regulator IC gets too hot

Circuit complexity: Very simple and easy to build

Circuit performance: Very stable +5V output voltage, reliable operation

Availability of components: Easy to get, uses only very common basic components

Design testing: Based on datasheet example circuit, I have used this circuit successfully as part of many electronics projects

Applications: Part of electronics devices, small laboratory power supply

Power supply voltage: Unregulated DC 8-18V power supply

Power supply current: Needed output current + 5 mA

Component costs: Few dollars for the electronics components + the input transformer cost
BLOCK DIAGRAM

[image: image19.png]
FIG-11 Block Diagram of Power Supply
CIRCUITDIAGRAM[image: image20.png]
FIG-12Circuit Diagram of Power Supply
BASIC POWER SUPPLY CIRCUIT

Above is the circuit of a basic unregulated dc power supply. A bridge rectifier D1 to D4 rectifies the ac from the transformer secondary, which may also be a block rectifier such as WO4 or even four individual diodes such as 1N4004 types. (See later re rectifier ratings).

The principal advantage of a bridge rectifier is you do not need a centre tap on the secondary of the transformer. A further but significant advantage is that the ripple frequency at the output is twice the line frequency (i.e. 50 Hz or 60 Hz) and makes filtering somewhat easier.

As a design example consider we wanted a small unregulated bench supply for our projects. Here we will go for a voltage of about 12 - 13V at a maximum output current (IL) of 500ma (0.5A). Maximum ripple will be 2.5% and load regulation is 5%.

 Now the RMS secondary voltage (primary is whatever is consistent with your area) for our power transformer T1 must be our desired output Vo PLUS the voltage drops across D2 and D4 (2 * 0.7V) divided by 1.414.

This means that Vsec = [13V + 1.4V] / 1.414 which equals about 10.2V. Depending on the VA rating of your transformer, the secondary voltage will vary considerably in accordance with the applied load. The secondary voltage on a transformer advertised as say 20VA will be much greater if the secondary is only lightly loaded.

If we accept the 2.5% ripple as adequate for our purposes then at 13V this becomes 13 * 0.025 = 0.325 Vrms. The peak to peak value is 2.828 times this value. Vrip = 0.325V X 2.828 = 0.92 V and this value is required to calculate the value of C1. Also required for this calculation is the time interval for charging pulses. If you are on a 60Hz system it it 1/ (2 * 60) = 0.008333 which is 8.33 milliseconds. For a 50Hz system it is 0.01 sec or 10 milliseconds.

Remember the tolerance of the type of capacitor used here is very loose. The important thing to be aware of is the voltage rating should be at least 13V X 1.414 or 18.33. Here you would use at least the standard 25V or higher (absolutely not 16V).With our rectifier diodes or bridge they should have a PIV rating of 2.828 times the Vsec or at least 29V. Don't search for this rating because it doesn't exist. Use the next highest standard or even higher. The current rating should be at least twice the load current maximum i.e. 2 X 0.5A or 1A. A good type to use would be 1N4004, 1N4006 or 1N4008 types.

These are rated 1 Amp at 400PIV, 600PIV and 1000PIV respectively. Always be on the lookout for the higher voltage ones when they are on special.

TRANSFORMER RATING
In our example above we were taking 0.5A out of the Vsec of 10V. The VA required is 10 X 0.5A = 5VA. This is a small PCB mount transformer available in Australia and probably elsewhere.

This would be an absolute minimum and if you anticipated drawing the maximum current all the time then go to a higher VA rating.

The two capacitors in the primary side are small value types and if you don't know precisely and I mean precisely what you are doing then OMIT them. Their loss won't cause you heartache or terrible problems.

