1.0 INTRODUCTION

An Asynchronous Circuit is a circuit in which the parts are largely autonomous. The circuit is not governed by a clock circuit or global clock signal, but instead needs to wait only for the signals that indicate the completion of the instructions and operations. The asynchronous circuits provides a promising technology for low-power, high performance, low emission and highly modular digital circuits [6].
The design of asynchronous circuit is currently receiving significant attention, partly because of its ability to successfully tackle many of the problems present in deep sub-micrometer technologies. It is also essential for building large systems on chip using the well-established globally asynchronous locally synchronous methodology. However, testing of asynchronous circuits has not reached a level of maturity that allows low overhead high fault coverage solutions [5].

The most existing asynchronous testing methods have shortcomings such as assuming weak fault models, ignoring faults inside large components, incurring large area overhead and being applicable only to specific design styles or tools. The method which is general and can work with any Asynchronous design style is a novel “Automatic Test Pattern Generation” (ATPG) [1], [5].
The main idea is to use a standard ATPG algorithm, PODEM to be specific, for finding test vectors that excite faults and propagate their effects. In contrast with much of previous work on asynchronous circuit testing, only simple logic gates are used, so faults inside state-holding components, such as C-elements (CEs), are considered.
A complete three-step ATPG flow has been developed which gives an asynchronous net list, output test sequences. The first step breaks global feedback loops using the method of Cheng and Agrawal that is slightly modified to work with asynchronous circuits. The second step detects local feedback loops and extracts some essential information from the circuit. The third step combines PODEM with our novel state initialization method to generate the test patterns.
The proposed method targets mainly (quasi-) delay insensitive (DI) circuits with inherent data completion but is universally applicable. Although computationally intensive, it is capable of providing tests for circuits that are much larger circuits. In asynchronous data path circuits with no redundant faults, the stuck-at fault coverage achieved is of the order of 99%. The test length can be further compressed by approximately a quarter without any loss in fault coverage. The method also works well with control circuits; although there are a few examples with low fault coverage where the only possible test patterns cause logic hazards in these circuits.
In control circuits, the global loops are somewhat more common where they are used to build finite-state machines, but overall, they are a small fraction of the total number of feedback loops in a system. With global loops already broken by scan latches, local feedback loops are considered as pseudo-primary inputs (PIs) for TPG. Once a test pattern is found, CEs have to be initialized to the values assigned to their corresponding pseudo-PIs by PODEM.
Therefore, the main contribution towards the “Initialization-Based Test Pattern Generation for Asynchronous circuits” is an efficient method for finding short input-vector sequences that can set CEs to the required values. The sequences must be hazard/race free for both the good and faulty circuits [1].
2.0 TESTING OF ASYNCHRONOUS CIRCUITS
2.1 Introduction

The absence of a clock signal or clock circuit in asynchronous circuits causes significant problems for testing. Not all state-holding elements change at the same time, which means that intermediate short lived states exist. It is impossible to freeze the circuit at such states, unless scan latches are employed extensively.

Races and hazards may occur if the transitions of PIs do not comply with the original specification of the circuit’s environment. However, out-of-spec input sequences may be necessary for testing. Tests that are not guaranteed to be hazard free are useless. A fault can sometimes be detected and sometimes not, depending on which state the circuit stabilizes at. Moreover, in order to guard against hazards even for valid input changes, redundancy is sometimes introduced. Generally, redundant logic is untestable. The testing of the asynchronous circuits can be done by using the Scan Methods. The Scan Methods are of two different types. They are [2]–

