CHAPTER 1

INTRODUCTION TO EMBEDDED SYSTEMS
1. INTRODUCTION TO EMBEDDED SYSTEMS

An embedded system is a special-purpose system in which the computer is completely encapsulated by or dedicated to the device or system it controls. Unlike a general-purpose computer, such as a personal computer, an embedded system performs one or a few pre-defined tasks, usually with very specific requirements. Since the system is dedicated to specific tasks, design engineers can optimize it, reducing the size and cost of the product. Embedded systems are often mass-produced, benefiting from economies of scale.

Personal digital assistants (PDAs) or handheld computers are generally considered embedded devices because of the nature of their hardware design, even though they are more expandable in software terms. This line of definition continues to blur as devices expand.

Physically, embedded systems range from portable devices such as digital watches and MP3 players, to large stationary installations like traffic lights, factory controllers, or the systems controlling nuclear power plants.

In terms of complexity embedded systems can range from very simple with a single microcontroller chip, to very complex with multiple units, peripherals and networks mounted inside a large chassis or enclosure.

Examples of embedded systems
· Automatic teller machines (ATMs)

· Avionics, such as inertial guidance systems, flight control hardware/software and other integrated systems in aircraft and missiles

· Cellular telephones and telephone switches

· engine controllers and antilock brake controllers for automobiles

· Home automation products, such as thermostats, air conditioners, sprinklers, and security monitoring systems

· Handheld calculators

· Handheld computers

· Household appliances, including microwave ovens, washing machines, television sets, DVD players and recorders

· Medical equipment

· Personal digital assistant

· Videogame consoles

· Computer peripherals such as routers and printers

· Industrial controllers for remote machine operation.

1.1. History
In the earliest years of computers in the 1940s, computers were sometimes dedicated to a single task, but were too large to be considered "embedded". Over time however, the concept of programmable controllers developed from a mix of computer technology, solid state devices, and traditional electromechanical sequences.

The first recognizably modern embedded system was the Apollo Guidance Computer, developed by Charles Stark Draper at the MIT Instrumentation Laboratory. At the project's inception, the Apollo guidance computer was considered the riskiest item in the Apollo project. The use of the then new monolithic integrated circuits, to reduce the size and weight, increased this risk.

The first mass-produced embedded system was the Autonetics D-17 guidance computer for the Minuteman (missile), released in 1961. It was built from transistor logic and had a hard disk for main memory. When the Minuteman II went into production in 1966, the D-17 was replaced with a new computer that was the first high-volume use of integrated circuits. This program alone reduced prices on quad nand gate ICs from $1000/each to $3/each, permitting their use in commercial products.

Since these early applications in the 1960s, embedded systems have come down in price. There has also been an enormous rise in processing power and functionality. For example the first microprocessor was the Intel 4004, which found its way into calculators and other small systems, but required external memory and support chips.

In 1978 National Engineering Manufacturers Association released the standard for a programmable microcontroller. The definition was an almost any computer-based controller. They included single board computers, numerical controllers, and sequential controllers in order to perfom event-based instructions.

By the mid-1980s, many of the previously external system components had been integrated into the same chip as the processor, resulting in integrated circuits called microcontrollers, and widespread use of embedded systems became feasible.

As the cost of a microcontroller fell below $1, it became feasible to replace expensive knob-based analog components such as potentiometers and variable capacitors with digital electronics controlled by a small microcontroller with up/down buttons or knobs. By the end of the 80s, embedded systems were the norm rather than the exception for almost all electronics devices, a trend which has continued since.

1.2. Characteristics of embedded systems
Embedded systems are designed to do some specific task, rather than be a general-purpose computer for multiple tasks. Some also have real-time performance constraints that must be met, for reason such as safety and usability; others may have low or no performance requirements, allowing the system hardware to be simplified to reduce costs.

An embedded system is not always a separate block - very often it is physically built-in to the device it is controlling

The software written for embedded systems is often called firmware, and is stored in read-only memory or Flash memory chips rather than a disk drive. It often runs with limited computer hardware resources: small or no keyboard, screen, and little memory.

User interfaces:
Embedded systems range from no user interface at all - dedicated only to one task - to full user interfaces similar to desktop operating systems in devices such as PDAs.

Simple systems:
Simple embedded devices use buttons, LEDs, and small character- or digit-only displays, often with a simple menu system.

In more complex systems:
A full graphical screen, with touch sensing or screen-edge buttons provides flexibility while minimizing space used: the meaning of the buttons can change with the screen, and selection involves the natural behavior of pointing at what's desired.

Handheld systems often have a screen with a "joystick button" for a pointing device.

The rise of the World Wide Web has given embedded designers another quite different option: providing a web page interface over a network connection. This avoids the cost of a sophisticated display, yet provides complex input and display capabilities when needed, on another computer. This is successful for remote, permanently installed equipment. In particular, routers take advantage of this ability.

CPU platform:
Embedded processors can be broken into two distinct categories: microprocessors (μP) and micro controllers (μC). Micro controllers have built-in peripherals on the chip, reducing size of the system.

There are many different CPU architectures used in embedded designs such as ARM, MIPS, Coldfire/68k, PowerPC, x86, PIC, 8051, Atmel AVR, Renesas H8, SH, V850, FR-V, M32R, Z80, Z8, etc. This in contrast to the desktop computer market, which is currently limited to just a few competing architectures.

PC/104 and PC/104+ are a typical base for small, low-volume embedded and rugged system design. These often use DOS, Linux, NetBSD, or an embedded real-time operating system such as QNX or VxWorks.

A common configuration for very-high-volume embedded systems is the system on a chip (SoC), an application-specific integrated circuit (ASIC), for which the CPU core was purchased and added as part of the chip design. A related scheme is to use a field-programmable gate array (FPGA), and program it with all the logic, including the CPU.

1.3. Peripherals
Embedded Systems talk with the outside world via peripherals, such as:

· Serial Communication Interfaces (SCI): RS-232, RS-422, RS-485 etc

· Synchronous Serial Communication Interface: I2C, JTAG, SPI, SSC and ESSI

· Universal Serial Bus (USB)

· Networks: Controller Area Network, LonWorks, etc

· Timers: PLL(s), Capture/Compare and Time Processing Units

· Discrete IO: aka General Purpose Input Output (GPIO)

Tools:
As for other software, embedded system designers use compilers, assemblers, and debuggers to develop embedded system software. However, they may also use some more specific tools:

· An in-circuit emulator (ICE) is a hardware device that replaces or plugs into the microprocessor, and provides facilities to quickly load and debug experimental code in the system.

· Utilities to add a checksum or CRC to a program, so the embedded system can check if the program is valid.

· For systems using digital signal processing, developers may use a math workbench such as MathCad or Mathematica to simulate the mathematics.

· Custom compilers and linkers may be used to improve optimization for the particular hardware.

· An embedded system may have its own special language or design tool, or add enhancements to an existing language.

Software tools can come from several sources:

· Software companies that specialize in the embedded market

· Ported from the GNU software development tools

· Sometimes, development tools for a personal computer can be used if the embedded processor is a close relative to a common PC processor

1.4. Debugging
Embedded Debugging may be performed at different levels, depending on the facilities available, ranging from assembly- or source-level debugging with an in-circuit emulator or in-circuit debugger, to output from serial debug ports or JTAG/Nexus interfaces, to an emulated environment running on a personal computer.