 The fuse F1 must be able to carry the primary current but blow under excessive current, in this case we use the formula from the diagram. Here N = 240V / 10V or perhaps 120V / 10V. The fuse calculates in the first instance to [2 X 0.5A] / [240 / 10] or .04A or 40 ma. In the second case .08A or 80 ma. The difficulty here is to find suitable fuses of that low a current and voltage rating. In practice you use the closest you can get (often 100 ma). Don't take that too literal and use 1A or 5A fuses.
ULN2803
 ULN is mainly suited for interfacing between low-level circuits and multiple peripheral power loads,.The series ULN20XX high voltage, high current darlington arrays feature continuous load current ratings. The driving circuitry in- turn decodes the coding and conveys the necessary data to the stepper motor, this module aids in the movement of the arm through steppers.[image: image21.png]
 The driver makes use of the ULN2003 driver IC, which contains an array of 7 power Darlington arrays, each capable of driving 500mA of current. At an approximate duty cycle, depending on ambient temperature and number of drivers turned on, simultaneously typical power loads totaling over 230w can be controlled.

 The device has base resistors, allowing direct connection to any common logic family. All the emitters are tied together and brought out to a separate terminal. Output protection diodes are included; hence the device can drive inductive loads with minimum extra components. Typical loads include relays, solenoids, stepper motors, magnetic print hammers, multiplexed LED, incandescent displays and heaters.

Darlington Pair

What is a Darlington Pair?

A Darlington pair is two transistors that act as a single transistor but with a much higher current gain.
What is current gain?

Transistors have a characteristic called current gain. This is referred to as its hFE. The amount of current that can pass through the load when connected to a transistor that is turned on equals the input current x the gain of the transistor (hFE) The current gain varies for different transistor and can be looked up in the data sheet for the device. Typically it may be 100. This would mean that the current available to drive the load would be 100 times larger than the input to the transistor.

[image: image22.emf]
Why use a Darlington Pair?
In some application the amount of input current available to switch on a transistor is very low. This may mean that a single transistor may not be able to pass sufficient current required by the load.

As stated earlier this equals the input current x the gain of the transistor (hFE). If it is not be possible to increase the input current then we need to increase the gain of the transistor. This can be achieved by using a Darlington Pair.
A Darlington Pair acts as one transistor but with a current gain that equals:

Total current gain (hFE total) = current gain of transistor 1 (hFE t1) x current gain of transistor 2 (hFE t2)
So for example if you had two transistors with a current gain (hFE) = 100:

(hFE total) = 100 x 100

(hFE total) = 10,000
You can see that this gives a vastly increased current gain when compared to a single transistor. Therefore this will allow a very low input current to switch a much bigger load current.
Base Activation Voltage
Normally to turn on a transistor the base input voltage of the transistor will need to be greater that 0.7V. As two transistors are used in a Darlington Pair this value is doubled. Therefore the base voltage will need to be greater than 0.7V x 2 = 1.4V.

It is also worth noting that the voltage drop across collector and emitter pins of the Darlington Pair when the turn on will be around 0.9V Therefore if the supply voltage is 5V (as above) the voltage across the load will be will be around 4.1V (5V – 0.9V)

RELAY
Overview
A relay is an electrically operated switch. Current flowing through the coil of the relay creates a magnetic field which attracts a lever and changes the switch contacts. The coil current can be ON or OFF so relays have two switch position and they are double throw (changeover) switches.
 Relays allow one circuit to switch a second circuit which can be completely separate from the first. For example a low voltage battery circuit can use a relay to switch a 230V AC mains circuit. There is no electrical connection inside the relay between the two circuits; the link is magnetic and mechanical.
The coil of a relay passes a relatively large current, typically 30mA for a 12V relay, but it can be as much as 100mA for relays designed to operate from lower voltages. Most ICs (chips) can not provide this current and a transistor is usually used to amplify the small IC current to the larger value required for the relay coil. The maximum output current for the popular 555 timer IC is 200mA so these devices can supply relay coils directly without amplification.
Relays are usually SPDT or DPDT but they can have many more sets of switch contacts, for example relay with 4 sets of changeover contacts are readily available. Most relays are designed for PCB mounting but you can solder wires directly to the pins providing you take care to avoid melting the plastic case of the relay.
The supplier's catalogue should show you the relay's connection. The coil will be obvious and it may be connected either way round. Relay coils produce brief high voltage 'spikes' when they are switched off and this can destroy transistors and ICs in the circuit. To prevent damage you must connect a protection diode across the relay coil.
The relay’s switch connections are usually contains COM, NC and NO.

COM = Common, always connect to this; it is the moving part of the switch.