1. Full Scan Method

2. Partial Scan Method

2.2 Full Scan Method
 The first method for testing the asynchronous circuits is the Full Scan Method. The problem of testing the asynchronous circuits is made worse by the existence of relatively more state-holding elements in asynchronous circuits when compared to synchronous circuits.
In DI and quasi-DI (QDI) circuits, even the asynchronous equivalent of combinational logic has a large number of CEs. This makes the area cost of using full-scan methods excessive. Asynchronous state-holding elements are peculiar, with CEs being used instead of latches and flip-flops. Standard test tools are confused by these elements and generally fail or report very low fault coverage’s for unmodified asynchronous circuits.
Hazewindus has developed an asynchronous version of the D-algorithm for QDI circuits which, combined with selective scan-latch insertion, achieves high fault coverage. However, as with much other work, faults inside CEs were ignored. Specifically, simple circuits reported to have 100% fault coverage but had only 70%–80% coverage when internal faults are taken into account.
Detecting the internal faults of CEs is crucial. Unwanted oscillation may occur, and many faults do not cause the circuit to halt. Although test patterns for various implementations of CEs were provided, they are no methods for testing larger circuits that contain CEs.
If full scan method is used for testing the asynchronous methods, the area cost is enormous, particularly for DI/QDI circuits. Another drawback of scan method is delay overhead. Scan elements have to be placed in the critical path, thus substantially increasing the throughput or latency of the final circuit [3].
2.3 Partial Scan Methods
The second method for testing the asynchronous circuits is the Partial Scan Method. Some of the partial scan methods are only applicable to specific design methodologies and applications. The non-intrusive or minimally intrusive methods provide good low overhead solutions for specific design methodologies or circuits. In partial scan methods, a stable state graph is built from the circuit, map faults into transitions on the graph and generate test patterns that expose the differences between the state graphs of the correct and faulty circuits. Only control circuits are used in their evaluation. Such circuits tend to have much smaller state graphs than data path circuits [1].
2.3.1 Spin Test

Spin Test is a simulation based gate-level ATPG system for speed independent circuits. Its core engine employs an accurate fault simulator and an efficient cost function to guide a deterministic test pattern generation phase. Spin test addresses this challenge by guaranteeing fault sensitization with hazard/race-free patterns and response observation that is not affected by oscillations or non-deterministic circuit states. The experimental results on benchmark circuits demonstrate the efficiency of spin test in terms of both high fault coverage and low test generation time [7].

2.3.2 Random Test Pattern Generation
A random test pattern generation phase is also available in order to improve run time. Random test pattern generation, coupled with efficient fault simulation, is also an attractive option with no scan overhead and reasonably high fault coverage [9].
3.0 ATPG METHOD
3.1 Introduction

In an asynchronous circuit without any global loops, breaking the local feedback paths converts it into a conventional combinational circuit, for which well-known Automatic Test Pattern Generation (ATPG) method exists.
The key observation, also used by the iterative array method for sequential circuits, is that the values of pseudo-PIs, which correspond to the feedback paths, are equivalent to the current stable values of the CEs in the original circuit. Therefore, a conventional ATPG method, PODEM in this case, can be used to provide the required values of PIs and the current state of the circuit in order to excite a fault and propagate its effects.

The asynchronous circuits with global loops are handled by the same method by simply breaking the global loops using the method of Cheng and Agrawal. Such loops are therefore considered here as sets of PIs and primary outputs.
The test vectors, which PODEM produces, contain two parts. The first part corresponds to the values of PIs, and the second part corresponds to the required CE values, the target state.
For a circuit with npi PIs and nc CEs, these vectors are of the form (PI0, PI1 …… PInpi-1, C0, C1 …… Cnc-1) is assuming some arbitrary ordering of PIs and CEs. The aforementioned vector is also called a cube in the slightly different context of Boolean functions that take as input the PIs and CE outputs. Since there is no added DfT circuitry for the local feedback loops, only the PIs can be externally controlled. Therefore, CEs must be initialized to the target state before the PI part of the test vector can be applied.
 The main task of the proposed method is to find such initialization sequences, which are of the form (PI00, PI10 …, PInpi-10) …… (PI0l-1, PI1l-1 …, Pinpi-1l-1) where, l is the length of the sequence.