As the complexity of embedded systems grows, higher level tools and operating systems are migrating into machinery where it makes sense. For example, cell phones, personal digital assistants and other consumer computers often need significant software that is purchased or provided by a person other than the manufacturer of the electronics. In these systems, an open programming environment such as Linux, NetBSD, OSGi or Embedded Java is required so that the third-party software provider can sell to a large market.

1.5. Reliability
Embedded systems often reside in machines that are expected to run continuously for years without errors, and in some cases recover by themselves if an error occurs. Therefore the software is usually developed and tested more carefully than that for personal computers, and unreliable mechanical moving parts such as disk drives, switches or buttons are avoided.

Recovery from errors may be achieved with techniques such as a watchdog timer that resets the computer unless the software periodically notifies the watchdog.

Specific reliability issues may include:

1. The system cannot safely be shut down for repair, or it is too inaccessible to repair. Solutions may involve subsystems with redundant spares that can be switched over to, or software "limp modes" that provide partial function. Examples include space systems, undersea cables, navigational beacons, bore-hole systems, and automobiles.

2. The system must be kept running for safety reasons. "Limp modes" are less tolerable. Often backups are selected by an operator. Examples include aircraft navigation, reactor control systems, safety-critical chemical factory controls, train signals, engines on single-engine aircraft.

3. The system will lose large amounts of money when shut down: Telephone switches, factory controls, bridge and elevator controls, funds transfer and market making, automated sales and service.

High vs Low Volume:
For high volume systems such as portable music players or mobile phones, minimizing cost is usually the primary design consideration. Engineers typically select hardware that is just “good enough” to implement the necessary functions.

For low-volume or prototype embedded systems, general purpose computers may be adapted by limiting the programs or by replacing the operating system with a real-time operating system.

Embedded software architectures:
There are several different types of software architecture in common use.

Simple control loop:
In this design, the software simply has a loop. The loop calls subroutines, each of which manages a part of the hardware or software.

Interrupt controlled system:
Some embedded systems are predominantly interrupt controlled. This means that tasks performed by the system are triggered by different kinds of events. An interrupt could be generated for example by a timer in a predefined frequency, or by a serial port controller receiving a byte.

These kinds of systems are used if event handlers need low latency and the event handlers are short and simple.

Usually these kinds of systems run a simple task in a main loop also, but this task is not very sensitive to unexpected delays. The tasks performed in the interrupt handlers should be kept short to keep the interrupt latency to a minimum.

Some times longer tasks are added to a queue structure in the interrupt handler to be processed in the main loop later. This method brings the system close to a multitasking kernel with discrete processes.

1.6. Multitasking

1.6.1. Cooperative multitasking:
A no preemptive multitasking system is very similar to the simple control loop scheme, except that the loop is hidden in an API. The programmer defines a series of tasks, and each task gets its own environment to "run" in. Then, when a task is idle, it calls an idle routine (usually called "pause", "wait", "yield", etc.).

The advantages and disadvantages are very similar to the control loop, except that adding new software is easier, by simply writing a new task, or adding to the queue-interpreter.

1.6.2. Pre-emptive multitasking:
In this type of system, a low-level piece of code switches between tasks based on a timer. This is the level at which the system is generally considered to have an "operating system", and introduces all the complexities of managing multiple tasks running seemingly at the same time.

Any piece of task code can damage the data of another task; they must be precisely separated. Access to shared data must be controlled by some synchronization strategy, such as message queues, semaphores or a non-blocking synchronization scheme.

Because of these complexities, it is common for organizations to buy a real-time operating system, allowing the application programmers to concentrate on device functionality rather than operating system services.

1.7. EMBEDDED APPLICATIONS:

· Navigation system using a GPS receiver;
· Communications systems for protocol conversion and VoIP;
· Mobile data applications using BREW–MP3 player and salary survey;
· Real-time systems using RTLinux–printing, messaging and more;
· Windows CE database applications –salary survey and energy meter reading;
· Networked information appliances using the HP Chai Appliance Platform–CRM, location-based services and more;
· Mobile Java appliances–electronic city guide, Jini appliance control, ACRemote application;
· Windows XP embedded applications –air conditioner remote control, audio player remote control, typing speed indicator, database application, electronic voting.

CHAPTER 2

BLOCK DIAGRAM OF ENERGY CONSERVATION SYSTEM USING PIR

[image: image1]
2. BLOCK DIAGRAM
2.1. Block diagram

[image: image33.png]
Fig 2.1 block diagram of energy conservation system using pir
2.2. Schematic of energy conservation using pir

[image: image2.png]
Fig 2.2. Schematic of energy conservation using pir
2.3. Description
The conservation of energy states that the total amount of energy in any closed system remains constant but can't be recreated, although it may change forms, e.g. friction turns kinetic energy into thermal energy. In thermodynamics, the first law of thermodynamics is a statement of the conservation of energy for thermodynamic systems, and is the more encompassing version of the conservation of energy. In short, the law of conservation of energy states that energy can not be created or destroyed, it can only be changed from one form to another.
Energy conservation is the practice of decreasing the quantity of energy used while achieving a similar outcome. Individuals and organizations that are direct consumers of energy may want to conserve energy in order to reduce energy costs and promote economic, political and environmental sustainability.
There is provided an infrared sensor unit for deactivating an electrical appliance when left unattended by its user. The sensor unit includes a passive infrared sensor for sensing the user through a field of infrared light provided within a viewable distance of the electrical appliance. An adjustable timer is in electrical communication with the passive infrared sensor for counting toward a predetermined amount of time when the user is not sensed within the field of infrared light. The sensor unit further includes a controller device which is in electrical communication with the adjustable timer for deactivating the electrical appliance upon reaching the predetermined amount of time.

A Passive Infra-Red (PIR) sensor is an electronic device commonly used in security lighting, and burglar alarm systems. A PIR sensor is a motion detector which detects the heat (infrared) emitted naturally by humans and animals. When a person in the field of vision of the sensor moves, the sensor detects a sudden change in infrared energy and the sensor is activated.
CHAPTER 3

MICRO CONTROLLER

3. MICRO CONTROLLER

3.1. MICROCONTROLLER INTRODUCTION

The 89c51RD2xx is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Philips high-density nonvolatile memory technology and is compatible with industry-standard MCS-51 instruction set and pin out. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the 89C51RD2xx is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.

3.1.1. Features:
· Compatible with MCS-51 Products
· 4K Bytes of In-System Reprogrammable Flash Memory – Endurance: 1000 Write/Erase Cycles.
· Fully Static Operation: 0Hz to 24MHz
· Three-level Program Memory Lock
· 128 x 8- bit Internal RAM
· 32 Programmable I/O Lines
· Two 16-bit Timer/Counters
· Six Interrupt Sources
· Programmable Serial Channel
· Low-power Idle and Power-down Modes
3.2. Block diagram

[image: image31.jpg]
[image: image32.png]

[image: image3.png]
Fig 3.2.1. Block Diagram of the AT89C core

For more information on the individual devices and features, refer to the Hardware Descriptions and Data Sheets of the specific device.

