ROUTING WITH SECURITY IN MOBILE ADHOC NETWORKS

By

A. SATHISH KUMAR
Roll No. 0701MCA0081 Reg. No: 67107100255

A PROJECT REPORT

Submitted to the

FACULTY OF INFORMATION AND COMMUNICATION ENGINEERING

in partial fulfillment of the requirements

for the award of the degree

of

MASTER OF COMPUTER APPLICATIONS

[image: image31.png]ample TextFile

CENTRE FOR DISTANCE EDUCATION

ANNA UNIVERSITY CHENNAI

CHENNAI 600 025

MARCH, 2010

BONAFIDE CERTIFICATE

Certified that the Project report titled “ROUTING WITH SECURITY IN MOBILE ADHOC NETWORKS” is the bonafide work of “Mr. A. Sathish Kumar” who carried out the work under my supervision. Certified further, that to the best of my knowledge the work reported herein does not form part of thesis or dissertation on the basis of which a degree or award has conferred on an earlier occasion on this or any other candidate.

Signature of student

Signature of Guide

Name : A. SATHISH KUMAR

Name : Dr. S. SENDHILKUMAR
Roll No. : 0701MCA0081

Designation : Senior Lecturer
Reg. No. : 67107100255

Address : Dept of Computer Science

 Anna University

 Chennai – 600 025
Signature of Project-in-charge
 Name : Dr. G.V UMA
 Designation : Assistant Professor

 Address : Dept of Computer Science

 Anna University

 Chennai – 600 025
Certificate of Viva-voce-Examination

This is to certify that Mr. A. Sathish Kumar (Roll No 0701MCA0081; Register No 67107100255) has been subjected to viva-voce-Examination on ………………….at ……………. at the study centre College of Engineering, Anna University, Chennai- 25.

Internal Examiner

External Examiner

Name:

Name:

Designation:

Designation:

Address:

Address:

Coordinator Study Centre

Name:

Designation:

Address: Anna University,

 Chennai 600025

Date:

ACKNOWLEDGEMENT

The satisfaction that accompanies the successful completion of any task would be incomplete without mentioning the names of people who made it possible, whose constant guidance and encouragement crowns all efforts with success.

I would like to express my sincere thanks to Director, Centre for distance education, Anna University for having permitted me to undertake this project.

I convey my earnest thanks to Dr. S. Sendhilkumar, Senior Lecturer, Department of Computer Science, Anna University for his invaluable guidance, support and suggestions throughout the course of this project work.

I express my sincere thanks to the review committee members Dr. G.V Uma, Assistant Professor, Department of Computer Science and Engineering, Anna University, Dr. A. Kannan, Professor, Department of Computer Science and Engineering, Anna University and Dr. S. Swamynathan, Assistant Professor, Department of Computer Science and Engineering, Anna University for their suggestions and constructive criticisms during the course of my project.
ABSTRACT

The project work entitled as “Routing with Security in Mobile Ad Hoc Networks” and designed using Java Swing along with Java Application Programming Interfaces including Microsoft SQL Server as database. Mobile ad hoc networks remove the dependence on a fixed network infrastructure by treating every available node as an intermediate switch, thereby extending the range of nodes well beyond that of their base transceivers. Route Discovery or Creation and Route Maintenance are the two main mechanisms involved. Dynamic Source Routing algorithm concepts are involved here.
In Route Discovery every node maintains a file for identifying its neighbor node and discovers the path between the source and the destination. Once the route is discovered the data is being set along the same path between the source and the destination. In Route Maintenance the path between the source and the destination is maintained, as long as the data is being transferred. Each node attaches its address with the source while transfer between the source and the destination. At the destination, the node receives the entire path that it has taken to reach the destination. During data transfer, the security is employed by implementing the path randomizing which also finds a new path which has not been used for any previous data transfer.

¾¢ð¼ôÀ½¢ ÍÕì¸õ
þó¾ ¾¢ð¼ò¾¢ý ¦ÀÂ÷ "¦ºøÄ¢¼ô§Àº¢ ¬¼¡ì Å¨ÄôÀ¢ýÉø¸ÙìÌ À¡¨¾Ô¼ý À¡Ð¸¡ôÒ". þ¨¾ ƒ¡Å¡ ŠÅ¢íì ÁüÚõ þ¾Ã ƒ¡Å¡ «ôÄ¢§¸„ý ô¦Ã¡ìÃ¡Á¢íì þý¼÷·§ÀŠ ãÄõ ÅÊÅ¨Áì¸Àð¼Ð.

