
MACHINE UNDERSTANDING

OF

INDIAN SPOKEN LANGUAGES

ABSTRACT

Language Identification is process of identifying the language being spoken from a sample of speech by an unknown speaker. Most of the previous work in this field is based on the fact that phoneme sequences have different occurrence probabilities in different languages, and all the systems designed till now have tried to exploit this fact.

Language identification process in turn consists of two sub-systems. First system converts speech into some intermediate form called as phoneme sequences, which are used to model the language by doing their probabilistic analysis in the second sub-system. In this project both of the sub-systems are targeted. First some algorithms are discussed for designing language models. Then an attempt is made to design an algorithm for extracting phoneme sequences in form of more abstract classes derived by statistical tools like Gaussian Mixture Models (GMM) and Hidden Markov Model (HMM).
TABLE OF CONTENTS

2CERTIFICATE

3ACKNOWLEDGEMENTS

4ABSTRACT

5TABLE OF CONTENT

61.
Introduction

72.
Background Work

72.1.
Distinct Characteristics of Language

72.2.
Overview on Language Identifiers

82.2.1.
Front-End Processing

82.2.2.
Phoneme Recognizer

92.2.3.
Language Models

92.3.
Example: Phonetic Recognition/Language Modeling

103.
Objectives

104.
Discussion – on language models

114.1.
Language Model – Training Phase

134.2.
Language Model – Tuning Phase

134.2.1.
Penalty for zero probability phonemes

144.2.2.
Weights for Unigram, Bigram, and Trigram probabilities

164.2.3.
Utterance Duration

174.3.
Language Model – Testing Phase

175.
Discussion – Other approaches

175.1.
Recognition based on distinct phonemes

185.1.1.
Graphs for Unigram and Bigram probabilities

195.1.2.
Observations

195.1.3.
Conclusion

195.2.
Using Gaussian Mixture Models for Front end processing

206.
Discussion – Tools based on language ID

206.1.
Content Verification System (CVS)

216.2.
Call routing for customer care centers

227.
Conclusion

238.
References

1. Introduction

The problem of Language Identification (language ID) is defined as recognizing the language being spoken from a sample of speech by an unknown speaker [3]. The human is by far the best language ID system in operation today, with accuracy as high as hundred percent in case if they know the language and can make a pretty reasonable guess about them in case if they don’t. This project has tried to develop this ability in machines.

Several important applications already exist for language ID. A language ID system could be used as a 'front-end' system to a telephone-based company, routing the caller to an appropriate operator fluent in the caller's language. Currently either a manual system or IVRS based system exists. But, both of them suffer from two main problems, however: speed and expense. It is highly expensive to employ the call routers for AT&T who, between them, must be able to correctly route 140 languages or Reliance Infocomm for more than 10 languages. For emergency services, this could be a fatal delay. Other application includes usage of such systems in war times when soldiers are doing rescue operations in alien lands, to communicate with local person. Another application which actually has been implemented during this project includes its usage in designing Content Verification System (CVS), which is used for verification of the speech data stored for different languages. As research in automatic speech recognition progresses, a language ID system would be necessary for any multi-lingual speech recognition system. One such system may be a fast information system, say at an airport, catering for multi-national clients. Another may be an automatic translation system. Both these systems would need to first recognize the language that was being spoken before they could process it.

There are number of ways to achieve this task of language ID, like based on spectral features of speech, or based on word lexicon or identifying presence of some distinct characteristics in different languages like special phonemes. Ones discussed here are based on phonetic characteristics.

To design a language ID we should have a proper knowledge about speech and its components. Speech is basically consists of small units of sound called as phonemes. For example if you speak word BAT, then \b, \@, \t are three phonemes which together forms this sound. Now for language identification using phonetic characteristics, first a speech is converted into phoneme sequences, which can be done using various methods. In this project the phoneme recognizer used, is based on Hidden Markov Models (HMM). Once speech is converted into phoneme sequences then a probabilistic analysis is done which in turn is divided on three phases; training, tuning & testing, and for that the corpus is also divided accordingly. In second phase of project I have actually attempted to supersede the conventional HMM way of converting speech into phoneme sequences by using more abstract classes derived using statistical tools like Gaussian Mixture Method (GMM) and HMM and then passing it through the same language models, which were designed in first phase.
All experiments were conducted on two speech data set; ‘Radio broadcast data’ and ‘Customer care speech data’, in two languages (Hindi & English). Each data set was in turn divided into three disjoint set, so that a proper testing of language models can be done and so that there is no biasing in the results. Though results from the later data set are of more significance because of its application but performance was better in case of former.