NC = Normally Closed, COM is connected to this when the relay coil is off.

NO = Normally Open, COM is connected to this when the relay coil is on.

Connect to COM and NO if you want the switched circuit to be on when the relay coil is on.

Connect to COM and NC if you want the switched circuit to be on when the relay coil is off.

Most relays are SPDT or DPDT which are often described as "single pole changeover" (SPCO)

Or "double pole changeover"(DPCO).
[image: image23.png] This is a Single Pole Double Throw relay. Current will flow between the movable contact and one fixed contact when the coil is energized and between the movable contact and the alternate fixed contact when the relay coil is energized. The most commonly used relay in car audio, the Bosch relay, is a SPDT relay..
[image: image24.png] This relay is a Double Pole Double Throw relay. It operates like the SPDT relay but has twice as many contacts. There are two completely isolated sets of contacts.
 Relay Construction:

 Relays are amazingly simple devices. There are four parts in every relay:
· Electromagnet
· Armature that can be attracted by the electromagnet

· Spring

· Set of electrical contacts
 A relay consists of two separate and completely independent circuits. The first is at the bottom and drives the electromagnet. In this circuit, a switch is controlling power to the electromagnet. When the switch is on, the electromagnet is on, and it attracts the armature. The armature is acting as a switch in the second circuit. When the electromagnet is energized, the armature completes the second circuit and the light is on. When the electromagnet is not energized, the spring pulls the armature away and the circuit is not complete. In that case, the light is dark.

When you purchase relays, you generally have control over several variables:

· The voltage and current that is needed to activate the armature

· The maximum voltage and current that can run through the armature and the armature contacts

· The number of armatures (generally one or two)

· The number of contacts for the armature (generally one or two -- the relay shown here has two, one of which is unused)

· Whether the contact (if only one contact is provided) is normally open (NO) or normally closed (NC)

 Relay Applications:

 In general, the point of a relay is to use a small amount of power in the electromagnet coming, say, from a small dashboard switch or a low-power electronic circuit -- to move an armature that is able to switch a much larger amount of power. For example, you might want the electromagnet to energize using 5 volts and 50 milliamps (250 mill watts), while the armature can support 120V AC at 2 amps (240 watts).

Relays are quite common in home appliances where there is an electronic control turning on something like a motor or a light. They are also common in cars, where the 12V supply voltage means that just about everything needs a large amount of current. In later model cars, manufacturers have started combining relay panels into the fuse box to make maintenance easier.
In places where a large amount of power needs to be switched, relays are often cascaded. In this case, a small relay switches the power needed to drive a much larger relay, and that second relay switches the power to drive the load.

Relays can also be used to implement Boolean logic.
Advantages of Relay:
· Relays can switch AC and DC, transistors can only switch DC.

· Relays can switch high voltages, transistors cannot.

· Relays are a better choice for switching large currents (> 5A).

· Relays can switch many contacts at once.

SOFTWARE
Software’s used are:

· Keil software for c programming

· Express PCB for lay out design

· Express SCH for schematic design

PRINTED CIRCUIT BOARD

Printed circuit boards may be covered in two topics namely

1) Technology

2) Design

Introduction to printed circuit boards:

 It is called PCB in short printed circuit consists of conductive circuit pattern

Applied to one or both sides of an insulating base, depending upon that, it is called single sided PCB or double-sided PCB.(SSB and DSB).
 Conductor materials available are silver, brass, aluminium and copper. Copper is most widely used. The thickness of conducting material depends upon the current carrying capacity of circuit. Thus a thicker copper layer will have more current carrying capacity.
The printed circuit boards usually serves three distinct functions.

1) it provides mechanical support for the components mounted on it.

2) It provides necessary electrical interconnections.

3) It acts as heat sink that is provides a conduction path leading to removal of the heat generated in the circuit.
Advantages of PCB:
1) When a number of identical assemblies are required. PCB’s provide cost saving because once a layout is approved there is no need to check the circuit every time.

2) For large equipments such as computers, the saving on checking connections or wires is substantial.

3) PCB’s have controllable and predictable electrical and mechanical properties.

4) A more uniform product is produced because wiring errors are eliminated.