In order to generate input vector sequences that set the circuit CEs into the required state, the Boolean expressions that set and hold a CE to both binary values must be extracted from the circuit. The set and hold functions of a two-input CE are defined as
Set1(c) = a.b, Set0(c) = a1.b1
Hold1(c) = a+b, Hold0(c) = a1+b1
The set functions determine how to set the CE to a particular value, while the hold functions determine the conditions under which a value can be held. The above expressions assume that both the inputs of the CE are PIs. In general, the set/hold functions of a CE are defined over the space of the PIs and CE outputs of the circuit. Covers for both binary values, so when a CE is held to 0 or 1, this also covers the case when the CE is set to the required value. From the Boolean expression of a CE, the set/hold functions can be extracted by using the following expressions [1]:

c = Set1(c) + Hold1(c).c
Set0(c) = (Hold1(c))1 and Hold0(c) = (Set1(c))1

[image: image1.png]

Fig: 3.1 Dual Rail Full Adder Circuit
For example, in the circuit of figure: 3.1, state (1, 0, 0, 0, 1, 0, 0, 0, 0, 0) means that only CEs C1 and C5 are 1’s while all others are 0’s.

3.2 Initialization Sequences

The process to find an initialization sequence is essentially a “backward” search, with the start point being the target state and the end point being a state where all CEs have unknown x values. If an initialization sequence exists at all, the shortest possible sequence is best as it minimizes test time and test pattern size. Therefore, the tree of states, with the target state being the root, is searched in a breadth-first fashion.
The first step in the search is to find all possible logic functions that can lead to the given target state. These logic functions are essentially sets of cubes (over the PIs and state bits) containing the previous state and the input vector required to reach the target state.
Out of the circuit’s nc CEs, k has a value of 0 or 1, with the rest being don’t-care x. Each of these k CEs can be either held or set for the state transition from the previous state to the target state. There are therefore up to 2k-1 possible logic functions i.e., intersections of set/hold function combinations that can reach the target state.
After computing the intersection of one full set/hold function combination, each cube of the resulting function is checked for hazards and the hazardous cubes are removed. If all CEs can be set with a single input vector, then this is the shortest possible initialization sequence [1].
3.3 Hazard-Free Intersection

“Hazard-free intersection” (HFI) is defined somewhat differently from the standard function intersection. For example, consider the circuit in Figure: 3.1, in particular, consider CEs C3 and C7 only. The cubes for the set/hold functions will be of the form (a0, a1, b0, b1, ci0, ci1, C3, C7). Their set0 functions are
Set0(C3) = a0’.b0’ = (0, x, 0, x, x, x, x, x)

Set0(C7) = ci0’. C3’ = (x, x, x, x, 0, x, 0, x)
If the conventional intersection is applied, the result would be (0, x, 0, x, 0, x, 0, x). However, it is obvious that the above cube is an intermediate state because, after C3 has been set to 0, with the same PIs, C7 will also become 0. Therefore, HFI is defined so as to return to (0, x, 0, x, 0, x, x, x). The difference is that the previous value of C3 can be x rather than 0, so the previous state is the all-x state that the initialization process requires. The intersection operation for PIs is the same as the conventional one; HFI differs in how the state bits are handled [11].

3.4 Hazards and Races

Hazards/races may occur while changing from one input vector to the next. For each state transition, regardless of the order in which the individual inputs change or of the delay between the input changes, the method must ensure that the next (stable) state will be as expected [8].

As an example, consider the dual-rail full adder circuit in Figure: 3.1 and fault C1.U2.a0 s-a-1 (the a0 input of the middle AND gate of CE being stuck at 1). It appears that the fault can be detected by applying the sequence (a0, a1, b0, b1, ci0, ci1) = 000000, 100100, 000010. Unfortunately, this can cause a hazard. When the input vector changes from 100100 to 000010, if ci0 becomes 1 before both a0 and b1 drop, C5 will become 1 in the good circuit. On the contrary, if and both a0 and b1 become 0 while ci0 is still 0, C1 will become 0 and C5 will thus become 0. Therefore, the good circuit may get C5 set to 0 or 1, depending on the input timing and internal delays, so the fault cannot be detected deterministically using this sequence.