 [image: image4.png]
 Fig.3.2.2. Oscillator Connection.

The 89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the 89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset.

[image: image5]
Fig3.2.3. External Clock Drive Configuration

Fig.3.2.4. Memory Structure of the 8051.

3.3. Memory Organization

3.3.1. Program Memory

Figure 4 shows a map of the lower part of the program memory. After reset, the CPU begins execution from location 0000H. As shown in fig.4, each interrupt is assigned a fixed location in program memory. The interrupt causes the CPU to jump to that location, where it executes the service routine. External Interrupt 0, for example, is assigned to location 0003H. If External Interrupt 0 is used, its service routine must begin at location 0003H. If the interrupt is not used, its service location is available as general purpose.

[image: image6]
Fig.3.3.1. Program Memory.

Program memory addresses are always 16 bits wide, even though the actual amount o program memory used may be less than 64Kbytes. External program execution sacrifices two of the 8-bit ports, P0 and P2, to the function of addressing the program memory.

3.3.2. Data Memory

The right half of Figure 3 shows the internal and external data memory spaces available on Philips Flash microcontrollers. Fig.6 shows a hardware configuration for accessing up to 2K bytes of external RAM. In this case, the CPU executes from internal flash. Port0 serves as a multiplexed address/data bus to the RAM, and 3 lines of Port 2 are used to page the RAM. The CPU generates RD and WR signals as needed during external RAM accesses. You can assign up to 64K bytes of external data memory. External data memory addresses can be either 1 or 2bytes wide. One-byte addresses are often used in conjunction with one or more other I/O lines to page the RAM, as shown in Fig.6. Two-byte addresses can also be used, in which case the high address byte is emitted at Port2.

[image: image7]

Internal data memory addresses are always 1 byte wide, which implies an address space of only 256bytes. However, the addressing modes for internal RAM can infact accommodate 384 bytes. Direct addresses higher than 7FH access one memory space and indirect addresses higher than 7FH access a different memory space. Thus, Figure.7 shows the Upper 128 and SFR space occupying the same block of addresses, 80H through FFH, although they are physically separate entities. Figure.8 shows how the lower 128 bytes of RAM are mapped. The lowest 32 bytes are grouped into 4 banks of 8 registers. Program instructions call out these registers as R0 through R7. Two bits in the Program Status Word (PSW) select which register bank is in use. This architecture allows more efficient use of code space, since register instructions are shorter than instructions that use direct addressing.

[image: image8.jpg]
Fig.3.3.3. The lower 128 bytes of Internal RAM

The next 16 bytes above the register banks form a block of bit-addressable memory space. The microcontroller instruction set includes a wide selection of single-bit instructions, and these instructions can directly address the 128 bits in this area. These bit addresses are 00H through 7FH. All of the bytes in the Lower 128 can be accessed by either direct or indirect addressing.

3.3.3. Special Function Register Map
Table 3.3.1. Special Function Registers
8 Bytes
	F8
	
	
	
	
	
	
	
	FF

	F0
	B
	
	
	
	
	
	
	F7

	E8
	
	
	
	
	
	
	
	EF

	E0
	ACC
	
	
	
	
	
	
	E7

	D8
	
	
	
	
	
	
	
	DF

	D0
	PSW(1)
	
	
	
	
	
	
	D7

	C8
	T2C0N(1)(2)
	T2MOD(2)
	RCAP2L(2)
	RCAP2H(2)
	TL2(2)
	TH2(2)
	
	CF

	C0
	
	
	
	
	
	
	
	C7

	B8
	IP(1)
	
	
	
	
	
	
	BF

	B0
	P3
	
	
	
	
	
	
	B7

	A8
	IE(1)
	
	
	
	
	
	
	AF

	A0
	P2
	
	
	
	
	
	
	A7

	98
	SCON(1)
	SBUF
	
	
	
	
	
	9F

	90
	PI
	
	
	
	
	
	
	97

	88
	TCON(1)
	TMOD(1)
	TLO
	TLI
	THO
	TH1
	
	BF

	80
	PO
	SP
	DPL
	DPH
	
	
	PCON(1)
	87

 Bit Addressable
Notes: 1. SFRs converting mode or control bits
 2. AT89C52only
3.3.4. Power-on Reset

The reset input is the RST pin, which is the input to a Schmitt Trigger. A reset is accomplished by holding the RST pin high for at least two machine cycles (24 oscillator periods), while the oscillator is running. The CPU responds by generating an internal reset.

The external reset signal is asynchronous to the internal clock. The RST pin is sampled during State 5 Phase 2 of every machine cycle. The port pins will maintain their current activities for 19 oscillator periods after a logic 1 has been sampled at the RST pin; that is, for 19 to 31 oscillator periods after the external reset signal has been applied to the RST pin.

The internal reset algorithm writes 0s to all the SFRs except the port latches, the Stack Pointer and SBUF. The port latches are initialized to FFH, the Stack Pointer to 07H, and SBUF is indeterminate. The internal RAM is not affected by reset. On power up the RAM content is indeterminate.

REGISTER

REST VALUE

PC
0000H

ACC
00H

B
00H

PSW
00H

SP
07H

DPTR
0000H

P0-P3
FFH

IP
XXX0000B

IE
0XX0000B

TMOD
00H

TCON
00H

TH0
00H

TL0
00H

TH1
00H

SCON
00H

SBUF
Indeterminate

PCON (NMOS)
0XXXXXXXB

PCON (CMOS)
0XXX0000B

Table 3.3.2. Special Function Registers(reset values)
3.4. Interrupts

The 89C51 provides 5 interrupt sources. The External Interrupts INT0 and INT1 can each be either level-activated or transition-activated, depending on bits IT0 and IT1 in Register TCON. The flags that actually generate these interrupts are bits IE0 and IE1 in TCON. When an external interrupt is generated, the flag that generated it is cleared by the hardware when the service routine is vectored to only if the interrupt was transition-activated. If the interrupt was level-activated, then the external requesting source is what controls the request flag, rather than the on-chip hardware.

The Timer0 and Timer 1 Interrupts are generated by TF0 and TF1, which are set by a rollover in their respective Timer/Counter registers (except see Timer0 in Mode3). When a timer interrupt is generated, the flag that generated it is cleared by the on-chip hardware when the service routine is vectored to.

The Serial Port Interrupt is generated by the logical OR of RI and TI. Neither of these flags is cleared by hardware when the service routine is vectored to. In fact, the service routine will normally have to determine whether it was RI or TI that generated the interrupt, and the bit will have to be cleared in software.

All of the bits that generate interrupts can be set or cleared by software, with the same result as thought it had been set or cleared by hardware. This is, interrupts can be generated or pending interrupts can be canceled in software.

Each of these interrupt sources can be individually enabled or disabled by setting or clearing a bit in Special Function Register IE. IE also contains a global disable bit, EA, which disables all interrupts at once.