5) The distributed capacitances are constant from one production to another.

6) Soldering is done in one operation instead of connecting discrete components by wires.

7) The PCB construction lands itself for automatic assembly.

8) Spiral type of inductors may be printed.

9) Weight is less.

 10) It has miniaturization potential.

11) It has reproducible performance.

12) All the signals are accessible for testing at any point along conductor track.

µVISION
What's New in µVision3?
µVision3 adds many new features to the Editor like Text Templates, Quick Function Navigation, and Syntax Coloring with brace high lighting Configuration Wizard for dialog based startup and debugger setup. µVision3 is fully compatible to µVision2 and can be used in parallel with µVision2.
What is µVision3?

µVision3 is an IDE (Integrated Development Environment) that helps you write, compile, and debug embedded programs. It encapsulates the following components:
· A project manager.
· A make facility.

· Tool configuration.

· Editor.

· A powerful debugger.

To help you get started, several example programs (located in the \C51\Examples, \C251\Examples, \C166\Examples, and \ARM\...\Examples) are provided.

· HELLO is a simple program that prints the string "Hello World" using the Serial Interface.

· MEASURE is a data acquisition system for analog and digital systems.

· TRAFFIC is a traffic light controller with the RTX Tiny operating system.

· SIEVE is the SIEVE Benchmark.

· DHRY is the Dhrystone Benchmark.

· WHETS is the Single-Precision Whetstone Benchmark.

Additional example programs not listed here are provided for each device architecture.

BUILDING AN APPLICATION IN µVISION
To build (compile, assemble, and link) an application in µVision2, you must:

1. Select Project -(forexample,166\EXAMPLES\HELLO\HELLO.UV2).

2. Select Project - Rebuild all target files or Build target.

 µVision2 compiles, assembles, and links the files in your project.

Creating Your Own Application in µVision2

 To create a new project in µVision2, you must:

1. Select Project - New Project.

2. Select a directory and enter the name of the project file.

3. Select Project - Select Device and select an 8051, 251, or C16x/ST10 device from the Device Database™.

4. Create source files to add to the project.

5. Select Project - Targets, Groups, Files. Add/Files, select Source Group1, and add the source files to the project.

6. Select Project - Options and set the tool options. Note when you select the target device from the Device Database™ all special options are set automatically. You typically only need to configure the memory map of your target hardware. Default memory model settings are optimal for most applications.

7. Select Project - Rebuild all target files or Build target.

Debugging an Application in µVision2

To debug an application created using µVision2, you must:

1. Select Debug - Start/Stop Debug Session.

2. Use the Step toolbar buttons to single-step through your program. You may enter G, main in the Output Window to execute to the main C function.

3. Open the Serial Window using the Serial #1 button on the toolbar.

Debug your program using standard options like Step, Go, Break, and so on.
Starting µVision2 and Creating a Project

µVision2 is a standard Windows application and started by clicking on the program icon. To create a new project file select from the µVision2 menu

Project – New Project…. This opens a standard Windows dialog that asks you

for the new project file name.

We suggest that you use a separate folder for each project. You can simply use

the icon Create New Folder in this dialog to get a new empty folder. Then

select this folder and enter the file name for the new project, i.e. Project1.

µVision2 creates a new project file with the name PROJECT1.UV2 which contains

a default target and file group name. You can see these names in the Project

Window – Files.

Now use from the menu Project – Select Device for Target and select a CPU

for your project. The Select Device dialog box shows the µVision2 device

database. Just select the microcontroller you use. We are using for our examples the Philips 80C51RD+ CPU. This selection sets necessary tool

options for the 80C51RD+ device and simplifies in this way the tool Configuration

Building Projects and Creating a HEX Files

Typical, the tool settings under Options – Target are all you need to start a new

application. You may translate all source files and line the application with a

click on the Build Target toolbar icon. When you build an application with

syntax errors, µVision2 will display errors and warning messages in the Output

Window – Build page. A double click on a message line opens the source file

on the correct location in a µVision2 editor window. Once you have successfully generated your application you can start debugging.