A brief discussion on the research done in this field along with some example is given in section 2. In following section 4 & 5, work done by me along with the algorithm proposed is discussed. After that in section 6, I have discussed about the tools which have been designed by me based on the algorithm proposed, followed by conclusion and references in subsequent sections.
2. Background Work
This section reviews the current methods used for language ID and discusses previous research in the area of feature vectors and language models.
2.1. Distinct Characteristics of Language

“Each language has a finite set of phonemes. As we learn our first language, we also learn to identify them. When listening to a foreign language, with phonemes not found in our first language, the presence of such sounds is readily apparent to us. Examples are the "clicks" found in some sub-Saharan African languages.

As the vocal apparatus used in the production of languages is universal, there is much overlap of the phoneme sets, and the total number of phonemes is finite. But there can be differences in the way the same phoneme is interpreted in two different languages. For example, in English, /l/ and /r/ (as in "leaf" and "reef") are two different phonemes, whereas in Japanese they are not”.[12]
On the contrary, the frequency of occurrence of phones and the phonotactic rules in languages can differ significantly. Phonotactic rules govern the way different phonemes are combined. For example, phoneme clusters /sr/ and /sp/ are quite common in Tamil and German respectively (the latter could be represented as /shp/ in English), but are rare in English. This is what we have tried to exploit and use to design an algorithm for language identification, in this project.

2.2. Overview on Language Identifiers
Language IDs works as a single entity in many applications, but it is, in itself a set of three black boxes; front-end processing system, phoneme recognizer, and language models. Speech Data is given as an input to these set of boxes and then it flows into the system as shown in the figure. Implementation of every system is hidden from others; only interfaces are standardized as we do in case of OSI Layers of networking. By standardization, we mean the format of data, which will be passed from one system to another, is fixed.
2.2.1. [image: image10.png]INPUT SPEECH

FRONT-END
PROCESSING

I

PHONEME
RECOGNIZER

[

LANGUAGE
MODELS

HYPOTHESIZED
LANGUAGE

Front-End Processing
Main purpose of front-end processing is the feature vector extraction. Many different algorithms exist for speech recognition and language identification. A common need between them is some form of parameterized representation (feature vectors) of the speech input. These feature vector streams may then be used to train or interrogate the language models which will follow the feature extraction module in a typical language identification system [6]. It is obvious that there exist an infinite number of ways to encode the speech, depending upon which particular numerical measures are deemed useful. Over the many years of speech recognition research, there has been a convergence towards a few (spectrally based) features that perform well. Of these, Linear Prediction (LP) and Cepstral measures are most widely used [5].

The final test for any such front-end is its effect on the accuracy of the overall language ID system. In this respect the system based on Cepstral compares favorably with any other we have come across in our investigation.
2.2.2. Phoneme Recognizer

The basic aim behind this system is to generate the phoneme sequences from the vector sequences. There are 56 phonemes, and their different combinations can represent all possible speeches in various languages. We used Hidden Markov Models (HMMs) for this purpose.
 [image: image1.png]¥ e(ﬂ:)“h;(ﬂ 3 ;,l’z("s) 'I“n(ﬂd‘\:dﬂs) ‘i’s(“ Bl

el 00 0 0 0

o4

1
1

i | H 1
i

2 O3 0 o5 %5

Fig. The Markovy Generation Model

HMM models are primarily probabilistic state machines, in which each state represents a phoneme. Now there are two kinds of probabilities attached with each state. First, is the probability with which we can say which will be the next state (Bxx, as shown in fig.) and second, is the probability with which we can say what will be the output sound when this state is reached, which are represented by Ax(Oy) in the figure. Basically HMMs are used for three problems, out of which one which we will be using it for is to find out the most probable state sequence given a sequence of output sound [1]. So basically what it does is that when processed speech vectors are passed through this system it gives sequence of phonemes. Usually you have phoneme recognizer specific to a language, depending on the training data used. We will discuss about this in later sections.
2.2.3. Language Models

These are the most important aspect of a language ID. There basic aim is to predict the language given a phoneme sequence, and for this purpose some kind of probabilistic analysis is done which is implementation dependent. This is precisely my area of work. There are various ways of implementing this. One of the properties that most methods have in common is that they are made up of two phases: training and recognition. The latter may only be performed after the former, which involves presenting the system with speech from target languages (i.e. those that we are trying to recognize). Different systems then model languages according to particular language-dependent features. During recognition, these features are compared to those of utterances being tested, in order to decide which language is the correct one. The simplest form of training uses only a sampled speech wave, and the true identity of the language being spoken. More complex approaches use phonetic transcriptions (a sequence of symbols representing the sounds in each utterance), or orthographic transcriptions (the text of the words spoken), along with a pronunciation dictionary, which would map each word to its representation. Such methods are obviously more costly and time-consuming, not least because fluent speakers for each target language are required. We have used the former approach for training.
Language models will be discussed in great depth in next section.