The interrupt flags are sampled a S5P2 of every machine cycle. The samples are polled during the following machine cycle. If one of the flags was in a set condition at S5P2 of the preceding cycle, the polling cycle will find it and the interrupt system will generate an LCALL to the appropriate service routine, provided this hardware-generated LCALL is not blocked by any of the following conditions:

1. An interrupt of equal or higher priority level is already in progress.

2. The current (polling) cycle is not the final cycle in the execution of the instruction in progress.
3. The instruction in progress is RET1 or any write to the IE or IP registers.

Any of these three conditions will block the generation of the LCALL to the interrupt service routine. Condition 2 ensures that instruction in progress will be completed before vectoring to any service routine. Condition 3 ensures that if the instruction in progress is RET1 or any access to IE or IP, then at least one more instruction will be executed before any interrupt is vectored to.

The poling cycle is repeated with each machine cycle, and the values polled are the values that were present at S5P2 of the previous machine cycle. Note that if any interrupt flag is active but not being responded for one of the above conditions, if the flag is not still active when the blocking condition is removed, the denied interrupt will not be serviced. In other words, the fact that the interrupt flag was once active but not serviced is not remembered. Every polling cycle is new.

The processor acknowledges an interrupt request by executing hardware generated LCALL to the appropriate servicing routine. In some cases it also clears the flag that generated the interrupt, and in other cases it doesn’t. It never clears the Serial Port flag. This has to be done in the user’s software. It clears an external interrupt flag (IE0 or IE1) only if it was transition-activated. The hardware generated LCALL pushes the contents of the Program Counter onto the Stack (but it does not save the PSW) and reloads the PC with an address that depends on the source of the interrupt being vectored to. Execution proceeds from that location until the RET1 instruction is encountered. The RET1 instruction informs the processor that this interrupt routine is no longer in progress, then pops the top two bytes from the stack and reloads the Program Counter. Exception of the interrupted program continues fro where it left off.

Note that a simple RET instruction would also have returned execution to the interrupted program, but it would have left the interrupt control system thinking an interrupt was still in progress, making future interrupts impossible.

3.4.1. External Interrupts

The external sources can be programmed to be level-activated or transition-activated by setting or clearing bit IT1 or IT0 in Register TCON. If ITx=0, external interrupt x is triggered by a detected low at the INTX pin. If ITx=1, external pin x is edge triggered. In this mode if successive samples of the INTX pin show a high in one cycle and a low in the next cycle, interrupt request flag IEx in TCON is set. Flag bit IEx then request the interrupt.

Since the external interrupt pins are sampled once each machine cycle, an input high or low should hold for at least 12 oscillator periods to ensure sampling. If the external interrupt is transition-activated, the external source has to hold the request pin high for at least once cycle, and then hold it low for at least one cycle. This is done to ensure that transition is seen so that interrupt request flag IEx will be set. The CPU will automatically clear IEx when the service routine is called.

If the external interrupt is level-activated, the external source has to hold the request active until the requested interrupt is actually generated. Then it has to deactivate the request before the interrupt service routine is completed, or else another interrupt will be generated.

To use any of the interrupts in the 89C51 Family, the following three steps must be taken.

1. Set the EA (enable all) bit in the IE register to 1.

2. Set the corresponding individual interrupt enable bit in the IE register to 1.

3. Begin the interrupt service routine at the corresponding vector.

Address of that interrupt. See Table below.

Interrupt Source

Vector Address

--

IE0
0003H

TF0
000BH

IE1
0013H

TF1
001BH

RI & TI
0023H

Table 3.4.1. Vector Address of Interrupt Source

In addition, for external interrupts, pins INT0 and INT1(P3.2 and P3.3) must be set to 1, and depending on whether the interrupt is to be level or transition activated, bits IT0 or IT1 in the TCON register may need to be set to 1.

ITx=0

level activated

ITx=1

transition activated Priority within level is only to resolve simultaneous requests of the same priority level. Form high to low, interrupt sources are listed below:

Interrupts

Priority

IE0

highest priority

TF0

IE1

TF1R1 or T1 lowest priority

3.4.2. Timer Set-Up

The tables below give some values for TMOD which can be used to set up Timer 0 and Timer 1 in different modes. It is assumed that only one timer is being used at a time. If it is desired to run Timers 0 and 1 simultaneously, in any mode the value in the TMOD for timer 0 must be ORed with value shown for Timer 1. For example, if it is desired to run Timer 0 in mode 1 GATE (external control), and Timer 1 in mode 2 COUNTER, then value that must be loaded into TMOD is 69H (09H from the table for Timer0, ORed with 60H from the table for Timer 1).

Moreover, it is assumed that the user, at this point, is not ready to turn the timers on and will do that at a different point in the program by setting bit TRx (in TCON) to 1.

· TIMER/COUNTER 0

As a Timer:

Mode Function
 TMOD (internal control) TMOD (external control)

0 13-bit Timer
00H
08H

1 16-bit Timer
 01H
 09H

2 8-bit Auto-Reload
02H
0AH

3
Two 8-bit Timers
03H
0BH

Table 3.4.2. modes of timer0
As a Counter:

Mode Function
 TMOD (internal control) TMOD (external control)

0 13-bit Counter
04H
0CH

1 16-bit Counter
 05H
 0DH

2 8-bit Auto-Reload
06H
0EH

3
One 8-bit Counter
07H
0FH

Table 3.4.3. modes of counter0
· TIMER/COUNTER 1

As a Timer:

Mode Function
 TMOD (internal control) TMOD (external control)

0 13-bit Timer
00H
80H

1 16-bit Timer
 10H
 90H

2 8-bit Auto-Reload
20H
A0H

3
Does not run
30H
B0H

Table 3.4.4. modes of timer1
As a Counter
Mode Function
 TMOD (internal control) TMOD (external control)

0 13-bit Counter
40H
C0H

1 16-bit Counter
 50H
 D0H

2 8-bit Auto-Reload
60H
A0H

3
Not available

Table 3.4.5. modes of counter1
3.5. Serial Port Set-Up
The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read form the register. (However, if the first byte still hasn’t been read by the time reception of the second byte is complete, one of the bytes will be lost.) The serial port receive and transmit registers are both accessed at Special Function Register SBUF. Writing to SBUF loads the transmit register, and reading SBUF accesses a physically separate receive register

.

The serial port can operate in 4 modes:

Mode 0: Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are transmitted/received (LSB first). The baud rate is fixed at 1/12th oscillator frequency.

Mode 1: 10 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), and a stop bit (1). On receive; the stop bit goes into RB8 in Special Function Register SCON. The baud rate is variable.
Mode 2: 11 bits are transmitted (trough TxD) or received (through RxD): start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). On transmit, the 9th data bit (TB is SCON) can be assigned the value of 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8. On receive; the 9th data bit goes into RB8 in Special Function Register SCON, while the stop bit is ignored. The baud rate is programmable to either 1/32 or 1/64th oscillator frequency.