To avoid logic hazards, the transition cube must not intersect with the OFF set of the hold function of any CE that is being held during the transition from current state to next state. The OFF set of a function is the set of input values for which the function outputs 0. The above mentioned condition for checking hazards is true for CEs held at either 0 or 1. If the CE is held at 1, its Hold1 function is used for checking, while if the CE is held at 0, its Hold0 function is used.

For patterns that pass the above mentioned test, a fault simulation is performed. This is done for two purposes. The first is simply to remove all other faults that are detectable with the same pattern. The second is to detect further hazards that may still happen because the truth tables of the Hold functions do not reflect the actual circuit implementation. If a CE output becomes undetermined, i.e., x, at the end of the simulation, while it has an expected value of 0 or 1, the transition causes a hazard, and the pattern is rejected.

The above said situation ensures that hazards cannot happen in the good circuit. However, hazards may affect only the faulty circuit. For example, consider the fault C2.bz s-a-0 (the output of gate U3 of CE stuck at 0) in the same circuit. One of the tests considered is applying the PI vector 001010, when the circuit is at state x10x0x00xx. A possible initialization sequence is 000000, 011000. When the input changes from 011000 to 001010, there may be a hazard in the faulty circuit. If a1 becomes 0 before ci0 becomes 1, C2 will become 0 and C5 will also become 0. When ci0 becomes 1, C5 will hold its 0 value, and the fault is detected. However, if ci0 becomes 1 while a1 is still 1, C5 will become 1, and when a1 drops, C5 will stay high, and the fault is not detected. Thus, depending on the timing, the fault may or may not be detected, so this test cannot be used.

Therefore, a similar check must be performed for the faulty circuit containing the fault for which we are trying to find a test. As it is not efficient to extract set/hold functions for all faulty circuits, this is done by simulating the faulty circuit for the particular transition. Specifically, once a transition cube is found to be hazard free for the good circuit, the same transition cube is simulated on the faulty circuit following the same procedure [1].
3.5 Design Flow Integration

The proposed method has been implemented and can be easily integrated in a standard design flow utilizing commercial tools. The Figure: 3.2 show the design flow.
The technology-mapped input net list is preprocessed first in order to detect and break the global feedback loops. The method of Cheng and Agrawal is used for this purpose.
The circuit is represented as a graph, where nodes represent state-holding elements and arcs between state elements mean that there is a combinational path between them. The method is a heuristic for deciding which state elements to scan in order to break all the loops in the graph.

With all global loops being broken, the “scanned netlist” is flattened into simple logic gates, so that local loops will be visible and further processed in order that the local loops are detected and the logic equations for all CEs can be extracted.

Detecting local loops is done in two stages. First, the circuit is levelized, with all PIs being at level 1, and all gate outputs are assigned the maximum level of any of the gate’s inputs plus 1. If a gate output is found to be already assigned a level, which is lower than the above one, it is flagged as being in a possible feedback loop. The second stage examines which of these flagged nodes are really parts of a loop by checking the existence of the flagged node in its own fan-out cone following a preset number of gates. Since local loops span only a few gates for real circuits, the aforesaid method is simple and effective in practice [4].

[image: image2.png]Cheng/Agarwal Method
Original Meti Detect and Break
et
s Global Loops
Design Compiler Seript |
Detect Local Loops || Scanmed Netist
Add Psendo Inputs
Logical E:
Netist for ATPG geal Expressions
for C-Elements
ATPG Tool
PODEM
Sequential
Tnitalization
‘ v
Verifanlt
Test Patterns Fault Sirmlation

Fault Coverage

Fig: 3.2 ATPG Flow for Asynchronous Circuit

Once local loops have been detected, pseudo inputs are defined, and the internal netlist structure is converted into logic equations from which hold/set functions can be extracted. Finally, the net list is fault simulated, and fault coverage information is generated [1].
4.0 EVALUATION