After you have tested your application, it is required to create an Intel HEX file to download the software into an EPROM programmer or simulator. µVision2 creates HEX files with each build process when Create HEX files under Options for Target – Output is enabled. You may start your PROM programming utility after the make process when you specify the program under the option Run User Program #1.

CPU Simulation

µVision2 simulates up to 16 Mbytes of memory from which areas can be

mapped for read, write, or code execution access. The µVision2 simulator traps

and reports illegal memory accesses.

In addition to memory mapping, the simulator also provides support for the

integrated peripherals of the various 8051 derivatives. The on-chip peripherals

of the CPU you have selected are configured from the Device

Database selection
You have made when you create your project target. Refer to page 58 for more

Information about selecting a device. You may select and display the on-chip peripheral components using the Debug menu. You can also change the aspects of each peripheral using the controls in the dialog boxes.

Start Debugging

You start the debug mode of µVision2 with the Debug – Start/Stop Debug

Session command. Depending on the Options for Target – Debug

Configuration, µVision2 will load the application program and run the startup

code µVision2 saves the editor screen layout and restores the screen layout of the last debug session. If the program execution stops, µVision2 opens an

editor window with the source text or shows CPU instructions in the disassembly window. The next executable statement is marked with a yellow arrow. During debugging, most editor features are still available.

For example, you can use the find command or correct program errors. Program source text of your application is shown in the same windows. The µVision2 debug mode differs from the edit mode in the following aspects:

· The “Debug Menu and Debug Commands” described below are available. The additional debug windows are discussed in the following.

· The project structure or tool parameters cannot be modified. All build Commands are disabled.

Disassembly Window

The Disassembly window shows your target program as mixed source and assembly program or just assembly code. A trace history of previously executed instructions may be displayed with Debug – View Trace Records. To enable the trace history, set Debug – Enable/Disable Trace Recording.

If you select the Disassembly Window as the active window all program step commands work on CPU instruction level rather than program source lines. You can select a text line and set or modify code breakpoints using toolbar buttons or the context menu commands.

 You may use the dialog Debug – Inline Assembly… to modify the CPU instructions. That allows you to correct mistakes or to make temporary changes to the target program you are debugging.

SOURCE CODE

1. Click on the Keil uVision Icon on Desktop

2. The following fig will appear

[image: image25.png]
3. Click on the Project menu from the title bar

4. Then Click on New Project

[image: image26.png]
5. Save the Project by typing suitable project name with no extension in u r own folder sited in either C:\ or D:\

[image: image27.png]
6. Then Click on Save button above.

7. Select the component for u r project. i.e. Atmel……

8. Click on the + Symbol beside of Atmel

[image: image28.png]
9. Select AT89C51 as shown below

[image: image29.png]
10. Then Click on “OK”

11. The Following fig will appear

[image: image30.png]
12. Then Click either YES or NO………mostly “NO”

13. Now your project is ready to USE

14. Now double click on the Target1, you would get another option “Source group 1” as shown in next page.

[image: image31.wmf]
15. Click on the file option from menu bar and select “new”

[image: image32.png]
16. The next screen will be as shown in next page, and just maximize it by double clicking on its blue boarder.

[image: image33.png]
17. Now start writing program in either in “C” or “ASM”

18. For a program written in Assembly, then save it with extension “. asm” and for “C” based program save it with extension “ .C”

[image: image34.png]
19. Now right click on Source group 1 and click on “Add files to Group Source”

[image: image35.png]
20. Now you will get another window, on which by default “C” files will appear.

[image: image36.png]
21. Now select as per your file extension given while saving the file

22. Click only one time on option “ADD”

23. Now Press function key F7 to compile. Any error will appear if so happen.

[image: image37.png]
24. If the file contains no error, then press Control+F5 simultaneously.

25. The new window is as follows

[image: image38.png]
26. Then Click “OK”

27. Now Click on the Peripherals from menu bar, and check your required port as shown in fig below

[image: image39.png]
28. Drag the port a side and click in the program file.

[image: image40.png]
29. Now keep Pressing function key “F11” slowly and observe.

30. You are running your program successfully
CONCLUSION

 The project ZIG-BEE BASED INTELLIGENT MONITORING & CONTROL
 has been successfully designed and tested. Integrating features of all the hardware components used have developed it. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit. Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented.