Mode 3: 11 bits are transmitted (through TxD) or received (through RxD): a start bit (0), 8 data bits (LSB first), a programmable 9th data bit, and a stop bit (1). In fact, Mode 3 is the same as Mode2 in all aspects except baud rate. The baud rate in Mode 3 is variable.
Timer 1 Generated Commonly Used Baud Rages

The values for the different modes of operation of the serial port are shown in the table below:

MODESCON SM2 Variation

0
10H
Single Processor

1
50H
Environment

2
90H
(SM2 = 0)

3
D0H

0

Not Available Multiprocessor

1
70H
Environment

2
B0H
(SM2 =1)

3
F0H

Table 3.5.1. different modes of operation of the serial port
· GENERATING BADU RAGES:
Serial Port in Mode 0:

Mode 0 has a fixed baud rate, which is 1/12th oscillator frequency. To run the serial port in this mode none of the Timer/Counters need to be set up. Only the SCON register needs to be defined.

Baud Rate = Oscillator Frequency /12

Serial Port in Mode 1:

Mode1 has a variable baud rate. The baud rate is generated by Timer 1.

For this purpose, Timer 1 is used in mode2 (Auto-Reload).

Baud Rate = (K x Osc.Freq) / (32 x 12 x [256 – (TH1)])

If SMOD =0, then K=1.

If SMOD =1, then K =2 (SMOD is in the PCON register).

Most of the time the user knows the baud rate and needs to know the reload value for TH1.

TH1 = 256 – (K x Osc.Freq) / (384 x baud rate)

TH1 must be an integer value. Rounding off TH1 to the nearest integer may not produce the desired baud rate. In this case, the user may have to choose another crystal frequency.

Since the PCON register is not bit addressable, one way to set the bit is logical ORing the PCON register (i.e. ORL PCON, #80H). The address of PCON is 87H. Serial Port in Mode2:

The baud rate is fixed in this mode and is 1/32 or 1/64 of the oscillator frequency, depending on the value of the SMOD bit in the PCON register.

In this mode none of the Timers are used and the clock comes form the internal phase 2 clock.

SMOD = 1, Baud Rate = 1/32 Osc.Freq.

SMOD =0, Baud Rate = 1/64 Osc.Freq.

Fig3.5.2. circuit
of 8051
CHAPTER 4

LIQUID CRYSTAL DISPLAY

4. LIQUID CRYSTAL DISPLAY

Fig 4.1. liquid crystal display

Reflective twisted nematic liquid crystal display.

1. Polarizing filter film with a vertical axis to polarize light as it enters.

2. Glass substrate with ITO electrodes. The shapes of these electrodes will determine the shapes that will appear when the LCD is turned ON. Vertical ridges etched on the surface are smooth.

3. Twisted nematic liquid crystal.

4. Glass substrate with common electrode film (ITO) with horizontal ridges to line up with the horizontal filter.

5. Polarizing filter film with a horizontal axis to block/pass light.

6. Reflective surface to send light back to viewer. (In a backlit LCD, this layer is replaced with a light source.)

A liquid crystal display (LCD) is an electronically-modulated optical device shaped into a thin, flat panel made up of any number of color or monochrome pixels filled with liquid crystals and arrayed in front of a light source (backlight) or reflector. It is often used in battery-powered electronic devices because it requires very small amounts of electric power.

A comprehensive classification of the various types and electro-optical modes of LCDs is provided in the article LCD classification.

4.1. Overview

Fig 4.2. LCD alarm clock

Each pixel of an LCD typically consists of a layer of molecules aligned between two transparent electrodes, and two polarizing filters, the axes of transmission of which are (in most of the cases) perpendicular to each other. With no actual liquid crystal between the polarizing filters, light passing through the first filter would be blocked by the second (crossed) polarizer.

The surface of the electrodes that are in contact with the liquid crystal material are treated so as to align the liquid crystal molecules in a particular direction. This treatment typically consists of a thin polymer layer that is unidirectionally rubbed using, for example, a cloth. The direction of the liquid crystal alignment is then defined by the direction of rubbing. Electrodes are made of a transparent conductor called Indium Tin Oxide (ITO).

Before applying an electric field, the orientation of the liquid crystal molecules is determined by the alignment at the surfaces. In a twisted nematic device (still the most common liquid crystal device), the surface alignment directions at the two electrodes are perpendicular to each other, and so the molecules arrange themselves in a helical structure, or twist. This reduces the rotation of the polarization of the incident light, and the device appears grey. If the applied voltage is large enough, the liquid crystal molecules in the center of the layer are almost completely untwisted and the polarization of the incident light is not rotated as it passes through the liquid crystal layer. This light will then be mainly polarized perpendicular to the second filter, and thus be blocked and the pixel will appear black. By controlling the voltage applied across the liquid crystal layer in each pixel, light can be allowed to pass through in varying amounts thus constituting different levels of gray.

The optical effect of a twisted nematic device in the voltage-on state is far less dependent on variations in the device thickness than that in the voltage-off state. Because of this, these devices are usually operated between crossed polarizers such that they appear bright with no voltage (the eye is much more sensitive to variations in the dark state than the bright state). These devices can also be operated between parallel polarizers, in which case the bright and dark states are reversed. The voltage-off dark state in this configuration appears blotchy, however, because of small variations of thickness across the device.

Both the liquid crystal material and the alignment layer material contain ionic compounds. If an electric field of one particular polarity is applied for a long period of time, this ionic material is attracted to the surfaces and degrades the device performance. This is avoided either by applying an alternating current or by reversing the polarity of the electric field as the device is addressed (the response of the liquid crystal layer is identical, regardless of the polarity of the applied field).

When a large number of pixels are needed in a display, it is not technically possible to drive each directly since then each pixel would require independent electrodes. Instead, the display is multiplexed. In a multiplexed display, electrodes on one side of the display are grouped and wired together (typically in columns), and each group gets its own voltage source. On the other side, the electrodes are also grouped (typically in rows), with each group getting a voltage sink. The groups are designed so each pixel has a unique, unshared combination of source and sink. The electronics, or the software driving the electronics then turns on sinks in sequence, and drives sources for the pixels of each sink.

CHAPTER 5
PASSIVE INFRARED SENSOR

5.PASSIVE INFRERED SENSOR
A Pyroelectric InfraRed sensor (PIR sensor) is an electronic device that measures infrared (IR) light radiating from objects in its field of view. Because it does not emit any energy, it is often mistakenly called a Passive Infrared Sensor. PIR sensors are often used in the construction of PIR-based motion detectors (see below). Apparent motion is detected when an infrared source with one temperature, such as a human, passes in front of an infrared source with another temperature, such as a wall.

All objects emit what is known as black body radiation. It is usually infrared radiation that is invisible to the human eye but can be detected by electronic devices designed for such a purpose. The term passive in this instance means that the PIR device does not emit an infrared beam but merely passively accepts incoming infrared radiation.

5.1. Design
Infrared radiation enters through the front of the sensor, known as the sensor face. At the core of a PIR sensor is a solid state sensor or set of sensors, made from an approximately 1/4 inch square of natural or artificial pyroelectric materials, usually in the form of a thin film, out of gallium nitride (GaN), caesium nitrate (CsNO3), polyvinyl fluorides, derivatives of phenylpyrazine, and cobalt phthalocyanine. (See pyroelectric crystals.) Lithium tantalate (LiTaO3) is a crystal exhibiting both piezoelectric and pyroelectric properties.

