
ABSTRACT

A novel approach for estimating articulated body posture and motion from monocular video sequences is pro-posed. Human pose is defined as the instantaneous two dimensional configuration (i.e., the projection onto the image plane) of a single articulated body in terms of the position of a predetermined set of joints. First, statistical segmentation of the human bodies from the background is performed and low-level visual features are found given the segmented body shape. The goal is to be able to map these, generally low level, visual features to body configurations. The system estimates different mappings, each one with a specific cluster in the visual feature space. Given a set of body motion sequences for training, unsupervised clustering is obtained via the Expectation Maximization algorithm. For each of the clusters, a function is estimated to build the mapping between low-level features to 2D pose. Given new visual features, a mapping from each cluster is performed to yield a set of possible poses. From this set, the system selects the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input. Performance of the pro-posed approach is characterized using real and artificially generated body postures, showing promising results.

1. INTRODUCTION

In recent years, there has been a great deal of interest in methods for tracking and analysis of human body motion by computer Effective solutions would lead to breakthroughs in areas such as video coding, visual surveillance, human motion recognition, ergonomics, video indexing and retrieval, and human-computer interfaces, among others. 

If the basic structure of the tracked body (its configuration) is reconstructed, motion analysis would be greatly simplified. In our everyday life, humans can easily estimate body part location and structure from relatively low-resolution images of the projected 3D world (e.g., watching a video). Unfortunately, this problem is inherently difficult for a computer. The difficulty stems from the number of degrees of freedom in the human body, the complex under-lying probability distribution, ambiguities in the projection of human motion onto the image plane, self-occlusion, in-sufficient temporal or spatial resolution, etc. 

In this paper, we develop an approach for estimating human body pose given a single image or a monocular image sequence containing unconcluded bodies. Given a set of body motion sequences for training, a set of clusters is built in which each has statistically similar configurations according to a given measure and model. Then, for each of the clusters, a function that maps  visual features to body pose is acquired via machine learning. Given new visual features, a mapping from each cluster is performed providing a set of possible poses. From this set, we extract the most likely pose given the learned probability distribution and the visual feature similarity between hypothesis and input.

2. GENERAL PROBLEM DEFINITION

The problem of obtaining body pose (either 2D or 3D) from visual features can be thought of as an instance of the more general problem of estimating the function that maps elements of a given (cue) space to another (target) space from data. In our case this function seems to be highly complex, and the mapping is many to many (e.g., same visual features can represent different body pose configurations and same body configurations can generate different visual features due to clothing, view-point, etc.).

Let us define (( (t  to be the set of sample data points from the target space and ( ( ( C , with the same cardinality as , to be the set of sample data points from the cue space. Assume that for each element (i ((   we know its counterpart vi (( (i.e., the data is labeled), or that there is a way to generate vi, for example vi = (  ((i ) . Note that if ( is many-to-one, its inverse does not exist.

In our case, ( represents the set of example human body poses, and (  is the corresponding set of visual features taken from image projections under certain viewing conditions. We do not intend to solve the general problem of function approximation; instead, we address the specific problem of recovering pose parameters of an articulated body (the human body) from monocular visual features. 

As stated above, our goal is to map visual features to likely body pose configurations. For training, motion capture can provide 3D marker positions and orientation of the human. Following a similar notation to that used above, the set of marker positions is denoted (3d ( (t .

Visual features generated by the three-dimensional object can be obtained by pointing a video camera at the given object, and analyzing the captured images. It is clear that these visual features depend on the camera parameters (e.g., camera orientation, location, focal length, etc). 

Alternatively, a computer graphics model of the 3D object (in our case, a human body model) can be used to render a set of images. These images simulate the visual appearance of the object in question, given pose and camera parameters. Optionally R can take a parameter ( indicating the camera point of  view (or object orientation). Images are an intermediate representation from which we can extract visual features using a function we denote by V : I  ((C . Following the definitions above, we have:

The set  (3d (  (c is formed by the visual features extracted from the images of ( 3d, using (. Our goal is to estimate the function denoted (, as defined above.

An alternative problem is to recover 2D marker positions, instead of 3D positions, from image features. By 2D marker positions, we mean the projection of the 3D

markers onto the image plane. The 2D projections of the markers can be obtained from (3d to generate a data set (2d;   ( ( (S of all frames viewed from camera orientation (, and a distance to the object. In the same way as in the 3D case, we can render 2D marker positions to form an image, this rendering function will be denoted R : (S( I, which is a 2D approximation of R. Note that having the set (3d from which (2d;( was generated, we can obtain a more accurate rendering by using R on 
3d at the appropriate orientation (. When this is possible, we will use R instead of ^ R. To generate visual features from images, we can proceed as before, using V to generate the set (2d;( , which contains the visual features corresponding to the rendering of the set (2d;( 

For notational convenience, we define ( = U(  (2d;( , (2d
can be defined similarly. We also have:

  (2d( () = V ( ^ R(( )); (2d : (S((C    with (((2d. The problem is then to approximate (2d (the 2D version of ()from data. In other words, given visual features, we want to find the likely 2D marker projections that generated them.