CODING

#include "c51.h"

#include "adc.h"

sbit heater=P0^6;

sbit cooler=P0^7;

uc ch;

extern unsigned char strg[10];

void Init(void);

void main(void)

{

int val;

Init();

Delay(200);

EA=0;

Send("Zigbee temperature monitoring&controlling system ");

lprintf("temperature:",1,1);

EA=1;

while(1)

{

val=Read_ADC();

if(ch=='1')

{

heater=1;

Send_Char(ch);

}

else if(ch=='2')

{

heater=0;

Send_Char(ch);

}

else if(ch=='3')

{

cooler=1;

Send_Char(ch);

}

else if(ch=='4')

{

cooler=0;

Send_Char(ch);

}

ch='\0';

Send(strg);

lprintf(strg,2,1);

Delay(400);

}

while(1);

}

void Init(void)

{

SConfig(); // For Serial configuration at baud rate 9600

heater=0;

cooler=0;

// Byte count variable for receiving the data

EA=1;

// Enabling the serial Interrupt.

ES=1;

}

#define ADC_RD

P3_4

#define ADC_WR

P3_3

#define ADC_INTRB
P3_2

#define ADC_Data
P1

//Functions Prototypes

int
 display (float);

int Read_ADC();

unsigned char strg[10];

/*--*/

// Reading ADC

int Read_ADC()

{

unsigned char dout,d,u,v;

float adout;

ADC_Data = 0xff;

// Configuring P0 port as Input

ADC_INTRB=1;

ADC_RD=1;

ADC_WR=0;

Conditions

nop();

ADC_WR=1;

// Starts Converstion

 nop();

while(ADC_INTRB);

//
jb INTRB,$; Waits Till End of Converstion

nop();

nop();

ADC_RD=0;

// Read Command after completion of converstion

nop();

dout=ADC_Data;

// Digital Data Collecting

//dout=205;

// U Can test for BCD conversion

v=dout/0x0a;

u=dout%0x0a;

v=v*10;

d=u+v;

adout=d*19.6;

display(adout);
//

return adout;

}

/*--*/

int
 display (float result)

{

unsigned int dispdata;

unsigned int c02,c01,c03,c1,c2,c3,c4,t;

result=result/1000;

 //MILLI VOLTS TO VOLTS

dispdata=result*1000;

 //ROUTINE TO SEPARATE EACH DIGIT

 // OF THE VOLTAGE VALUE

c4=dispdata%10;

c01=dispdata/1000;

c1=c01%10;

c02=dispdata/100;

c2=c02%10;

c03=dispdata/10;

c3=c03%10;

t=dispdata/10000;

strg[0]=' ';

strg[1]=c1+48;

strg[2]=c2+48;

 strg[3]=c3+48;

strg[4]='.';

strg[5]=c4+48;

strg[6]=' ';

strg[7]='C';

strg[8]='\0';

// strg[9]='\0';

return(0);

}

#include"vreg51.h"

#include<intrins.h>

// Device Mapping

#define LCD_Port
P2

#define LCD_RS

P3_7

#define LCD_RW

P3_6

#define LCD_EN

P3_5

#define LCD_BP

P2_7

// LCD Busy Pin

extern uc ch;

extern unsigned char recieved=0;

// Functions Prototype Declaration

void lprintf(unsigned char *,unsigned char,unsigned char);

void LCD_Init();

void LCD_Cmd(unsigned char);

void LCD_Data(unsigned char);

void Delay_10ms();

void Delay(int);

void LCD_Busy();

void ClrLCD();

/*--*/

// To Clear LCD

/*--*/

void ClrLCD()

{

 LCD_Cmd(0x01);

}

/*--*/

// Displaying String

/*--*/

// Displaying String

void lprintf(char *str,unsigned char ln,unsigned char col)

{

 static int li;

 unsigned char line;

 if(li==0)

 {

 li=1;

 LCD_Init();

 }

 switch(ln)

 {

 case 1:

 line = 0x80;

 break;

 case 2:

 line = 0xc0;

 break;

 case 3:

 line = 0x94;

 break;

 case 4:

 line = 0xD4;

 break;