The sensor is often manufactured as part of an integrated circuit and may consist of one (1), two (2) or four (4) 'pixels' of equal areas of the pyroelectric material. Pairs of the sensor pixels may be wired as opposite inputs to a differential amplifier. In such a configuration, the PIR measurements cancel each other so that the average temperature of the field of view is removed from the electrical signal; an increase of IR energy across the entire sensor is self-cancelling and will not trigger the device. This allows the device to resist false indications of change in the event of being exposed to flashes of light or field-wide illumination. (Continuous bright light could still saturate the sensor materials and render the sensor unable to register further information.) At the same time, this differential arrangement minimizes common-mode interference, allowing the device to resist triggering due to nearby electric fields. However, a differential pair of sensors cannot measure temperature in that configuration and therefore this configuration is specialized for motion detectors, see below.

5.2. PIR-based motion detector
In a PIR-based motion detector (usually called a PID, for Passive Infrared Detector), the PIR sensor is typically mounted on a printed circuit board containing the necessary electronics required to interpret the signals from the pyroelectric sensor chip. The complete assembly is contained within a housing mounted in a location where the sensor can view the area to be monitored. Infrared energy is able to reach the pyroelectric sensor through the window because the plastic used is transparent to infrared radiation (but only translucent to visible light). This plastic sheet also prevents the intrusion of dust and/or insects from obscuring the sensor's field of view, and in the case of insects, from generating false alarms.

A few mechanisms have been used to focus the distant infrared energy onto the sensor surface. The window may have multiple Fresnel lenses molded into it.

	Multi-Fresnel lens type of PID

	

Typical residential and/or commercial PID with multi-Fresnel lens cover.
	

PID front cover only with point light source behind to show individual lenses.
	

PID with front cover removed showing location of pyroelectric sensor (green arrow).

Fig 5.2. Multi-Fresnel lens type of PID
Alternatively, some PIDs are manufactured with internal plastic, segmented parabolic mirrors to focus the infrared energy. Where mirrors are used, the plastic window cover has no Fresnel lenses molded into it. This filtering window may be used to limit the wavelengths to 8-14 micrometers which is closest to the infrared radiation emitted by humans (9.4 micrometers being the strongest).

The PID can be thought of as a kind of infrared camera that remembers the amount of infrared energy focused on its surface. Once power is applied to the PID, the electronics in the PID shortly settle into a quiescent state and energize a small relay. This relay controls a set of electrical contacts that are usually connected to the detection input of a burglar alarm control panel. If the amount of infrared energy focused on the pyroelectric sensor changes within a configured time period, the device will switch the state of the alarm relay. The alarm relay is typically a "normally closed (NC)" relay, also known as a "Form B" relay.

A person entering a monitored area is detected when the infrared energy emitted from the intruder's body is focused by a Fresnel lens or a mirror segment and overlaps a section on the chip that had previously been looking at some much cooler part of the protected area. That portion of the chip is now much warmer than when the intruder wasn't there. As the intruder moves, so does the hot spot on the surface of the chip. This moving hot spot causes the electronics connected to the chip to de-energize the relay, operating its contacts, thereby activating the detection input on the alarm control panel. Conversely, if an intruder were to try to defeat a PID, perhaps by holding some sort of thermal shield between himself and the PID, a corresponding 'cold' spot moving across the face of the chip will also cause the relay to de-energize — unless the thermal shield has the same temperature as the objects behind it.

Manufacturers recommend careful placement of their products to prevent false (non-intruder caused) alarms. They suggest mounting the PIDs in such a way that the PID cannot 'see' out of a window. Although the wavelength of infrared radiation to which the chips are sensitive does not penetrate glass very well, a strong infrared source such as from a vehicle headlight or sunlight reflecting from a vehicle window can overload the chip with enough infrared energy to fool the electronics and cause a false alarm. A person moving on the other side of the glass however would not be 'seen' by the PID.

They also recommended that the PID not be placed in such a position that an HVAC vent would blow hot or cold air onto the surface of the plastic which covers the housing's window. Although air has very low emissivity (emits very small amounts of infrared energy), the air blowing on the plastic window cover could change the plastic's temperature enough to, once again, fool the electronics.

PIDs come in many configurations for a wide variety of applications. The most common used in home security systems has numerous Fresnel lenses or mirror segments and has an effective range of about thirty feet. Some larger PIDs are made with single segment mirrors and can sense changes in infrared energy over one hundred feet away from the PID. There are also PIDs designed with reversible orientation mirrors which allow either broad coverage (110° wide) or very narrow 'curtain' coverage.

PIDs can have more than one internal sensing element so that, with the appropriate electronics and Fresnel lens, it can detect direction. Left to right, right to left, up or down and provide an appropriate output signal.
CHAPTER 6
POWER SUPPLY
6. POWER SUPPLY
6.1. Types of Power Supply

There are many types of power supply. Most are designed to convert high voltage AC mains electricity to a suitable low voltage supply for electronics circuits and other devices. A power supply can by broken down into a series of blocks, each of which performs a particular function.

For example a 5V regulated supply:

[image: image15.png]
Fig 6.1. block diagram of a regulated power supply system
Each of the blocks is described in more detail below:

· Transformer - steps down high voltage AC mains to low voltage AC.

· Rectifier - converts AC to DC, but the DC output is varying.

· Smoothing - smooths the DC from varying greatly to a small ripple.

· Regulator - eliminates ripple by setting DC output to a fixed voltage.

Power supplies made from these blocks are described below with a circuit diagram and a graph of their output:

· Transformer only

· Transformer + Rectifier

· Transformer + Rectifier + Smoothing

· Transformer + Rectifier + Smoothing + Regulator

6.2. Dual Supplies

Some electronic circuits require a power supply with positive and negative outputs as well as zero volts (0V). This is called a 'dual supply' because it is like two ordinary supplies connected together as shown in the diagram.

Dual supplies have three outputs, for example a ±9V supply has +9V, 0V and -9V outputs.

6.2.1. Transformer only
[image: image16.png]
Fig 6.2.1. diagram of transformer only
The low voltage AC output is suitable for lamps, heaters and special AC motors. It is not suitable for electronic circuits unless they include a rectifier and a smoothing capacitor.

6.2.2. Transformer + Rectifier

[image: image17.png]
Fig 6.2.2. diagram of transformer and rectifier
The varying DC output is suitable for lamps, heaters and standard motors. It is not suitable for electronic circuits unless they include a smoothing capacitor.

6.2.3. Transformer + Rectifier + Smoothing

[image: image18.png]
Fig 6.2.3. diagram of transformer and rectifier and smoothing

The smooth DC output has a small ripple. It is suitable for most electronic circuits.

6.2.4. Transformer + Rectifier + Smoothing + Regulator

[image: image19.png]
Fig 6.2.4. diagram of transformer and rectifier and smoothing and regulator
The regulated DC output is very smooth with no ripple. It is suitable for all electronic circuits.

6.3. Parts of power supply

6.3.1. Transformer

	[image: image20.png]

	Transformer
circuit symbol

	Fig 6.3.1. transformer

	

Transformers convert AC electricity from one voltage to another with little loss of power. Transformers work only with AC and this is one of the reasons why mains electricity is AC.