2.3. Example: Phonetic Recognition/Language Modeling

In last section we have seen that it is the likelihood of occurrence of a phoneme in a language which differentiates one language from another. Phonetic Recognition, Language Modeling (PRLM) is based on this principle. This system uses acoustic pre-processing for feature vector extraction as discussed in section 2.2.1. Then a language specific phoneme recognizer is placed to convert speech into phoneme sequences and at the end lies the language models which calculates the n-Gram probabilities. Figure gives a graphical view of the system
[image: image2.png]

Disadvantage of this system is that it uses a single language dependent phoneme recognizer, which can make its results bias to the language in which recognizer is trained because the phones present in target languages do not always occur in the language used during training. We may wish to incorporate sounds from more than one language into a PRLM-like system. An alternative to it can be to use multiple PRLM systems in parallel, with recognizers trained in different languages, as shown in figure.

[image: image3.png]

While enhancing performance, this approach has a couple of disadvantages, namely the need for labeled training speech in more than one language, and the increased processing time.

3. Objectives

The major objective or goals which were set before starting this project are as follows:

· An algorithm for more accurate language ID, in field of language models.

· Design some alternative to conventional front-end processing, which should not be language dependent.

· A tool based on above algorithms for call routing in Customer Care Center. This tool will also enable administrator to manage the speech corpus.

· A tool based on above algorithm for ‘Content Verification System’ for verifying the data files present in data servers.

4. Discussion – on language models
In the last section a brief introduction was given about all the three different aspect of Language ID. Till now most of research done in field of language ID was focused on the first two stages of it like that of M Zissman [2] or L Schwardt [4]. Little work is done in the field of language models which makes the last phase. I have first studied all the existing methods for this purpose and then designed some new algorithms for the same purpose. Input given to these models is the phoneme sequences obtained from the recognizer and the output expected from them is language in which the input speech is. Usually language models are designed in two phases: Training and recognition phase. In the design which I have proposed I have introduced one more phase of Tuning, in which system parameters are optimized. So now phases are:

· Training Phase

· Tuning Phase

· Testing Phase

 Now before discussing each phase at implementation level lets talk about whole process of language recognition at an abstract level. In the first phase of language models large amount of training data is passed through the model along with the language information and no recognition takes place in this phase. Now based on training data various probabilities are calculated like probability of occurrence of given phoneme in given language. Now once all these probabilities are calculated then next phase of recognition starts. In this phase also speech data is passed through models but now language information is not given to the system, in fact it’s the system which predicts the language of the speech data by using the probabilities calculated in training phase. For example suppose speech data for English language was passed then in training phase what model will calculate is the probability like P(ph/E) which what is the probability of phoneme ‘ph’ occurring in English speech data. Now during recognition phase suppose some phoneme sequence ph1 ph2 ph3 occurred in the test data then the probability that this sequence is in English will be

P(ph1 ph2 ph3 | Eng) = P(ph1 | Eng) * P(ph2 | Eng) * P(ph3 | Eng)

This is a very simple way of putting things, actually formulae is not this straight and that is what has been studied in this project. Now let’s see all these phases in detail.
4.1. Language Model – Training Phase

Training phase is the most important phase among all the three, and decides how good or bad the whole system is going to perform. Main aim of this phase is to extract maximum possible information about a language from its training data. There are number of ways to do it. One of them is by finding the probability with which a given phoneme from a set occurs in that language. There are two issues to deal with in this probabilistic approach which are as follows:

i. Method of finding the probabilities: There are number of ways in which probabilities related to a phoneme can be found. One of them is P(ph|X), which represent the probability of phoneme ph occurring in language X. This value is found by counting the number of times a given phoneme occurs in training data and then dividing it by the total number phonemes in the whole data and is calculated for every phoneme.
ii. Type of probabilities: Now there are various ways of capturing the language specific information from the training data. While selecting the appropriate method there are some parameters you should consider. First of them is the kind of application, language models are designed for. And second is the computational resource available. Like in our case where we are trying to design a language ID, we know that it’s the order in which phonemes occur, makes one language different from other and then there are some phonemes which are specific to some languages and never occur in others.
So considering these factors a training model was designed in which when data is passed three types of probabilities are calculated.
1. Unigram: These are the probability of occurrence of single phoneme in language. These basically try to capture the distinct phonemes which are special to particular language like phonemes ending with \h\ are more probable in Hindi than in English.
Uni_Prob(ph|X) =
 No. of time phoneme ‘ph’ occur in the training data