4.1 Introduction

The proposed method is first evaluated using an asynchronous data path circuit i.e., a Dual-Rail Full Adder (shown in Figure: 3.1).
The proposed tool was able to detect all but four single stuck-at-1 faults of this circuit: C3.U2.a0, C3.U3.b0, C4.U2.a1 and C4.U3.b1. Interestingly, when fault simulation was performed with the full test sequence, all faults were reported as covered. This is due to unintentional sequential fault propagation. In the current implementation, a fault must be excited, and the logic error that it generates must be propagated to a primary output by the same test vector, the one returned by PODEM. For some faults, such as the previous ones, propagation does not happen with the same vector that excites them; further test vectors are needed for propagation to a primary output [10].
For example, fault C3.U2.a0 s-a-1 in the circuit is detected by the sequence (a0, a1, b0, b1, ci0, ci1) = 101000 (set C3 to 1), 000000 (clear all CEs to 0, and C3 remains 1 in the faulty circuit), 010110 (propagate the fault to C7 and then to co0).
Upon close inspection, faults that are declared as undetectable by the ATPG tool, although a fault simulator then finds that they are covered, fall into the following two categories.

1) Faults that are detected within a single sequence intended for another fault. In the case of Dual Rail Full Adder circuit, all four faults that are undetected by the ATPG method fall in this category.

2) Faults that are detected when a number of sequences are used in a specific order. Such faults were covered by chance because of the order in which the short sequences were put together.
Faults in the first category are truly detected, and this can be viewed as a positive side effect of the proposed method. Faults in the second category are guaranteed to be detected only if the order in which the individual sequences are applied is exactly as in the ATPG tool output. If the order is changed for some reason, then these faults may not be detected. The fault coverage is generally high, with most circuits achieving 99% coverage [1].
4.2 Monotonous Initialization

To avoid the problems faced in finding the initialization sequences for asynchronous circuits, Kishinevsky proposed the heuristic of Monotonous Initialization (MI). CEs are ordered by levels with the ones that only depend on PIs being at level 1, those that depend on PIs and level-1 CE outputs being at level 2, and so on. Given a target state, MI first tries to find a sequence for CEs at the highest level, which may require setting the preceding CEs to specific values, and continue with the next level until all CEs are set to the target state.
MI works well for the control circuit examples used in their evaluation. Control circuits tend to have a low number of CEs because asynchronous controllers with more state become too complex to design.
Our implementation of MI detected fewer faults than the proposed method for a number of benchmarks. As a result, the fault coverage was 3%–5% lower, considering the best case where unintentional sequential propagation occurred.
The execution time is significantly worse for MI, which was not able to produce test patterns for 14Adder after executing for 24 h. Initially, this was surprising because a low computational complexity is claimed. However, looking into the execution profiling information, it was discovered that MI performed significantly more HFI operations and that the search trees for the deepest level group of CEs were very wide [1].
4.3 Comparison to Full Scan

A comparison with the well-known and easily automatable Full Scan Method for asynchronous circuits is useful for demonstrating the benefits of using the proposed method.
	Circuit
	Patterns
	Area Ratio
	Redundancy
	Test Time (msec)

	Dual Rail full Adder
	20
	3.02
	0
	200

	Qdi27cd
	26
	2.84
	12
	208

	Dims Adder
	26
	3.16
	0
	416

	Half Adder
	9
	1.6
	0
	18

	Ram-read-sbuf
	22
	1.52
	0
	132

Table: 4.1 Full Scan Results
The third column of the Table: 4.1 show the ratio of the full-scan circuit area over the area of the circuits tested by the proposed method. Full scan is larger by a factor of just under three for asynchronous data path circuits and 2.5 for control circuits without global loops. This drops to 1.6 for control circuits with global loops, as some scan elements are needed to break them.

The fault coverage is generally 100%, except for the cases that have some redundant faults. The fault sites added by the scan latches are excluded, so the coverage is quite optimistic, i.e., less favorable for the proposed method. The high coverage and shorter test size of full scan comes at a cost of increased circuit size.
The area overhead numbers are very optimistic. All circuits are designed using basic AND, OR and inverter gates only. In most cases, more area-efficient cells can be used, e.g., complex gates or NOR gates instead of one AND and two inverter gates, which would reduce the area of the original circuit significantly. However, the scan latch size stays the same, so the proportion of DfT to other circuits would generally be higher for optimized circuits.
In general, the results show that the test time using the proposed method is not excessive, and in some cases, it is much better compared to full scan [1].
4.4 Pattern Compression
In order to minimize the total length of a test, one can find an ordering of the short sequences for detecting individual faults into a long sequence by trying to remove as many initialization vectors as possible. This is essentially a test compression task that should be able to reduce the test size significantly.