¬¼¡ì Å¨ÄôÀ¢ýÉø¸û ±ýÀÐ þ¨½ôÒ¸û ¯À§Â¡¸ôÀÎò¾¡¾ ¦ºøÄ¢¼ô§Àº¢ ¸ÕÅ¢¸Ç¢ý þ¨½ôÒ Üð¼½¢ ¬Ìõ. þÐ ´Õ ¾ü¸¡Ä¢¸Á¡É Å¨ÄôÀ¢ýÉø ¬Ìõ. þùÅ¨Äô À¢ýÉÄ¢ø ¾¸Åø ¦ºýÈ¨¼Ôõ §¿Ãõ, «ó¾ ¾¸ÅÄ¢ý «Ç¨Å ¦À¡Õò§¾ ¸½¢ììôÀÎ¸¢ÈÐ. þó¾ ¾¢ð¼¾¢ø À¡¨¾ «¨Áò¾ø ÁüÚõ À¡¨¾ ÀÃ¡Á¡¢ò¾ø ¬¸¢Â þÃñÎ Ó¨È¨Â ÀÂýÀÎò¾¢Ôû§Ç¡õ. À¡¨¾ «¨Áò¾ø ÀÌ¾¢Â¢ø ´ù¦Å¡Õ §¿¡Îõ ¾ÉìÌ «ÎòÐ ¯ûÇ §¿¡Êý ¾¸Åø¸¨Ç ´Õ §¸¡ô¨ÀÂ¢ø §ºÁ¢òÐ ¨Åò¾¢ÕìÌõ. þ¾ý ãÄõ «ÛÒ¿÷ - ¦ÀÕ¿÷ þ¨¼§Â À¡¨¾ «¨Áì¸ÀÎõ. þó¾ À¡¨¾ ÌÕ¸¢Â À¡¨¾Â¡¸ þÕìÌõ. þ¾ü¸¡¸ „¡ð¼ŠðÎ À¡¨¾ Ó¨È¸¨Ç ÀÂýÀÎò¾¢Ôû§Ç¡õ. À¢ÈÌ ¸ñÎÀ¢Êì¸ôÀð¼ À¡¨¾¨Â ÀÃ¡Á¡¢òÐ Áü¦È¡Õ ÀÌ¾¢. À¡¨¾ ÀÃ¡Á¡¢ôÒ ÀÌ¾¢Â¢ø, ¾¸Åø À¡¢Á¡È¢ì ¦¸¡ûÙõ Å¨Ã, «ÛÒ¿÷ - ¦ÀÕ¿÷ þ¨¼§Â À¡¨¾¨Â ÀÃ¡Á¡¢ô§À¡õ. ´ù¦Å¡Õ §¿¡Îõ ¾ÉÐ Å¢ÀÃõ ÁüÚõ «ÛÒ¿÷ Å¢ÀÃò¨¾ ´ýÈ¡¸ þ¨½òÐ ¦ÀÕ¿ÕìÌ «ÛôÒõ þ¾É¡ø ¦ÀÕ¿ÕìÌ ÓØôÀ¡¨¾ ¦¾¡¢Â ÅÕõ. ¾¸Åø «ÛôÒõ ¦À¡ØÐ, «ÛÒ¿÷ ¨¼ÉÁ¢ì §º¡÷Š ÃùÊíì Ó¨È¸¨Ç ÀÂýÀÎò¾¢ þ¨¼ôÀð¼ §¿¡Î¸ÙìÌ ¦¾¡¢Â¡Á§Ä Á¡üÚ À¡¨¾Â¢ø ¾¸Åø¸¨Ç ¦ÀÕ¿ÕìÌ «ÛôÒõ Ó¨ÈÂ¢¨É ¦ºÂøÀÎò¾¢Ôû¦Ç¡õ.
TABLE OF CONTENTS

CHAPTER NO.

TITLE

PAGE NO.

ACKNOWLEDGEMENT………………………………………....iv

ABSTRACT…………………………………………………………v

TAMIL ABSTRACT…………………………….............................vi

LIST OF FIGURES………………………………………………...ix

LIST OF TABLES………………………………………………….ix

LIST OF ABBREVIATIONS……………………………………...ix
1

INTRODUCTION

1.1
Synopsis………………………………………………..1

1.2
MANETS Concept……………………………………..1

1.3
Protocol Description………………………………........2

1.4
Literature Survey……………………………………….3
2

ANALYSIS

2.1
Project Analysis…………………………………….…..5
2.2
System Study……………………………………….…..6

2.2.1
Existing System…………………………….…..6

2.2.2
Proposed System…………………………….….6

2.3
Requirement Analysis……………………………….….7

2.4
Requirement Specifications………………………….…8

2.4.1
Software Specification……………………….…8

2.4.2
 Hardware Specification………………………...8

2.5.
Application Overview………………………………......9

2.6
System Analysis………………………………………..13
3

SYSTEM DESIGN AND ARCHITECTURE

3.1
Architecture Diagram...………………………………..14
3.2
Data Flow Diagram…………………………………....15
3.3
Flow Chart ……………………………….....................16

3.4
Use-Case Diagram…………………………………..…18

3.5
Sequence Diagram………………………………….….20

3.6
Collaboration Diagram…………………………….…..23

3.7
Table Design……………………………………….…..26
4

IMPLEMENTATION

4.1
Modules………………………………………………...28

4.2
Modules Description…………………………………...28
5

TESTING

5.1
Testing Methods………………………………………..30

5.2
System Performance……………………………………33
6

SAMPLE CODE………………………………………………………34
7

OUTPUT RESULTS………………………………………………….51
8

CONCLUSION
8.1
Summary………………………………………………..58
8.2
Future Enhancement……………………………………58
9

BIBLIOGRAPHY……………………………………………………..59
10

APPENDIX…………………………………………………………….60
LIST OF FIGURES

	Figure
	Description
	Page No.

	2.1
	An Ad Hoc Network with Three Wireless Mobile Hosts
	9

	2.2
	Route Discovery example
	11

	2.3
	Route Maintenance example
	12

	3.1
	Architecture Diagram
	14

	3.2
	Data Flow Diagram
	15

	3.3
	Flow Chart
	16

	3.4
	Use Case Diagram
	18

	3.5
	Sequence Diagram
	20

	3.6
	Collaboration Diagram
	23

LIST OF TABLES

	Table
	Description
	Page No.

	3.7.1
	Connection Table
	26

	3.7.2
	NodeInformation
	26

	3.7.3
	pda
	27

	3.7.4
	securepath
	27

	3.7.5
	possiblepath
	27

LIST OF ABBREVIATIONS

	S. No
	Acronyms
	Comments

	1
	DSR
	Dynamic Source Routing

	2
	RREQ
	Route Request Packet

	3
	RREP
	Route Reply Packet

	4
	RERR
	Route Error Packet

CHAPTER 1

INTRODUCTION

1.1 SYNOPSIS

Mobile ad hoc networks remove this dependence on a fixed network infrastructure by treating every available mobile node as an intermediate switch, thereby extending the range of mobile nodes well beyond that of their base transceivers. Manets are also useful for disaster management. Route Discovery and Route Maintenance are the two main mechanisms involved. Four Manets algorithm concepts are involved here. In Route Discovery every node maintains a file for identifying its neighbor node and discovers the path between the source and the destination. [5] Once the route is discovered the data is being sent along the same path between the source and the destination. In Route Maintenance the path between the source and the destination is maintained, as long as the data is being transferred. Each node attaches its address with the source while transfer between the source and the destination. At the destination, the node receives the entire path that it has taken to reach between the source and the destination.

1.2 MANETS Concept

Suppose that we want to easily and efficiently connect two office floors using short-range wireless communication devices. Every employee has one of these mobile devices, and some fixed devices—computers, printers, and so on—have the same capability. We could connect these devices to the existing wired infrastructure using access points, but this option offers limited mobility, adds load on the wired network, and relies on existing protocols for wired communication. Another possibility is to build a network of dedicated and mutually connected base stations that enable cellular communication, but this is expensive with respect to time, installation, and maintenance.