Step-up transformers increase voltage, step-down transformers reduce voltage. Most power supplies use a step-down transformer to reduce the dangerously high mains voltage (230V in UK) to a safer low voltage.

The input coil is called the primary and the output coil is called the secondary. There is no electrical connection between the two coils, instead they are linked by an alternating magnetic field created in the soft-iron core of the transformer. The two lines in the middle of the circuit symbol represent the core.

Transformers waste very little power so the power out is (almost) equal to the power in. Note that as voltage is stepped down current is stepped up.

The ratio of the number of turns on each coil, called the turns ratio, determines the ratio of the voltages. A step-down transformer has a large number of turns on its primary (input) coil which is connected to the high voltage mains supply, and a small number of turns on its secondary (output) coil to give a low output voltage.

	 turns ratio =
	Vp
	 =
	Np
	 and
	power out = power in

	
	Vs
	
	Ns
	
	Vs × Is = Vp × Ip

	Vp = primary (input) voltage
Np = number of turns on primary coil
Ip = primary (input) current
	
	Vs = secondary (output) voltage
Ns = number of turns on secondary coil
Is = secondary (output) current

6.3.2. Rectifier
There are several ways of connecting diodes to make a rectifier to convert AC to DC. The bridge rectifier is the most important and it produces full-wave varying DC. A full-wave rectifier can also be made from just two diodes if a centre-tap transformer is used, but this method is rarely used now that diodes are cheaper. A single diode can be used as a rectifier but it only uses the positive (+) parts of the AC wave to produce half-wave varying DC.
6.3.3. Bridge rectifier
A bridge rectifier can be made using four individual diodes, but it is also available in special packages containing the four diodes required. It is called a full-wave rectifier because it uses all the AC wave (both positive and negative sections). 1.4V is used up in the bridge rectifier because each diode uses 0.7V when conducting and there are always two diodes conducting, as shown in the diagram below. Bridge rectifiers are rated by the maximum current they can pass and the maximum reverse voltage they can withstand (this must be at least three times the supply RMS voltage so the rectifier can withstand the peak voltages). Please see the Diodes page for more details, including pictures of bridge rectifiers.
	
	[image: image21.png]

	Bridge rectifier
Alternate pairs of diodes conduct, changing over
the connections so the alternating directions of
AC are converted to the one direction of DC.
	Output: full-wave varying DC
(using all the AC wave)

Fig 6.3.2. bridge rectifier
Single diode rectifier
A single diode can be used as a rectifier but this produces half-wave varying DC which has gaps when the AC is negative. It is hard to smooth this sufficiently well to supply electronic circuits unless they require a very small current so the smoothing capacitor does not significantly discharge during the gaps. Please see the Diodes page for some examples of rectifier diodes.
	
	[image: image22.png]

	Single diode rectifier
	Output: half-wave varying DC
(using only half the AC wave)

Fig 6.3.3. Single diode rectifier

6.3.4. Smoothing

Smoothing is performed by a large value electrolytic capacitor connected across the DC supply to act as a reservoir, supplying current to the output when the varying DC voltage from the rectifier is falling. The diagram shows the unsmoothed varying DC (dotted line) and the smoothed DC (solid line). The capacitor charges quickly near the peak of the varying DC, and then discharges as it supplies current to the output.

[image: image23.png]
Fig 6.3.4. Smoothing
Note that smoothing significantly increases the average DC voltage to almost the peak value (1.4 × RMS value). For example 6V RMS AC is rectified to full wave DC of about 4.6V RMS (1.4V is lost in the bridge rectifier), with smoothing this increases to almost the peak value giving 1.4 × 4.6 = 6.4V smooth DC.

Smoothing is not perfect due to the capacitor voltage falling a little as it discharges, giving a small ripple voltage. For many circuits a ripple which is 10% of the supply voltage is satisfactory and the equation below gives the required value for the smoothing capacitor. A larger capacitor will give less ripple. The capacitor value must be doubled when smoothing half-wave DC.

	There is more information
about smoothing on the
Electronics in Meccano
website.

	 Smoothing capacitor for 10% ripple, C =
	5 × Io

	
	Vs × f

C = smoothing capacitance in farads (F)
Io = output current from the supply in amps (A)
Vs = supply voltage in volts (V), this is the peak value of the unsmoothed DC
f = frequency of the AC supply in hertz (Hz), 50Hz in the UK

6.3.5. Regulator
	[image: image24.png]
	[image: image25.jpg]

Voltage regulator ICs are available with fixed (typically 5, 12 and 15V) or variable output voltages. They are also rated by the maximum current they can pass. Negative voltage regulators are available, mainly for use in dual supplies. Most regulators include some automatic
 Fig 6.3.5. regulator
protection from excessive current ('overload protection') and overheating ('thermal protection').

Many of the fixed voltage regulator ICs have 3 leads and look like power transistors, such as the 7805 +5V 1A regulator shown on the right. They include a hole for attaching a heatsink if necessary.
	[image: image26.png]

	zener diode
a = anode, k = cathode

	[image: image27.png]

Zener diode regulator

For low current power supplies a simple voltage regulator can be made with a resistor and a zener diode connected in reverse as shown in the diagram. Zener diodes are rated by their breakdown voltage Vz and maximum power Pz (typically 400mW or 1.3W).

The resistor limits the current (like an LED resistor). The current through the resistor is constant, so when there is no output current all the current flows through the zener diode and its power rating Pz must be large enough to withstand this.

Fig 6.3.6. Zener diode regulator
Please see the Diodes page for more information about zener diodes.

Choosing a zener diode and resistor:

1. The zener voltage Vz is the output voltage required

2. The input voltage Vs must be a few volts greater than Vz
(this is to allow for small fluctuations in Vs due to ripple)

3. The maximum current Imax is the output current required plus 10%

4. The zener power Pz is determined by the maximum current: Pz > Vz × Imax

5. The resistor resistance: R = (Vs - Vz) / Imax

6. The resistor power rating: P > (Vs - Vz) × Imax
CHAPTER 7

RELAY
7. RELAY

Fig 7.1. relay
Automotive style miniature relay, dust cover removed

A relay is an electrical switch that opens and closes under the control of another electrical circuit. In the original form, the switch is operated by an electromagnet to open or close one or many sets of contacts. It was invented by Joseph Henry in 1835. Because a relay is able to control an output circuit of higher power than the input circuit, it can be considered to be, in a broad sense, a form of an electrical amplifier.

7.1. Basic design and operation

Fig 7.2. Simple electromechanical relay

Fig 7.3. Small relay as used in electronics

A simple electromagnetic relay, such as the one taken from a car in the first picture, is an adaptation of an electromagnet. It consists of a coil of wire surrounding a soft iron core, an iron yoke, which provides a low reluctance path for magnetic flux, a moveable iron armature, and a set, or sets, of contacts; two in the relay pictured. The armature is hinged to the yoke and mechanically linked to a moving contact or contacts. It is held in place by a spring so that when the relay is de-energised there is an air gap in the magnetic circuit. In this condition, one of the two sets of contacts in the relay pictured is closed, and the other set is open. Other relays may have more or fewer sets of contacts depending on their function. The relay in the picture also has a wire connecting the armature to the yoke. This ensures continuity of the circuit between the moving contacts on the armature, and the circuit track on the Printed Circuit Board (PCB) via the yoke, which is soldered to the PCB.