 Count of total no of phonemes in the training data for ‘X’
2. Bigram & Trigram: This is the probability of a phoneme being followed by a given phoneme or pair of phonemes in a given language. This basically tries to capture the sequential information related to phonemes which is also specific to a language. This method is called as n-Gram approach, and we can go till any value of n but as you increase value of n complexity increases exponentially. Therefore we have calculated till n=3.
Bi_Prob(ph2 | X, ph1) =
 No. of time phoneme ph1 is followed by phoneme ph2 in the data

 --

 No of times phonemes ph1 occurs in the training data of language X
Tri_Prob(ph3 | X, ph1, ph2) =

 No. of time phoneme ph1 is followed by ph2 and then ph3 in the data

No. of time phoneme ph1 is followed by ph2 in the training data of language X
So in a simple language in case of trigrams what you do is that instead of considering phoneme as single unit you consider sequence of three phonemes as a single unit to calculate the probability. Following diagram gives a pictorial view of the whole process:

[image: image4]
So this was all about training phase of language models. The outputs of this phase are three probability files for each language as described above. Now before discussing about other phases lets discuss briefly how these are going to use these probability files. Let’s suppose “a b c d e f “is a phoneme sequence, where a, b, c, d, e and f are different phonemes, came for recognition during testing phase, then different probabilities related to it will be:

Unigram_Prob =
P(a|X)* P(b|X) *P(c|X)*P(d|X)*P(e|X)*P(f|X)……………..(1)
Bigram_Prob =
P(b|X, a)* P(c|X, b) *P(d|X, c)*P(e|X, d)*P(f|X, e)………...(2)
Trigram_Prob =
P(c|X, a, b)* P(d|X, b, c) *P(e|X, c, d)*P(f|X, e, f)………….(3)
So this way we calculate three probabilities related to each phoneme sequence. So the first problem which we should deal is the problem of zero-probability penalty, which deals with cases when a given phoneme actually never occurred in training data of a language. Then second problem which we should deal now, is how to interpret these probabilities and combine them into single value. For this we need to find weights for different probabilities. Let’s call alpha, beta and gamma as the required weights for unigram, bigram and trigram probability, then the final probability of some phoneme sequence P belonging to a specific language X will be:
Prob(P|X) =
alpha*Unigram_Prob(P|X) +beta*Bigram_Prob(P|X) +gamma*Trigram_Prob(P|X)

So now our first task is to find out values of alpha, beta and gamma. Then the third problem which we should deal is that to find optimal value of duration for which phoneme sequence should be recorded. See in this problem the ideal solution will be to take phoneme sequence of the whole available data. But we should consider two graphs, first is the graph between the complexity and duration which is an ever increasing graph. Second is the graph between accuracy with which language is predicted for a given phoneme sequence with its duration. This graph is expected to be asymptotic in nature. All these issues are dealt in following section.
4.2. Language Model – Tuning Phase

As discussed in last section, in training phase all system parameters were calculated. But in a system there are some hyper-parameters for which, neither is there any empirical way of calculating their values nor can they be calculated on the same data set on which system has been trained. For this reason an intermediate step of tuning the system has been proposed by us. In this step, optimal values of all the system’s hyper-parameters are found out, and all the experiments which are done in this phase are performed on tuning data which is totally disjoint from the one which is used for training and testing. Let’s look at three problems discussed in last section one by one:
4.2.1. Penalty for zero probability phonemes
Consider a case when a phoneme sequence P(a b c d) occur in the testing data. Then its unigram probability according to (1) will be:

Unigram_Prob(P|X) =
P(a|X)* P(b|X) *P(c|X)*P(d|X)

Now it might be possible that one of the phoneme in the test sequence actually never appeared in the whole training data of a given language X, and thus the probability of that phoneme is zero for X. Then what will happen? Now ideally we should not do anything in this regard and whenever there is such phoneme in a sequence, we should make the probability of whole sequence as zero, but the catch is that our phoneme recognizer is also not perfectly accurate so we should take a case a wrong conversion of speech to phoneme sequence. So what we should actually do is to assign a very small but non-zero value to all phonemes having zero probability. This approach has two advantages. First that now despite having a zero-probability phoneme, a given phoneme sequence is still eligible for recognition, and second because of a small value of probability it will try to bias the results in negative side, which ideally should have been the case.
Given below is graph for different values of penalty on x-axis and accuracy with which system works in y-axis. Penalty values are represented in terms of
x = exponent (p)
where p is actual penalty in terms of probability and values in x axis are its logarithmic counterpart. Now you can clearly see a peak in the graph at x= -10.
[image: image11.emf]accuracy with duration 30