3. APPROACH OVERVIEW

Given below is every single step  of the proposed approach. The steps are as follows:

1. A set of motion 3D capture sequences is obtained, 
3d _ < t . A set of visual features _3d is computed from images that the 3D body generated (using a computer

graphics rendering function or simply captured by a video camera). By projecting the elements of 
3d onto the image plane over a given number of views, we obtain as set of 2D marker positions 
2d.

2. The set 
2d is partioned into several exclusive subsets via unsupervised clustering. This yields a set  of m clusters. Each cluster corresponds to a group of similar pose parameters.

3. Given 
2d and _2d, for each cluster i, we approximate a mapping function Pi. By clustering our target space, the mapping can be approximated with simple functions,

each responsible for a subset of the domain. We would hope that linear functions could do the mapping, but decided to estimate nonlinear functions; a multi-layer perceptron

is trained for each cluster. 

4. Novel data is presented in the form of human silhouettes. For each frame, visual features are extracted using V :          Then, using Pi, a set of m projected marker positions per frame are estimated.

5. The series of possible m solutions provided for each frame is rendered  by  calling  the rendering function R : < t ! I, where I is set of images at a given resolution to achieve images and their visual features are extracted. The best match with respect to the presented data can then be found via the maximum likelihood criterion. As an optional step, consistency in time can be enforced by observing some frames ahead. So that we finally achieved           

4. MODELING THE CONFIGURATION SPACE

Motion capture data 
3d will be used to train our model. Motion capture data provides 3D position information about the location of a set of markers. In the case, the set of markers roughly corresponds to a subset of major human body joints. This set of marker is fixed and deter-mined beforehand. 

3D marker positions are projected into 2D marker po-sitions2d, using a   perspective camera located at a fixed height and distance from the center of the body. This projection is repeated by rotating the camera around the main axis of the human, at fixed increments of _. In our experiments d_ = _=16. Note that we can make the set 
2d as dense as we want by sampling at more camera orientations. To account for a wider variety of viewing conditions, we could sample the whole viewing sphere. Differences in the camera-object distance could be avoided in principle by choosing scale invariant image features. Given marker positions for a human body in a particular frame, we can render its visual appearance using computer graphics techniques. In our case, we specify the structure of the connections between markers, and use cylinders to connect them. Fig. 1 shows two elements of the set 2d, and the corresponding rendered binary images from which visual features _2d are extracted. For this implementation we chose Hu moments [11] as our visual features, mainly due to their ease of computation and their invariance to translation, scaling and rotation on the image plane.

4.1 Clustering body configurations

It would be ideal if the mapping from _2d to 2d were simple. Unfortunately this mapping is highly ambiguous. For example, if moments on binary images (e.g., body silhouettes) are used as visual features, a person facing forward would generate very similar image moments to another facing backwards. Image moments provide a descriptor that does not encode many of the degrees of freedom of 2D(a) 2 d = C( 3 d; 0) 2 
2d; 0
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Figure 1:. Here we show some frames from the same sequence viewed from two different camera locations: (a) _ = 0 rads, (b) _ = 6_=32 rads.

Figure 2: The cluster means obtained after performing unsupervised clustering of the data points in 2D marker space. Note that opposite configurations are clustered separately. 

For example, one can see that there is a cluster for the figure facing forward, and another one backward. This separation is important because visual features alone cannot resolve this ambiguity. Complexity of the mapping is reduced if clusters are trained separately. markers. Therefore, it is possible that drastically different body configurations have similar image moments. The way we approach the problems mentioned above is by first creating clusters of statistically homogeneous data points in the marker space. We used 2D projected markers to try to generate clusters that can be described by a Gaussian probability distribution. This is an unsupervised  clustering task, for which we use the EM algorithm. us denote _i = (_i; _i) to be the learned distribution parameters for cluster i. For each data point 2 
, we can assign it to a cluster, by just finding the ML (Maximum Likelihood) estimate. Fig. 2 shows the mean configuration of a set of 15 clusters found by this method using the set            2d. By splitting the body configuration space into homogeneous regions, it becomes feasible to approximate a more specialized (and simpler) map from a visual feature space. This will reduce the ambiguities mentioned above. For example, in Fig. 2 we can see that there are mean configurations facing for-ward and backward.