The best solution is to create a mobile ad hoc network using surrounding electronic devices as intermediate switches when they are idle and if they are capable of performing this task. For example, the packet from one device can hop to the mobile phone of a person passing through the corridor in front of the office, then from the mobile phone to the shared laser printer in the next office, then to someone’s digital wrist watch on the floor below, then from the wristwatch to the coffee machine, and, finally, from the coffee machine to its ultimate destination—say, another colleague’s device or computer. Manets are also useful for disaster management. A communications infrastructure is designed to survive common short-term problems, such as overloading, but not to sustain major physical damage. In most cases, the collapse of a single system will cause many dependent devices to fail. If a fire, earthquake, or other natural catastrophe disables a subset of base stations, every mobile phone within range of those stations automatically becomes unreachable. In such situations, rescue workers can use the nodes in manets to create a network “on the fly.” Small-scale manets are also effective for emergency search and rescue, battlefield surveillance, and other communication applications in hazardous environments.[6] For example, robots or autonomous sensors deployed in an area inaccessible to humans could use simple manet routing protocols to transmit data to a control center. Even if many robots or sensors are disabled or destroyed, the remaining ones would be able to reconfigure and continue transmitting information.

1.3
PROTOCOL DESCRIPTION

1.3.1 DYNAMIC SOURCE ROUTING

DSR1 is a fairly simple algorithm based on the concept of source routing, in which a sending node must provide the sequence of all nodes through which a packet will travel. Each node maintains its own route cache, essentially a routing table, of these addresses. Source nodes determine routes dynamically and only as needed; there are no periodical broadcasts from routers. A source node that wants to send a packet first checks its route cache. If there is a valid entry for the destination, the node sends the packet using that route; if no valid route is available in the route cache, the source node initiates the route discovery process by sending a special route request (RREQ) packet to all neighboring nodes. The RREQ propagates through the network, collecting the addresses of all nodes visited, until it reaches the destination node or an intermediate node with a valid route to the destination node.

This node in turn initiates the route reply process by sending a special route reply (RREP) packet to the originating node announcing the newly discovered route. The destination node can accomplish this using inverse routing or by initiating the route discovery process backwards. The DSR algorithm also includes a route maintenance feature implemented via a hop-to-hop or end-to-end acknowledgement mechanism; the former includes error checking at each hop, while the latter checks for errors only on the sending and receiving sides. When the host encounters a broken link, it sends a route error (RERR) packet. Dynamic source routing is easy to implement, can work with asymmetric links, and involves no overhead when there are no changes in the network. The protocol can also easily be improved to support multiple routes to the same destination. DSR’s main drawback is the large bandwidth overhead inherent in source routing. Because each route cache collects the addresses of all visited nodes, RREQ packets can become huge as they propagate through the network. Routing information can also increase enough to exceed the accompanying message’s usefulness [4]. These problems limit the network’s acceptable diameter and therefore its scalability.

1.4
LITERATURE SURVEY

1.4.1 GOAL OF PROJECT

Different from the past work on the designs of cryptography algorithms and system infrastructures, we will propose a dynamic routing algorithm that could randomize delivery paths for data transmission. The algorithm is easy to implement and compatible with popular routing protocols, such as the Routing Information Protocol in wired networks and Destination-Sequenced Distance Vector protocol in wireless networks, without introducing extra control messages. An analytic study on the proposed algorithm is presented, and a series of simulation experiments are conducted to verify the analytic results and to show the capability of the proposed algorithm.

1.4.2
ANALYSIS ON EXISTING NETWORKS

Existing work on security-enhanced data transmission includes the designs of cryptography algorithms and system infrastructures and security enhanced routing methods. Their common objectives are often to defeat various threats over the Internet, including eavesdropping, spoofing, session hijacking. so the data are easily affect by hackers.

1.4.3
IDEA ON PROPOSED SYSTEM

In proposed system Dynamic Routing algorithm that could randomize delivery paths for data transmission. It is easy to implement and compatible with popular routing protocols, such as the Routing Information Protocol in wired networks and Destination-Sequenced Distance Vector protocol in wireless networks, without introducing extra control messages. This is a secure routing protocol to improve the security of end-to-end data transmission based on multiple path deliveries. So the data are securely transmitted through network path.

CHAPTER 2

ANALYSIS

2.1 PROJECT ANALYSIS

The project analysis is carried out to understand the function, behavior, performance and the scope of the project.

CONTEXT

This project mainly deals with providing the secure transmissions of the data either in the form of message or files from the source to the destination by analyzing the shortest path between them.

OBJECTIVES

Mobile ad-hoc network is a relatively new innovation in the field of wireless technology. These types of networks operate in the absence of fixed infrastructure, which makes them easy to deploy at any place and at any time. The absence of any fixed infrastructure in mobile ad-hoc networks makes it difficult to utilize the existing techniques for network services, and poses number of various challenges in the area. Typical challenges include routing, bandwidth constraints, security and power.

FUNCTION AND PERFORMANCE

Users within the network want to communicate with each other in a secured manner. Communicating through infrastructure network will lead to the loss of the information due to traffic and congestion. So, current mobile ad-hoc networks are used to communicate with each other. They find the shortest path between the source and the destination and maintain the path till the data transfer is made. They transfer the message in a secure manner by employing the randomized path using DSR algorithm.

2.2
SYSTEM STUDY

2.2.1
EXISTING SYSTEM

The existing system is under the LAN environment i.e., infrastructure network or the connection oriented. While transferring the data between the source and the destination, any intruders or hackers can decrypt the message by knowing the key and the decryption algorithm.

DISADVANTAGE OF EXISTING SYSTEM

· Traffic overflow in the infrastructure network

· No secure transmission of the information due to hackers interrupts in the intermediate nodes.

· Congestion occurs in transmission of data

· Loss in the information if the cable gets lost due to environmental impacts.

2.2.2 PROPOSED SYSTEM

Since in the connection oriented, traffic and congestion occurs the proposed system the traffic and congestion does not occur as peer to peer communication is seen.

ADVANTAGE OF PROPOSED SYSTEM

· No loss of information due to cable wires.

· Can access information and services regardless of geographic position

· Easy installation and upgrade.

· Low cost and maintenance.

· More flexibility.

· The ability to employ new and efficient routing protocols for wireless communication.

· Useful for disaster management.