0

20

40

60

80

100

 -

 (10.00) (20.00) (30.00) (40.00) (50.00) (60.00) (70.00) (80.00) (90.00)

penalty

Series1

4.2.2. Weights for Unigram, Bigram, and Trigram probabilities
As discussed in last section there is a requirement for finding an optimal way of combining the three different probability values which will be calculated, so that combined value represents the information in best possible way. For example, the simplest way of combining three values is by giving them equal weights, but this is most probably a wrong way of doing things because here we are no where considering which approach contains more information. Following is brief discussion on different ways of combining the probabilities along with their comparative study. As such there is no perfect way of combining; we can only find the most optimal of them. Different models designed:
 Model 1. Flat combination (alpha =1/3,beta =1/3, gamma =1/3)
 Model 2. Generating weights on the basis of performance of different models.

In this results were found for all the three different approach and then the weights were assigned accordingly. This way we will give higher weights to approach which is performing better. Empirical formula for the parameter is as follows:
 alpha_eng =
 Prob(Uni_Eng > Uni_Hin)

 --

 Prob(Uni_Eng > Uni_Hin) + Prob(Uni_Eng > Uni_Hin) + Prob(Tri_Eng > Tri_Hin)

and similarly for other two parameters.

 Model 3. Same as 2 but now probabilities were normalized.

The domain of probabilities for unigram, bigram and trigram were not same therefore direct combination of their values will not represent the right picture, therefore now all values were normalized so that they came in same range. Even for normalization, different ways were tested out of which, one in which every value is divided by the maximum value in its set, produced the best results. After normalizing the values, second approach is implemented.
 Model 4. Generated using Gaussian Mixture Model and maximizing the likelihood of single language.

In this approach different parameters were generated using Gaussian Mixture Model approach in which optimal values of parameters are found by maximizing any given value, which is calculated by combination different values. In this approach value which was maximized was sum of combined probability obtained by using current value of parameters, which is represented by the following value:

SUM(alpha_eng*P(Seqj|Uni)+beta_eng*P(Seqj|Bi)+gamma_eng* P(Seqj|Tri))

where P(Seqj|Uni) represents the unigram probability for sequence j.

 P(Seqj|Bi) represents the bigram probability for sequence j.

 P(Seqj|Tri) represents the trigram probability for sequence j.

 Model 5. Generated using Gaussian Mixture Model and maximizing the difference of likelihoods from different languages.

This approach is same as the last one just the value which is maximized is now the difference between the combined probabilities for different languages which is represented by the following value:
SUM(alpha_eng *(P(Seqj | UniE)/ P(Seqj | UniH)) +

 beta_eng *(P(Seqj | BiE) / P(Seqj | BiH)) +

gamma_eng * (P(Seqj | TriE)/P(Seqj | TriH)))
Following figure shows the graphical view of all the models along with the value of different parameters:
[image: image5.png]LFLAT COMBINATION OF THREE MODELS 2. In this experiment parameters are generated on the basis of following formulae:

alpha_en FProb{ Uni_Bug > Uni_Hin)
Alpha_Eng Alpha Hin 0.333 -
Beta Eng Beta fiin 0333 Prob Uni_Bng > Uni_Hin) + Prob(Uni_Bng > Uni_Hin) + Prob(Tr_Bng > Tri_Hin)
Gamma_Eng Gamma_Hin 0.333 and similarly for other five parameters. Values observed are as follows
Alpha_Eng 0319 Beta_Eng 0.363 Gamma_Eng 0316
Alpha_Hin 0.336 Beta_Hin 0352 Gamma_Hin 0310
3. Same as 2 just now probablities have been 4. In this experiment parameters were generated using Gaussian Mixtue Models & by
replaced by their normalized value. Normalization is || maximizing the following guantity
done by dividing the individual values by mazimum || SUM{alpha_eng *P{ Segy| Uni) + beta_eng *P(Seqs| B1) +gamma_eng * P(Segs| Tri))
intuning data probabilities & similarly for hindi
Apha_prime 1700 % SUM (alpha_eng * F(Seqy | Uni)