4.2 Training the Map from Visual Features to Body Configurations

Once data points are divided into clusters, the system must learn cluster-dependent mappings that take visual features to body configurations. For each cluster, we used a neural network to train how to map inputs (from _2d) to outputs (from 
2d) in a supervised fashion. A multi-layer perceptron with one hidden layer is chosen to do this [4]. The explicit expression for this function is:

where ^ x 2 
 is the visual feature vector at a given instant, y is the estimated marker configuration, w (1) and w (2) are each layer's synaptic weights and biases, g 1 and g2 are a sigmoidal and linear function respectively. This architecture was chosen because it can approximate some non-linear mappings [17] instead of just lin-Let ear ones, and the training is relatively simple, given the data. The parameters of this network were estimated via Levenberg-Marquardt optimization to update the weights  and biases. The system creates a set  = fP1; P2; :::; Pmg of m multi-layer perceptrons, each trained to a particular cluster of body configurations. 

5. SYNTHESIZING BODY CONFIGURATIONS

When novel data x 2 <            c is presented (i.e., features computed from an image frame), the likely 2D marker positions are estimated using the cluster-dependent functions Pi. This yields a set of hypothetical body configurations ^ Y = f^ ykg. There is a total of m hypotheses per frame x. The question is, how to choose from this set of hypotheses? We approach this problem by creating another mapping or function Pb that estimates visual features from 2D marker positions. we could estimate the parameters of Pb using the approach outlined in Sec. 5.2. Then given ^ yk, we can obtain an estimate ^ xk = Pb(yk). This function Pb would avoid the need of a probably expensive rendering of the m hypotheses. This was done using the sets _2d and 2d. Because this map-ping uses data rendered with knowledge of 3D information, it is very likely to have accuracy advantages over the simpler transformation ^ R. Given the set ^ Y of hypotheses about the body configuration, we find the most accurate hypothesis by minimizing:

where __ is the covariance matrix of the elements in the set _2d and i is the neural network label that best matched the visual feature observed.

As a further refinement step, because neighboring frames are generally from similar configurations, we have obtained slightly better performance if consistency in time is enforced. Therefore, after we obtain the best Pk to use  for a given frame, if this network differs from that chosen in the previous frame, we wait for the next frames to arrive (generally 2 or 3) to decide whether to use this new Pk. If within this window the new frames are consistent with the change (use the same Pk), then the new Pk is used; if not, then the previous network is used instead. Although  a probabilistic dynamical model would be advantageous, this proved to be an effective culling mechanism to avoid spurious individual reconstructed frames.

6. EXPERIMENTS USING REAL VISUAL CUES

For our next example, in Fig. 3 we now test the system against real segmented visual data, obtained from observing and tracking and human subject. Reconstruction for several relatively complex action sequences are shown be-low each sequence. Note that even though the characteristics of the segmented body differ from the ones used for training, good performance is achieved. Most frames are visually close to what can be thought as the right pose re-construction. Body orientation also is correct not just for
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frontal views. However, it is possible to see some erroneous configurations. We believe the source of error is mainly due to several reasons: 1.) insufficient data to account for given configurations that cannot just be obtained by interpolating surrounding ones (e.g., raising arms up / pointing both arms to same direction), 2.) possible need of more clusters or approximating functions with more specialized domains (in cue space), 3.) differences in body characteristics used for training/testing, and 4.) little discriminative power of the chosen image features (Hu moments, which reduce the image interpretation to a 10-dimensional vector). Despite these errors, the experimental results are encouraging when compared with previous results. 

Figure 3: Reconstruction for three different real action sequences obtained from tracking a human subject(every 30th frame shown).

7. CONCLUSION

We have presented a novel technique that allows the reconstruction of human body pose from low-level visual features. Because of the complexity of the mapping, we clustered the space of body configurations into approximately homogeneous configurations, showing improved results. The proposed approach is both simple and powerful. Our ideas are different from tracking approaches in that we do not try to match body parts from frame to frame. Human pose reconstruction is a particularly hard problem because this mapping is highly ambiguous. We have obtained excellent results even using a very simple set of image features, such as image moments. Choosing the best subset of image features from a given set is by itself a complex problem, and a topic of on-going research. The current implementation was tested in recovering the pose for both generated and real visual data. The artificially generated data was used for measuring the performance of the approach, real data showed its applicability. The results are encouraging in considering the complexity of the task and in comparison with results reported for previous methods. 