2.3 REQUIREMENT ANALYSIS

The requirement analysis is made on the project to understand the requirements and organizes them into related subsets; explores each requirement in relationship to others; examines requirement for consistency, omissions and ambiguity.

2.3.1 PROBLEM DEFINITION

In infrastructure network the communication between the source and the destination is connection oriented, so there is continuous path between the source and the destination. Hence traffic and congestion takes place while transmitting the data between the source and the destination.

2.3.2 PROBLEM DESCRIPTION

In Routing and security is an on demand routing protocol in which the routes are found only when required. By route discovery we identify and establish route between hosts. By discovering the shortest path between them the data transfer is made. By route maintenance, we supervise the data transfer between the two nodes. For secure transmission the route path is dynamically changed.

2.4
REQUIREMENT SPECIFICATIONS

2.4.1
SOFTWARE SPECIFICATION

· Operating System

: Microsoft Windows 2000Windows XP

· Programming Language
: Java Swing, J2SDK1.5 and Java APIs

· Database

: MS SQL Server 2000

2.4.2
HARDWARE SPECIFICATION

· Processor

: Intel Pentium III Processor, 550, 650 MHz

· Memory

: 512MB RAM

· Hard disk

: 10GB Hard Disk.

· Other

: Wi-fi Router

2.5 APPLICATION OVERVIEW
Mobile devices, such as laptop computers, Pocket PCs, cellular phones, etc., are now easily affordable, and are becoming more popular in everyday life [1, 2]. At the same time, network connectivity options for mobile hosts have grown tremendously, as the support for wireless networking products based on radio and infrared has been greatly increased over the past few years.

 With the availability of mobile computing devices, mobile users have a natural tendency to share information between them. Often mobile users want to have a meeting, even though it is not planned in advance and there is no Internet connection available. For instance, there may be situations that employees find themselves together in a meeting room, or friends or business acquaintances may encounter each other in an airport terminal, or some scholars and researchers may meet in a hotel ballroom for a conference or workshop. In those situations, requiring each user to connect to a wide-area network to communicate with each other may not be convenient or practical because of the lack of Internet connectivity or because of the time or cost required for such a connection.
 A network of mobile hosts without an infrastructure is known as an ad hoc network [2]. According to Johnson [1], an ad hoc network is defined as follows:

"An ad hoc network is a collection of wireless mobile hosts forming a temporary network without the aid of any centralized administration or standard support services regularly available on the wide-area network to which the hosts may normally be connected." [image: image2.png]Figure 1.1: An Ad Hoc Network with Three Wireless Mobile Hosts.

Figure 2.1
An Ad Hoc Network with Three Wireless Mobile Hosts

In general, a multi-hop routing protocol is needed in a mobile ad hoc network, because two hosts wishing to exchange packets may not be able to communicate directly with each other because they are out of radio range [1]. Johnson illustrated a simple ad hoc network of three mobile hosts using wireless network interfaces, as shown in Figure 1.1 [1]. Host C is not included within the wireless transmission range of host A, as indicated by the circle around A. Also, host A is not within the wireless transmission range of host C. If A and C want to communicate with each other by exchanging packets, they may ask host B to forward packets for them because host B is within the overlapped wireless transmission range between host A and host C. In any practical ad hoc network, the maximum number of network hops for a packet to travel from one mobile host to another mobile host may be small but is likely to be greater than one as demonstrated in Figure 1.1. In a real ad hoc network, the routing problem may be even more complex than this example shown, because wireless transmission has inherent non-uniform propagation features and any or all of the hosts associated with the network may move at any time [1].

Basic DSR Route Discovery

When some node S originates a new packet destined to some other node D, it places in the header of the packet a source route giving the sequence of hops that the packet should follow on its way to D. Normally, S will obtain a suitable source route by searching its Route Cache of routes previously learned, but if no route is found in its cache, it will initiate the Route Discovery protocol to dynamically find a new route to D. In this case, we call S the initiator and D the target of the Route Discovery. For example, Figure 2.2 illustrates an example Route Discovery, in which a node A is attempting to discover a route to node E. To initiate the Route Discovery, A transmits a ROUTE REQUEST message as a single local broadcast packet, which is received by (approximately) all nodes currently within wireless transmission range of A. Each ROUTE REQUEST message identifies the initiator and target of the Route Discovery, and also contains a unique request id, determined by the initiator of the REQUEST. Each ROUTE REQUEST also contains a record listing the address of each intermediate node through which this particular copy of the ROUTE REQUEST message has been forwarded. This route record is initialized to an empty list by the initiator of the Route Discovery.

[image: image3.png]Figure 1: Route Discovery example: Node A is the initiator. and node E is the target.

‘When another node receives a ROUTE REQUEST. if it is the target of the Route Discovery. it returns
a ROUTE REPLY message to the initiator of the Route Discovery, giving a copy of the accumulated route
record from the ROUTE REQUEST: when the initiator receives this ROUTE REPLY. it caches this route in its
Route Cache for use in sending subsequent packets to this destination. Otherwise. if this node receiving the
ROUTE REQUEST has recently seen another ROUTE REQUEST message from this initiator bearing this same
request id. or if it finds that its own address is already listed in the route record in the ROUTE REQUEST
message. it discards the REQUEST. Otherwise. this node appends its own address to the route record in the
ROUTE REQUEST message and propagates it by transmitting it as a local broadcast packet (with the same
request id).

In returning the ROUTE REPLY to the initiator of the Route Discovery. such as node E replying back to A
in Figure 1, node E will typically examine its own Route Cache for a route back to A, and if found. will use
it for the source route for delivery of the packet containing the ROUTE REPLY. Otherwise, E may perform its
own Route Discovery for target node A. but to avoid possible infinite recursion of Route Discoveries. it must
piggyback this ROUTE REPLY on its own ROUTE REQUEST message for A. It is also possible to piggyback
other emall data nackete <tich a< a TCP SYN packet [Po<tel 192111 on a ROUTE REOITEST ncine thic <came

Figure 2.2
Route Discovery example
Node A is the initiator, and node E is the target.