Alpha_Eng 0319 Alpha Hin 0336
Beta Eng 0363 Beta Hin 0352
Garma_Eng 0316 Gamma_Hin 0310

alpha_eng *P(Seqy] Uhi) + beto_eng "P(Sagy| B1) +gamma_eng * P(Segs| T)
and similarly for other five parameters. Values observed are as follows

Alpha_Eng 0705 Beta Eng 0234 Garnma_Eng 0.000
Alpha_Hin 0701 Beta Hin 0298 Garnma_Hin 0.000

5. In this experiment parameters were generated using Gaussian Mixtue Models & by masimixing the following quantity.

SUkt{alpha_eng *(P(Segs | UniE) P(Segs| UniF) + beia_eng *(P(Seq; | BiE) / P(Seqs | BiF)) + gamma_eng * (P(Seqy | Tl /P(Ses | Tt)))
& similarly Tor hindi.

Alpho_prime = 170 * SUM(P Seg | UnEY P(Seqp| UniE)

alpha_eng *(P(S| UniE) P(Seqy | UniE) + beta_eng *(P(Segy| BIE) / P(Seqy| BE)) + gamma_eng * (P(Segy | THE)/P(Segy| T))
and similarly for ofher ive parameters. Values observed are as follows

Alpha_Eng 0.0 Beta Eng 0.254 Garnma_Eng 075
Alpha_Hin 0.0 Beta Hin 0.140 Garnma_Hin 0.65

4.2.3. Utterance Duration
This parameter decides how long should be the phoneme sequence in terms of time duration, for efficient applications. Ideally more the duration better the result will be, but computational resources put limit on it. As we will increase the duration, complexity will also increase therefore we need to find a optimal value for this parameter. From following graph you can clearly see that there in no significant increase in accuracy after some value of utterance duration (50 secs). In this graph x-axis is the utterance duration and y-axis is accuracy with which results are predicted.

[image: image12.emf]ACCURACY with penalty 15

70

75

80

85

90

95

10 20 30 40 50 60 70 80 90 100 110 120

ACCURACY

4.3. Language Model – Testing Phase
This phase is the last phase of this process and in this all the models are evaluated against a fresh data set. Following figure shows the comparative study of different models which were designed in the tuning phase along with their performances.

[image: image6]
The test data is first passed from three models and three probabilities are calculated separately for each n-Gram and phoneme sequence. Then these values are normalized by dividing them by the maximum value of probability which was observed during tuning phase. Then these values are combined using five different models. Now from the above figure we can make out its Model 3 which is performing best, but because of the overhead included in it makes Model 2’s performance as best. Therefore we conclude the model 2’s way of combining different n-Gram probabilities as optimal.
5. Discussion – Other approaches

In last section we discussed about language models, which are one of the many ways of identifying language from phoneme sequences. One other approach for the same purpose can be by finding out distinct phonemes in different language. Let’s discuss other alternatives in detail:
5.1. Recognition based on distinct phonemes
Recognition based on distinct phonemes aims at finding those phonemes which have some unique characteristics related to occurrence in different languages. There might be some phonemes which are exceptionally high probable in some language while its occurrence is rare in other language, and then a recognizer can be built from the list of such phonemes. An attempt was made to find out such phonemes in English & Hindi. For this the probability files which were generated after training phase in last section were analyzed by plotting some graphs using Matlab.
5.1.1. Graphs for Unigram and Bigram probabilities

Graph given below is of unigram probabilities for both English and Hindi. The probability values are mapped in to a color based on the mapping shown in the right hand, with underlying principle that higher the probability value, brighter the color will be for that phoneme. In this graph phonemes are represented in x-axis while languages are shown in y-axis.
 [image: image7.png]mZOa—~wnlh

m—ZOo-

25

55

15 20 25 a0 a5 40 45

PHONEMES

10

Second graph is of bigram probability values for English. In this graph also color coding is same as used in the previous case. In this case the phoneme coming first is shown in y-axis and phoneme coming second is shown in x-axis.

[image: image8]
5.1.2. Observations
From the graphs given above, some important observations can be made:

· There are some phonemes which have probability values significantly higher than other phonemes, but those phonemes have higher values for both the language.

· In case of unigram probabilities, phonemes which are having brighter values are actually theoretically also most probable because they represent the vowels \a and \i.

· In case of bigrams again the same phonemes are showing the brighter colors.

· No other phonemes show any exceptional behavior.

5.1.3. Conclusion

As seen in the last section, there is no phoneme having significant difference in probability of occurrence in two languages. Therefore no efficient system can be designed for language ID, based on this principle.