When an electric current is passed through the coil, the resulting magnetic field attracts the armature, and the consequent movement of the movable contact or contacts either makes or breaks a connection with a fixed contact. If the set of contacts was closed when the relay was de-energised, then the movement opens the contacts and breaks the connection, and vice versa if the contacts were open. When the current to the coil is switched off, the armature is returned by a force, approximately half as strong as the magnetic force, to its relaxed position. Usually this force is provided by a spring, but gravity is also used commonly in industrial motor starters. Most relays are manufactured to operate quickly. In a low voltage application, this is to reduce noise. In a high voltage or high current application, this is to reduce arcing.

If the coil is energized with DC, a diode is frequently installed across the coil, to dissipate the energy from the collapsing magnetic field at deactivation, which would otherwise generate a voltage spike dangerous to circuit components. Some automotive relays already include that diode inside the relay case. Alternatively a contact protection network, consisting of a capacitor and resistor in series, may absorb the surge. If the coil is designed to be energized with AC, a small copper ring can be crimped to the end of the solenoid. This "shading ring" creates a small out-of-phase current, which increases the minimum pull on the armature during the AC cycle.

By analogy with the functions of the original electromagnetic device, a solid-state relay is made with a thyristor or other solid-state switching device. To achieve electrical isolation an optocoupler can be used which is a light-emitting diode (LED) coupled with a photo transistor.
CHAPTER 8

KEIL SOFTWARE
8. KEIL SOFTWARE
8.1. Overview of KEIL CROSS C COMPILER

It is possible to create the source files in a text editor such as Notepad, run the Compiler on each C source file, specifying a list of controls, run the Assembler on each Assembler source file, specifying another list of controls, run either the Library Manager or Linker (again specifying a list of controls) and finally running the Object-HEX Converter to convert the Linker output file to an Intel Hex File. Once that has been completed the Hex File can be downloaded to the target hardware and debugged. Alternatively KEIL can be used to create source files; automatically compile, link and covert using options set with an easy to use user interface and finally simulate or perform debugging on the hardware with access to C variables and memory. Unless you have to use the tolls on the command line, the choice is clear. KEIL Greatly simplifies the process of creating and testing an embedded application.

8.2. Projects

The user of KEIL centers on “projects”. A project is a list of all the source files required to build a single application, all the tool options which specify exactly how to build the application, and – if required – how the application should be simulated. A project contains enough information to take a set of source files and generate exactly the binary code required for the application. Because of the high degree of flexibility required from the tools, there are many options that can be set to configure the tools to operate in a specific manner. It would be tedious to have to set these options up every time the application is being built; therefore they are stored in a project file. Loading the project file into KEIL informs KEIL which source files are required, where they are, and how to configure the tools in the correct way. KEIL can then execute each tool with the correct options. It is also possible to create new projects in KEIL. Source files are added to the project and the tool options are set as required. The project can then be saved to preserve the settings. The project also stores such things as which windows were left open in the simulator/debugger, so when a project is reloaded and the simulator or debugger started, all the desired windows are opened. KEIL project files have the extension

8.3. Simulator/Debugger

The simulator/ debugger in KEIL can perform a very detailed simulation of a micro controller along with external signals. It is possible to view the precise execution time of a single assembly instruction, or a single line of C code, all the way up to the entire application, simply by entering the crystal frequency. A window can be opened for each peripheral on the device, showing the state of the peripheral. This enables quick trouble shooting of mis-configured peripherals. Breakpoints may be set on either assembly instructions or lines of C code, and execution may be stepped through one instruction or C line at a time. The contents of all the memory areas may be viewed along with ability to find specific variables. In addition the registers may be viewed allowing a detailed view of what the microcontroller is doing at any point in time.

The Keil Software 8051 development tools listed below are the programs you use to compile your C code, assemble your assembler source files, link your program together, create HEX files, and debug your target program. µVision2 for Windows™ Integrated Development Environment: combines Project Management, Source Code Editing, and Program Debugging in one powerful environment.

· C51 ANSI Optimizing C Cross Compiler: creates relocatable object modules from your C source code,

· A51 Macro Assembler: creates relocatable object modules from your 8051 assembler source code,

· BL51 Linker/Locator: combines relocatable object modules created by the compiler and assembler into the final absolute object module,

· LIB51 Library Manager: combines object modules into a library, which may be used by the linker,

· OH51 Object-HEX Converter: creates Intel HEX files from absolute object modules.

CHAPTER 9

CONCLUSION

9. CONCLUSION

 This project has been successfully designed and implemented for the “ENERGY CONSERVATION SYSTEM USING PIR”. It has been developed by integrating features of all the hardware components used. Presence of every module has been reasoned out and placed carefully thus contributing to the best working of the unit. Secondly, using highly advanced IC’s and with the help of growing technology the project has been successfully implemented and tested.
FUTURE SCOPE
 This particular “ENERGY CONSERVATION SYSTEM USING PIR” is designed for hotel management application. This can also be applied to detects the heat (infrared) emitted naturally by humans and animals and home applications in future.
APPENDIX

10. BIBLIOGRAPHY
· The 8051 Microcontroller and Embedded Systems

 - M.A Mazidi & J.G Mazidi

· The Microcontroller Idea Book

 - John Axelson
· The Microcontroller Application Cookbook

 - Matt Gilliland
· Digital design

 - Morris Mano

· Linear integrated circuits

 - Roy choudary

TIMER 0

ON-CHIP

FLASH

TIMER 1

COUNTER

INPUTS

EXTERNAL

INTERRUPTS

ON-CHIP

RAM

SOURCE

RELAY

PIR SENSOR

POWER SUPPLY

LCD DISPLAY

 MICROCONTROLLER

ON-CHIP

RAM

INTERRUPT

CONTROL

CPU

OSC

 BUS

CONTROL

SERIL

PORT

 4 I/O PORTS

RXD

TXD

PO P2 P1 P3

NC

EXTERIOR OSCILLATOR

SIGNAL

XTAL2

XTAL1

GND

PROGRAM MEMORY

DATA MEMORY

FFFFH

FFFFH

External

EXTERNAL

INTERNAL

FF

EA = 0

External

EA = 1

External

00

0000

PSEN

 RD WR

(0033)H

002BH

0023H

001BH

0013H

000BH

0003H

0000H

8 bytes

INTERRUPT LOCATIONS

RESET

ACCESSIBLE BY INDIRECT ADDRESSING ONLY.

ACCESSIBLE BY DIRECT ADDRESSING ONLY

ACCESSIBLE BY INDIRECT ADDRESSING AND DIRECT ADDRESSING

Fig.3.3.2. Internal Data Memory.

Upper 128

Lower 128

80H

7FH

00

FFH

FFH

80H

Special register function

Ports

Status and control bits

Timers

Registers

Stack pointer

Accumulator

(etc)

PAGE
67