When another node receives a ROUTE REQUEST, if it is the target of the Route Discovery, it returns a ROUTE REPLY message to the initiator of the Route Discovery, giving a copy of the accumulated route record from the ROUTE REQUEST; when the initiator receives this ROUTE REPLY, it caches this route in its Route Cache for use in sending subsequent packets to this destination. Otherwise, if this node receiving the ROUTE REQUEST has recently seen another ROUTE REQUEST message from this initiator bearing this same request id, or if it finds that its own address is already listed in the route record in the ROUTE REQUEST message, it discards the REQUEST. Otherwise, this node appends its own address to the route record in the ROUTE REQUEST message and propagates it by transmitting it as a local broadcast packet
Basic DSR Route Maintenance

When originating or forwarding a packet using a source route, each node transmitting the packet is responsible for confirming that the packet has been received by the next hop along the source route; the packet is retransmitted (up to a maximum number of attempts) until this confirmation of receipt is received. For example, in the situation illustrated in Figure 2, node A has originated a packet for E using a source route through intermediate nodes B, C, and D. In this case, node A is responsible for receipt of the packet at B, node B is responsible for receipt at C, node C is responsible for receipt at D, and node D is responsible for receipt finally at the destination E. This confirmation of receipt in many cases may be provided at no cost to DSR, either as an existing standard part of the MAC protocol in use, or by a passive acknowledgement [1]. If neither of these confirmation mechanisms are available, the node transmitting the packet may set a bit in the packet’s header to request a DSR-specific software acknowledgement be returned by the next hop; this software acknowledgement will normally be transmitted directly to the sending node, but if the link between these two nodes is uni-directional, this software acknowledgement may travel over a different, multi-hop path. If the packet is retransmitted by some hop the maximum number of times and no receipt confirmation is received, this node returns a ROUTE ERROR message to the original sender of the packet, identifying the link over which the packet could not be forwarded.
[image: image4.png]e =] [E]

Figure 2: Route Maintenance example: Node C is unable to forward a packet from A to E over its link to
next hop D.

reachable from this node. In order to reduce the overhead from such Route Discoveries, we use exponential
back-off to limit the rate at which new Route Discoveries may be initiated by any node for the same target.
If the node attempts to send additional data packets to this same node more frequently than this limit. the
subsequent packets should be buffered in the Send Buffer until a ROUTE REPLY is received. but the node must
not initiate a new Route Discovery until the minimum allowable interval between new Route Discoveries
for this target has been reached. This limitation on the maximum rate of Route Discoveries for the same
target is similar to the mechanism required by Internet nodes to limit the rate at which ARP REQUESTS are
sent for any single target IP address [Braden 1989].

3.3 Basic DSR Route Maintenance

‘When originating or forwarding a packet using a source route, each node transmitting the packet is responsible
for confirming that the packet has been received by the next hop along the source route: the packet is
retransmitted (up to a maximum number of attempts) until this confirmation of receipt is received. For
example. in the situation illustrated in Figure 2. node A has originated a packet for E using a source route
through intermediate nodes B. C. and D. In this case. node A is responsible for receipt of the packet at B.
node B i< reenoncible for receint at C node C i< resnon<ible for receint at D and node D i< resnon<ible for

Figure 2.3
Route Maintenance Example

Node C is unable to forward a packet form A to E over its link to next hop D
For example, in Figure 2.3, if C is unable to deliver the packet to the next hop D, then C returns a ROUTE ERROR to A, stating that the link from C to D is currently “broken.” Node A then removes this broken link from its cache; any retransmission of the original packet is a function for upper layer protocols such as TCP. For sending such a retransmission or other packets to this same destination E, if A has in its Route Cache another route to E, it can send the packet using the new route immediately. Otherwise, it may perform a new Route Discovery for this target.

2.6
SYSTEM ANALYSIS

2.6.1
FEASIBILITY STUDY

Feasibility study deals with analyzing the worthiness of the problem and the possibility of solving the problem. These types of studies were conducted and the result was satisfactory. The feasibility analyzed were,

· Technical Feasibility

The technical feasibility centers around an existing computer system (hardware and software) and to what extent it can support the proposed system. . The technology should be within the state art, where the defect can be reduced to a level matching the application.

· Behavioral Feasibility

The proposed system is not totally new form of the existing system to cause discomfort to the client. The proposed system is user friendly and has improved the throughput.

· Economic Feasibility

As stated earlier the computer center has required the resources functioning well and therefore there is no new requirement for any new additional things hence economically feasible. The system to be developed will be supported by the existing environment with Internet Connection.

CHAPTER 3

SYSTEM DESIGN

3.1
ARCHITECTURE DIAGRAM

[image: image5]
3.2 DATA FLOW DIAGRAM

[image: image6]
3.3
FLOW CHART

3.3.1
PROCESS SEND ROUTE REQUEST

[image: image7]
3.3.2
PROCESS ROUTE REQUEST

[image: image8]
3.3.3
PROCESS ROUTE REPLY

[image: image9]
3.3.4
PROCESS DATA PACKETS

[image: image10]
3.4
USE CASE DIAGRAM

3.4.1
Use Case for Administrator
[image: image11.emf]Create Node

ADMINISTRATOR

Create Link

Login to the

application

System UseCase :

ADMIN interacting with the Network System

s
3.4.2
Use Case for Sender

[image: image12.emf]Selects the Node

Selects the File

Login to the

application

System UseCase :

SENDER interacting with the Network Routing System

SENDER

Sends the Data to selected Node

3.4.3
Use Case for Receiver
[image: image13.emf]Receives the Data

Login to the

application

System UseCase :

RECEIVER interacting with the Network Routing System

RECEIVER

3.5
SEQUENCE DIAGRAM

3.5.1
Sequence for Admin OPERATION
[image: image14.emf]TopologyScreen NodeCreation LinkCreation Exit

1: createNode

2:

3: createLink

4:

5: logout

Additional Notes:
1: creating a new Node

2: successful creation of Node

3: creating link between Nodes

4: successful creation of Link

5: logging out from application

3.5.2 Sequence for User Send Operation

[image: image15.emf]Login User Screen Message

Selection

NodeSelection Data

Transmission

Exit

1: userLogin

2: selectFileMessage

3:

4: selectNode

5:

6: sendData

7: viewPathDetails

8:

9: logout

Additional Notes:
1: successful User Login

2: selecting a file message

3: successful selection of file message

4: selecting a Destination Node

5: successful selection of Destination Node

6: sending Data to Destination Node

7: viewing the transmission path details

8: successful transmission of data

9: logging out from application

3.5.3
Sequence for User Receive Operation
[image: image16.emf]Login UserScreen DataReceival Exit

1: userLogin

2: receiveData

3: viewMessage

4:

5: Logout

Additional Notes:
1: successful User Login

2: receive the Data sent from the Source

3: view the received message

4: successful receive of message

5: logging out from application

3.6
COLLABORATION DIAGRAM

3.6.1 Collaboration Diagram for Admin Operation

[image: image17]
3.6.2
Collaboration Diagram for User Send Operation

[image: image18.emf]NodeSelection

Data

Transmission

User

Screen

Exit

4: selectNode

5:

6: sendData

7: viewPathDetails

8:

9: logout

Login

1: userLogin

Message

Selection

2: selectFileMessage

3:

3.6.3
Collaboration Diagram for User Receive Operation

[image: image19.emf]Login

UserScreen

DataReceive

Exit

3: viewMessage

1: userLogin

2: receiveData

4:

5: Logout

3.7 TABLE DESIGN
A table is an allocation of space in the database that can contain objects. The database schema design is independent of any Relational Database Management System (RDBMS) and hence it is a logical model.

Table 1: CONNECTION

Table 3.7.1 Connection Table

	S. No
	Field Name
	Data type
	Constraints

	1
	NodeName
	VARCHAR(20)
	NOT NULL

	2
	Neighbour
	VARCHAR(20)
	

	3
	Cost
	INT
	

	4
	Delay
	INT
	

Table 2: NODEINFORMATION
Table 3.7.2 NodeInformation Table

	S. No
	Field Name
	Data type
	Constraints

	1
	NodeName
	VARCHAR(20)
	NOT NULL

	2
	PortNo
	INT
	

	3
	SystemName
	VARCHAR(20)
	NOT NULL

	4
	Status
	VARCHAR(20)
	NOT NULL

Table 3: PDA
Table 3.7.3 Pda Table

	S. No
	Field Name
	Data type
	Constraints

	1
	Path
	VARCHAR(20)
	NOT NULL

	2
	cost
	INT
	

	3
	delay
	INT
	NOT NULL

	4
	node
	VARCHAR(20)
	NOT NULL

Table 4: SECUREDPATH

Table 3.7.4 SecuredPath Table

	S. No
	Field Name
	Data type
	Constraints

	1
	Nname
	VARCHAR(50)
	NOT NULL

	2
	ename
	VARCHAR(50)
	NOT NULL

	3
	Path
	VARCHAR(50)
	

Table 5: possiblepath
Table 3.7.5 Possiblepath Table

	S. No
	Field Name
	Data type
	Constraints

	1
	destination
	VARCHAR(20)
	NOT NULL

	2
	path
	VARCHAR(20)
	

	3
	cost
	INT
	

	4
	delay
	INT
	

CHAPTER 4
IMPLEMENTATION

4.1 MODULES

The various modules included in the project as follows

· Topology Creation and Route Discovery.

· Data Transfer.

· Route Maintenance.

· Randomization of Path

4.2
MODULES DESCRIPTION

4.2.1
TOPOLOGY CREATION AND ROUTE DISCOVERY

In this module, the route between the source and the destination is discovered. The source sends the Route Request to all the nodes that are directly linked to the nodes. The destination replies it with a Route Reply. If the Route Reply is got, then data transfer is made between the source and the destination. Thus the route is discovered between the source and the destination. The different paths between the source and the destination are stored in the queue. Only the shortest path is considered for the transfer of data between the source and the destination. Route discovery involves the concepts of Request Zone and Expected Zone. Expected Zone is an area where the source expects the destination to be a point of time. Request zone is the area, which includes source and the destination. Only the nodes within this Request Zone accept RREQ and take part in routing. Each node taking part in the routing records its identifier and transmits it.

4.2.2
DATA TRANSFER

In this module, once the route is discovered between the source and the destination, data is being transferred along the same path between the source and the destination. For data transfer, the source discovers the shortest path. Once the shortest path is found, data is being transferred along that path between the source and the destination. Data transfer takes place after the RREP received from the destination.

4.2.3
ROUTE MAINTENANCE

In this module, the route between the source and the destination is maintained as long as the data transfer is performed. The sender sends its own address, message and destination address to all the linked nodes. The intermediate node attaches its address with the incoming packet and transfers to the next node to reach the destination. The destination receives the packet with the entire address that the packet has been traveled between the source and the destination. Thus the route between the source and the destination is maintained in the queue. The shortest path between the source and the destination depends on the number of hops between the source and the destination. For every route in a routing table, a host maintains a list of neighboring nodes using that route and informs them about potential link breakages with RERR messages.

4.2.4
RANDOMIZATION OF PATH

In this module, secured transmission of data is maintained between the source and the destination. For security considerations the transmission path has been dynamically changed and the data transfer is employed. As per this Security Consideration the transmission path is determined by maintaining the existing transmitted path in the given topology. This security mechanism also incorporates the security in the path not being hacked by the intruders through the intermediate nodes. The data transmission between source and destination will be established without intervening intermediate nodes on the path. In a given topology the same transmission path is not employed again for data transmission between source and destination.

CHAPTER 5

TESTING

Software is only one element of a larger computer based system. Ultimately software is incorporated with other system elements (Ex. New hardware) and a series of system integration and validation tests are conducted. System testing is actually a series of different tests whose primary purpose is to fully exercise the computer-based system.

Testing presents an interesting anomaly for the software development. The testing phase creates a series of test cases that are intended to ‘Demolish’ the software that has been built. A good test case is one that has a high probability of finding an as yet undiscovered error. A successful test is one that uncovers as an yet undiscovered error.

5.1
TESTING METHODS

Testing process breaks applications down in to two main parts

· Unit Testing

· Integration Testing.

· User Integration Testing.

5.1.1
UNIT TESTING

Unit testing comprises the set of tests performed by an individual programmer prior to integration of the unit into a larger system. Unit testing is otherwise known as program testing. The situation is illustrated as follows,

A program unit is usually small enough that the programmer who developed can test in a great detail and certainly in greater detail that will be possible when the unit is integrated in to an evolving software product.

There are four categories of tests that a programmer will typically perform on a program unit.

· Functional Tests

· Performance Tests

· Stress Tests

· Structure Tests

5.1.1.1
FUNCTIONAL TEST

Functional tests, where test cases involving exercising the code with nominal input values for which the expected results are known, were done.

In client Module, the request message is verified for all possible inputs taking into account the set of possible circumstances. This is essential because if affects the overall output of the system.