5.2. Using Gaussian Mixture Models for Front end processing
Till now in all the algorithms and models, we never looked at the front-end processing aspect of all this process. HMM based phoneme recognizers are used for this purpose as discussed in section 2.2.2. The shortcomings of such recognizers are as follows:

· First problem with such recognizers is that they are very much language specific. So in the models where a single phoneme recognizer is used for every language, results get biased to that language for which recognizers were trained.

· Second problem with them is that they need huge amount of speech data for training other then what we use for language models. Problem is that there can be some language which we want to recognize through our system but enough data is not available for training
So an attempt was made to design a language independent front end processor. For this a GMM based algorithm was designed, in which concept of classes is used instead of phonemes. The feature vectors which were generated after first phase of language ID were segmented into different 'broad phonetic category' or classes, based on some properties [14]. And then the whole speech data was converted into sequence of classes, and then plays the same role, which phoneme sequences played in previous approach. Now because of its probabilistic approach, it makes it language independent and thus better than HMM based phoneme recognizers although it has not been properly tested. But the system designed on this principle has a lower performance (as shown in the table) in comparison to phoneme based models.
	Serial no:
	 Approach Used
	DataSet

Used*
	Results(%)

(Best Eng/ Best Hin)
	Remarks

	1
	In this speech data was converted into a cepstral vectors like form using software HCOPY which generated .mfcc files…and then the files were passed through Gaussian Mixture Models, first to train them and then to convert them into sequence of more abstract classes which are analogous to phonemes used in the earlier method. Then the language models were applied on it.
	Customer Care

Call Records
	90.44/89.11

(100/200)

	Pros: It did not use any Language specific recognizer
Cons: Performance is not comparable. Utterance Duration for optimal recognition ratio is very high.

	2
	In this speech data was converted into a cepstral vector like form using software HCOPY which generated .mfcc files…and then the files were passed through Hidden Markov Models, first to train them and identify significant classes from the data and then to convert the vector sequences into sequence of classes analogous to phonemes used in the earlier method. Then the language models were applied on it.
	Customer Care

Call Records
	71.47/71.92

(200/200)
	Pros: It did not use any Language specific recognizer
Cons: Performance is not comparable. Utterance Duration for optimal recognition ratio is very high.

6. Discussion – Tools based on language ID
Based on the algorithms discussed in last section, some tools were designed. These tools, after proper testing, will be used for speech based applications for Reliance Infocomm. Some of them are as follows:
6.1. Content Verification System (CVS)
Speech applications are getting more and more popular with each passing day. All these applications involve lots of speech data stored on some server and used whenever a customer requests for it. For example suppose there is an application that plays news and a customer request for it in Hindi, so this application will play the file stored in server corresponding to that and everything will go smooth. But the problem arise is that how to make sure that the file which is stored on server is actually in Hindi only and not in any other language, because at the end it will be some human who will be uploading these files and human have this tendency to do something called as mistake. So we need some mechanized way of testing the content stored at server. With this aim CVS came into existence. Though this CVS has many aspects and things to verify, but language being the most important of them. So we have designed a tool for this purpose. Figure given below gives a graphical view of system. Currently it is in its testing phase.

[image: image9]
Once its testing phase is finished Reliance Infocomm is planning to use for their internal usage.

6.2. Call routing for customer care centers

Today most of the big companies have their customer from various linguistic backgrounds. Also every company wants to provide a customer care centers for their customers to solve their problems as fast as possible. Now problem is to route the customer calls to call agent who is fluent in customer’s language. Currently it’s done using an IVRS system, but this result in loss of time. So an attempt is made to design a system which can route the calls on the basis of language in which customer starts speaking. So whenever someone calls first of all it goes to language ID server, which first recognizes the language customer is using and then routes the call to an appropriate call agent. This system is currently in its development phase.
7. Conclusion
The purpose of developing language ID is to make the process of language recognition mechanized and hence enable many speech based applications to use it as a black box. And the absence of absolutely correct way of recognizing languages by machine makes this field of language ID, a challenging research area.
Although the recent progress in language ID has been promising, currently existing systems are still not very reliable in distinguishing between a set of 10 or 11 languages. All reported systems still perform much better when exposed to about 50s of speech, compared to 10s. In this report a self designed novel method for language models was also discussed which improved the recognition accuracy by significant percentage. On comparing the systems that uses 'broad phonetic category' rather than actual phones as base units for modeling, it has been found that the latter perform significantly better.
Looking at the current growth of mobile usage, researchers will have to come up with a reliable solution for language Id very soon. This project was a step towards this direction. Though it did not solve the complete problem, but was able to come out with an improved algorithm for one of its important aspect along with one tool, ‘Content Verification System’ for speech data verification. Reliance Infocomm will be using this tool for verification data stored for speech applications.
8. References

[1] Steve Young, “The HTK Book”, Cambridge University Technical Services Ltd, December 1995.
[2] M.A. Zissman, "Language Identification using Phoneme Recognition and Phonotactic Language Modeling", in Proceedings ICASSP '95, 1995.