The circuit is assumed to be in an unknown state initially and then, a sequence of input vectors PI1, PI2 …… PIn-1, PIn is applied. As each input vector PIi is applied, the circuit gets into a state STATEi. The sequence up to PIn-1 is the initialization sequence required to set the circuit to the required state STATEn-1. Vector PIn is exciting the fault and propagating it to a primary output. STATEn is the state of the (good) circuit after the last vector.
The Table: 4.2 shows the total test length after compression and the reduction achieved compared to the original tests. The fault coverage is unaffected for all benchmarks.
	Circuit
	Compressed Length
	Reduction (%)

	Dual Rail full Adder
	87
	26

	Qdi27cd
	39
	25

	Dims Adder
	134
	26

	Half Adder
	12
	20

	Ram-read-sbuf
	27
	18.9

Table: 4.2 Compression Results

In most cases, the tests are shrunk by approximately a quarter. A hazard-free transition is the main problem for not joining even more sequences together. For example, in 14Adder, out of 377 state matches, only 38 (around 10%) were hazard free and were allowed to be joined into longer sequences [3].

5.0 CONCLUSIONS AND FUTURE SCOPE
Testing of asynchronous circuits is hard and requires sequential hazard-free test vectors. The method proposed in this paper is capable of generating tests for any type of asynchronous circuit. It is therefore one of the most general methods ever proposed for such circuits.
Experimental result shows stuck-at fault coverage of approximately 99% for non redundant data path circuits. This is very close to the coverage achieved by full scan methods. However, since DfT circuitry is only added to break global loops, the excessive area overhead of the scan methods is avoided.
There are two limitations of the method. First, sequential fault propagation is not performed. That is, the test pattern provided by PODEM must both excite the fault and propagate its effect to a primary output. However, the good fault coverage results suggest that this is not a problem in practice.
The second limitation is the exponential computational complexity of the algorithm, which is apparent in the run times of larger benchmarks, even though a number of techniques have been used to speed up the algorithm. Despite this, the benchmark circuits evaluated are larger than those used in most previous works.
The future work is to explore a hybrid method that first generates tests for the faults outside CEs, and then applies the proposed method for the remaining faults, which helps to reduce the test generation run time for large circuits [1], [3].
REFERENCES

1. Aristides Efthymiou, “Initialization Based Test Pattern Generation For Asynchronous Circuits” IEEE Trans. Very Large Scale Integration System, vol. 18, No. 4, April 2010, pp 591-601

2. Aristides Efthymiou, “Redundancy and Test Pattern Generation for Asynchronous Quasi-Delay-Insensitive Combinational Circuits”, in Proc. 10th IEEE Workshop Des. Diagnostics Electron. Circuits System, 2007, pp. 3-6

3. Aristides Efthymiou, S. A. Edwards and J. Bainbridge, “Test Pattern Generation and Partial-Scan Methodology for an Asynchronous Circuit”, IEEE Trans. Very Large Scale Integration System, vol. 13, no.12, Dec. 2005, pp. 1383, 1394

4. http://comp.uark.edu/~smithsco/DR_design.pdf
5. http://en.wikipedia.org/wiki/Asynchronous_circuit

6. http://polimage.polito.it/~lavagno/async.html

7. http://portal.acm.org/citation.cfm?id=1112377

8. http://www.computer.org/portal/web/csdl/doi/10.1109/12.391185
9. http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-90-3.pdf
10. http://www.siliconfareast.com/atpg.htm
11. http://www.tcs.columbia.edu/~cs4823/handouts/handout41.pdf
PAGE
17