In Server module, the request message interpretation and job administration module are extensively tested so that they work satisfactorily for all possible circumstances.

5.1.1.2
PERFORMANCE TEST

Performance testing is concerned with the evaluation speed and memory utilization of the program. Using various test cases tests the package and the performance is found satisfactory.

5.1.1.3
STRESS TEST

Stress testing, which is concerned with exercising the internal logic of a program and traveling particular execution paths is done. The input is given in such a way that starting form request from client to the job completion all possible paths is tested.

5.1.1.4
STRUCTURE TEST

Structure testing is also referred to as White Box or Glass Box Testing.

Test data

Data to be entered in this project are Distance coverage, energy, link quality in such a way that if the distance coverage is high then the energy required to transmit the message should also high due to high energy the link quality will be less. Based on this condition the values should be entered at runtime in the table through will rank will be calculated and packets are routed.

5.1.2
INTEGRATION TESTING

Integration testing is the testing, which is carried out after the unit testing. In this many unit-tested modules are combined into subsystems, which are then tested, the goal here is to see if the modules can be integrated properly. Hence the emphasis is on testing interfaces between modules. The unit-tested modules are integrated and top-down integration methodology is used to test the modules. The main module is tested and the sub modules are tested to detect errors that occur due to the change in the interface. The system elements have been properly integrated and it is found that they perform their tasks well.

5.1.3
USER INTEGRATION TESTING

An interactive interface is a system that is dominated by interactive between the system and external agents, such as human, devices or other programs. The external agents are independent of the system, so their input cannot be controlled, although the system may solicit response from them. An interactive interface usually includes only part of an entire application, one that can often be handled independently from the computation part of the application. The major concerns of an interactive interface are the communications protocol between the system and the external agents, the syntax of possible interactions the presentation of output (the appearance on the screen, for instance) the flow of control within the system, the ease of understanding and user interface, performance, and error handling.

The dynamic model dominates interactive interfaces. Objects in the model represent interaction elements, such as input and output tokens and presentation formats. The functional model describes which application functions are executed in response to input event sequences, but the internal structure of the functions is usually unimportant to the behavior of the interface.

5.2
SYSTEM PERFORMANCE

In infrastructure network as the communication is connection oriented the traffic and congestion in data transfer increases. And so, the efficiency and the performance of the system are degraded. By ad hoc network which is peer to peer the efficiency and the performance of the system are increased.

In ad hoc communication, the time taken to transmit the data is fraction of seconds only when compared to the infrastructure network. So, fast transmission of data is possible in ad hoc network. Since the communication of the data is prone to very serious attacks in the wireless networks, security features becomes very essential.

CHAPTER 6

SAMPLE CODING

TOPOLOGY CREATION PROCESS

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import java.sql.*;

import java.io.*;

import java.net.*;

import javax.swing.table.*;

import java.util.*;

import javax.swing.border.*;

public class topology extends JFrame {

private JPanel contentPane;

private dataconnect z;

ResultSet rs;

Connection cs;

Statement st;

Vector v,v1,v2;

static ServerSocket sersoc;

static Socket soc,soc1;

ObjectInputStream dis,dis1;

ObjectOutputStream dos,dos1;

InputStream is;

OutputStream os;

String n="",ip="";

String a[]=new String[100];

static topology m;

int portno=5005,port;

link find;

int number;

Font font = new Font("TimesRoman",Font.PLAIN,20);

JPanel jp1=new JPanel();

JPanel jp2=new JPanel();

JScrollPane jsp;

public topology()throws Exception {

super();

z = new dataconnect();

st=z.connect();

st.execute("delete nodeinformation");

st.execute("delete connection");

st.execute("delete possiblepath");

st.execute("delete pda");

new userdetails();

nserver();

}

public void nserver()throws Exception{

 }

public void receive()throws Exception {

int port=0;

dis=new ObjectInputStream(soc.getInputStream());

String request=(String)dis.readObject();

System.out.println("recived:"+request);

if(request.equals("path")) {

String nodes=(String)dis.readObject();

String array[]=nodes.split("&");

System.out.println("nodes:"+nodes);

st.execute("delete possiblepath");

st.execute("delete pda");

find= new link(array[0],array[1]);

rs=st.executeQuery("Select PortNo from nodeinformation where Status='ON' ");

if(rs.next()) {

rs=st.executeQuery("Select path from possiblepath where destination='"+array[1]+"' ");

 v1=new Vector();

while(rs.next()) {

v1.add(rs.getString(1));

 }

 System.out.println(" v1"+v1);

}

System.out.println(" v1 size"+v1.size());

String path= find.bestcost(4,array[0],array[1]);

System.out.println("path:"+path);

st.executeUpdate("delete from securepath where nname='"+array[0]+"' and ename='"+array[1]+"' ");

st.executeUpdate("insert into securepath values('"+array[0]+"','"+array[1]+"','"+path+"') ");

if(path==null) {

dos=new ObjectOutputStream(soc.getOutputStream());

dos.writeObject("path");

 } else {

dos=new ObjectOutputStream(soc.getOutputStream());

dos.writeObject(path);

 }

} else if(request.equals("portno")) {

String nodes=(String)dis.readObject();

System.out.println("nodes:"+nodes);

rs=st.executeQuery("Select PortNo from nodeinformation where NodeName='"+nodes+"' ");

if(rs.next()){

 //System.out.println("p:"+rs.getString(1));

 port=Integer.parseInt(rs.getString(1));

 }

rs=st.executeQuery("Select SystemName from nodeinformation where NodeName='"+nodes+"' ");

 if(rs.next()) {

 ip=rs.getString(1);

}

dos=new ObjectOutputStream(soc.getOutputStream());

 String p=String.valueOf(port);

 System.out.println("p:"+p);

 System.out.println("ip:"+ip);

dos.writeObject(p);

dos.writeObject(ip);

System.out.println("send 1");

 }else if(request.equals("port")) {

System.out.println("1");

String nodes=(String)dis.readObject();

System.out.println("nodes:"+nodes);

 rs=st.executeQuery("Select PortNo from nodeinformation where NodeName='"+nodes+"' ");

if(rs.next()) {

 //System.out.println("p:"+rs.getString(1));

 port=Integer.parseInt(rs.getString(1));