[3] Y.K. Muthusamy, E. Barnard, and R.A. Cole, "Reviewing Automatic Language Identification", in IEEE Signal Processing Magazine, October 1994.
[4] L Schwardt, “Automatic language identification using mixed order HMMs and Untranscribed corpora”, ICSLP 2000.
[5] J.R. Deller, J.G. Proakis, J.H.L Hansen, "Discrete-Time Processing of Speech Signals", MacMillan, New York, 1993.
[6] W.A. Ainsworth, "Speech Recognition by Machine", Peter Peregrinus, London, 1988.

[7] S.B. Davis and P. Mermelstein, "Comparison of Parametric Representations for Monosyllabic Word Recognition in Continuously Spoken Sentences", in IEEE Transactions, Vol. ASSP-28, No. 4, August 1980.
[8] M.A. Zissman, "Automatic Language Identification using Gaussian Mixture and Hidden Markov Models, in Proceedings ICASSP '93, vol 2, pp.399-402, April 1993.

[9] M.A. Zissman, "Comparison of Four Approaches to Automatic Language Identification of Telephone Speech", in IEEE Transactions on Speech and Audio Processing, Vol. 4, No. 1, January 1996.
[10] Y.K. Muthusamy, "Segmental Approach to Automatic Language Identification", Ph.D. thesis, Oregon Graduate Institute of Science & Technology, 1993.

[11] M A Kohler, “Approaches to Language Identification using Gaussian Mixture Models and Shifted Delta Cepstral Features”, ICSLP 2002.
[12] George Constantinides and Uras Rapajic, “Language Identification in multilingual systems”, Surprise_96, vol 4, gac1.Link:

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/gac1/report.html
[13] H. Hermansky, N.Morgan, A. Bayya, and P. Kohn, "RASTA-PLP Speech Analysis Technique", in Proc. ICASSP '92, Vol. 1, March 1992, pp. 121-124.

[14] J Ajmera and C Wooters, “A Robust Speaker clustering algorithm”, Tech. Rep. 38, IDIAP, 2003. Link:

www.icsi.berkeley.edu/ftp/global/ pub/speech/papers/asru03-ajmewoot.pdf

[15] T.J. Hazen and V.W. Zue, "Automatic Language Identification using a Segment-Based Approach", in Proceedings 3rd European Conference on Acoustics, Speech, and Signal Processing '89, Glasgow, Scotland, May '89.

Figure: flow diagram of CVS

STEP 3

Predicts the language using phoneme sequences and then verifies it.

STEP 2

STEP 1

Language ID

Converts speech file into phoneme sequences

Downloads the content files every hour.

PHONEME

RECOGNIZER

CVS

CONTENT

SERVER

- 20 -

[image: image13.png]TEST DATA UNIGRAM MODEL | BIGRAM MODEL | TRIGRAM MODEL
IN ENGLISH

ANDHINDI | | 041%/87.70% 88.68%/89.83 % | 91.30%/79.16 %
IN FORM OF i i i
ShouENe: NORLMALIZER:

SEQUENCES d

Prob(data/UniX) / MaxU Prob(data/BiX) / MaxB Prob(dataTriX) / MaxT

} } J

MODEL 1 93.67% /87.7%

MODEL2 * 92.96 % /89.53 %
MODEL 3 92.25%/90.54 %
MODEL 4 93.27%/89.43 %
MODEL 5 42.71 % /99.08 %

[image: image14.png]ies in Bigram for English

[image: image15.png]TRATNING Count the number of Count the number of Count the number of
DATA | — | individualphoneme |—»| timesphoneme | —»l times phoneme
o™ foolow the given follow the given
ENGLISH/ phneme bigram sequence
HINDI

17 FORM OF
PHONEME I !
BEuaies ~ConntySun(Conmt) |] ~Coungii/ Counny ~Couat(iCoumgl)

! | l

UNIGRAM BIGRAM TRIGRAM
MODEL MODEL MODEL

—~

LANGUAGE MODEL(ENGLISH HIND)