 }

 LCD_Cmd(line+col-1);

 while(*str)

 {

LCD_Data(*str);

str++;

 }

}

/*--*/

//LCD Initilization

void LCD_Init()

{

LCD_Cmd(0x30);

LCD_Cmd(0x30);

LCD_Cmd(0x30);

LCD_Cmd(0x38);

LCD_Cmd(0x06);

LCD_Cmd(0x01);

LCD_Cmd(0x0c);

}

/*--*/

// LCD Command Run

void LCD_Cmd(unsigned char cmd)

{

LCD_Busy();

LCD_Port=cmd;

nop();

LCD_RS=0;

LCD_RW=0;

LCD_EN=1;

nop();

nop();

LCD_EN=0;

}

/*--*/

//LCD Data Out Function

void LCD_Data(unsigned char dt)

{

LCD_Busy();

LCD_Port=dt;

nop();

LCD_RS=1;

LCD_RW=0;

LCD_EN=1;

nop();

nop();

LCD_EN=0;

}

/*--*/

// LCD BUSY Check Function

void LCD_Busy()

{

/*

LCD_Port=0xff;

LCD_RS=0;

LCD_RW=1;

while(1)

{

 LCD_EN=0;

 nop();

 nop();

 LCD_EN=1;

 if(!LCD_BP)

 break;

 }

Delay(1);

*/

ui i;

for(i=0; i<800; i++);

}

/*/*--*/

// Delay Function

void Delay(int n)

{

 while(n)

 {

 Delay_10ms();

 n--;

 }

}

void Delay_10ms()

{

 int i;

 for(i=0; i<1825; i++);

}

/*---*/

//Functions For Serial Communication

/*---*/

// Serial Configuration

void SConfig()

{

 TMOD=0x20;

 TH1=0xFD;

 TL1=0xFD;

 SCON=0x50;

 TR1=1;

}

/*---*/

// Function to Tx a single Character

void Send_Char(unsigned char ch)

{

 unsigned char flag=0;

 SBUF=ch;

 while(!TI);

 TI=0;

}

/*---*/

// Funciton to Tx a given String

void Send(unsigned char *str)

{

 while(*str)

 {

 Send_Char(*str);

 str++;

 Delay_10ms();

 }

}

/*---*/

// Interrupt Subroutien Function

Serial_Int() interrupt 4

{

 unsigned char t;

 if(RI)

 {

 t=SBUF;

 ch=t;

 // if(t=='@')

//

bc=0;

 // RData[bc++]=t;

 // if(t=='C')

 //
recieved=1;

 RI=0;

 // RData[bc]='\0';

 // Send_Char(RData[bc-1]); // Uncomment this line to test the Serial Interrupt.

 }

}

APPENDIX A – SOURCE CODE TC "APPENDIX A – SOURCE CODE" \f C \l "1"
BIBLIOGRAPHY TC "BIBLIOGRAPHY" \f C \l "1"
NAME OF THE SITES

1 WWW.MITEL.DATABOOK.COM
2 WWW.ATMEL.DATABOOK.COM
3 WWW.FRANKLIN.COM
4 WWW.KEIL.COM
REFERENCES

5 8051-MICROCONTROLLER AND EMBEDDED SYSTEM.

Mohd. Mazidi.

6 EMBEDDED SOFTWARE PRIMER.

David .E. Simon.
 1 2 3

 07 08 09 10 11 12 13 14 4 5 6

HD44780

LCD

8052

μC

DB0

DB1

DB2

DB3

DB4

DB5

DB6

DB7

EN

RS

RW

	

P1.0

P1.1

P1.2

P1.3

P1.4

P1.5

P1.6

P1.7

P3.7

P3.6

P3.5

LCD

ULN 2803

Relays

ADC

LM 35

Microcontroller

ZIGBEE

PC

Zig-Bee intelligent monitoring & controlling

Zigbee

PAGE
 MOTHER THERESSA COLLEGE OF ENGINEERING & TECHNOLOGY 40

_1170343044.doc
[image: image1.png]

_1196710073.doc
[image: image1.png]