 }

 rs=st.executeQuery("Select SystemName from nodeinformation where NodeName='"+nodes+"' ");

if(rs.next()) {

 ip=rs.getString(1);

}

dos=new ObjectOutputStream(soc.getOutputStream());

 String p=String.valueOf(port);

 System.out.println("p:"+p);

 System.out.println("ip:"+ip);

dos.writeObject(p);

dos.writeObject(ip);

System.out.println("send 1");

} else if(request.equals("neighbours")) {

Vector nv=new Vector();

dis=new ObjectInputStream(soc.getInputStream());

 String neigh=(String)dis.readObject();

 rs=st.executeQuery("Select Neighbour from Connection where NodeName='"+neigh+"'");

while(rs.next()) {

nv.addElement(rs.getString(1));

}

dos=new ObjectOutputStream(soc.getOutputStream());

dos.writeObject(nv);

} else if (request.equals("exit")) {

dis=new ObjectInputStream(soc.getInputStream());

String nn=(String)dis.readObject();

 System.out.println("z:"+nn);

st.executeUpdate("update nodeinformation set PortNo='0' where NodeName='"+nn+"'");

}else if(request.equals("user")) {

dis=new ObjectInputStream(soc.getInputStream());

System.out.println("1");

 String details=(String)dis.readObject();

 System.out.println("2");

String z[]=details.split("&");

System.out.println("3");

 rs=st.executeQuery("Select PortNo from nodeinformation where NodeName='"+z[0]+"' ");

if(rs.next()) {

 number=Integer.parseInt(rs.getString(1));

}

if(number==0) {

st.executeUpdate("update nodeinformation set PortNo='"+z[2]+"' where NodeName='"+z[0]+"'");

System.out.println("4");

st.executeUpdate("update nodeinformation set SystemName='"+z[1]+"' where NodeName='"+z[0]+"'");

System.out.println("5");

}else {System.out.println(number);}

} else {

dos=new ObjectOutputStream(soc.getOutputStream());

portno=portno+1;

 String p=String.valueOf(portno);

 System.out.println("p:"+p);

dos.writeObject(p);

System.out.println("send");

}

 }

NODE ACCESS PROCESS

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

import javax.swing.event.*;

import java.io.*;

import java.net.*;

import java.util.*;

 import javax.swing.border.*;

public class node extends JFrame {

private JLabel jLabel1;

private JLabel jLabel2;

private JLabel jLabel3;

private JLabel jLabel4;

private JTabbedPane jTabbedPane1;

private JPanel contentPane;

private JTextField jTextField1,sourcefield;

private JTextField jComboBox1;

private JTextPane jTextPane1;

private JScrollPane jScrollPane1;

private JScrollPane jScrollPane5;

private JButton jButton1;

private JButton jButton2;

private JButton jButton3;

private JButton jButton5;

private JTextArea sarea;

private JPanel jPanel1;

private JLabel jLabel5;

private JTextPane jTextPane2;

private JScrollPane jScrollPane2;

private JButton jButton4;

private JPanel jPanel2;

String user,substr;

String desdir,path1="";

File f;

String file;

String msg,request1,port;

String path,name[],guid;

static node c;

Vector v1,d1;

int p,gui;

static ServerSocket sers;

static Socket sousoc1,soc;

ObjectInputStream osi;

ObjectOutputStream oso;

String sourcename,desname;

topologyip net=new topologyip();

String server=net.orgin();

userlogin u;

Font font = new Font("TimesRoman",Font.PLAIN,20);

receivedata rd;

public node()throws Exception {

super();

}

public void initializeComponent(){

jLabel1 = new JLabel();

jLabel2 = new JLabel();

jLabel3 = new JLabel();

jLabel4 = new JLabel();

jTabbedPane1 = new JTabbedPane();

contentPane = (JPanel)this.getContentPane();

jTextField1 = new JTextField();

sarea = new JTextArea();

jComboBox1 = new JTextField();

jTextPane1 = new JTextPane();

jScrollPane1 = new JScrollPane();

jButton1 = new JButton();

jButton2 = new JButton();

jButton3 = new JButton();

jPanel1 = new JPanel();

jPanel2 = new JPanel();

jLabel5 = new JLabel();

sourcefield = new JTextField();

jButton5 = new JButton();

jScrollPane5 = new JScrollPane(sarea);

jLabel2.setText("Path Details");

jLabel3.setText("Message Details");

jLabel1.setText("Receiver Node");

jLabel4.setText("Select File");

contentPane.setLayout(null);

addComponent(contentPane, jPanel1, 0,0,543,500);

jTextField1.setText("");

jTextField1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e){

jTextField1_actionPerformed(e);

}});

jTextPane1.setText("");

jScrollPane1.setViewportView(jTextPane1);

jButton1.setText("Select File");

jButton1.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

File f2;

try{

JFileChooser jf=new JFileChooser();

int m1=jf.showOpenDialog(null);

if(m1==JFileChooser.APPROVE_OPTION) {

 f2=jf.getSelectedFile();

 path=f2.getPath();

 FileInputStream fis=new FileInputStream(path);

 File f=new File(path);

 jTextField1.setText(path);

 byte blp[]=new byte[fis.available()];

 fis.read(blp);

 msg=new String(blp);

 jTextPane1.setText(msg);

 }

 }
catch(Exception e1){
e1.printStackTrace(); }

jButton1_actionPerformed(e);

}

});

jButton2.setText("Send");

jButton2.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)
{

try{

soc=new Socket(server,1500);

oso=new ObjectOutputStream(soc.getOutputStream());

String sname=sourcefield.getText();

String desname=jComboBox1.getText();

oso.writeObject("path");

oso.writeObject(sourcename+"&"+desname);

osi=new ObjectInputStream(soc.getInputStream());

String result=(String)osi.readObject();

sarea.setText(result);

if(result.equals("path")){

JOptionPane.showMessageDialog(null,"Path Not Available");

}else
{

 String node[]=result.split(">");

 for(int z=1;z<node.length;z++)
{

if(z==(node.length)-1)
{

substr=node[z];

}else{

substr=node[z]+">";

}

}

soc=new Socket(server,1500);

 oso=new ObjectOutputStream(soc.getOutputStream());

 oso.writeObject("port");

 oso.writeObject(node[1]);

 osi=new ObjectInputStream(soc.getInputStream());

 String num=(String)osi.readObject();

 String ip=(String)osi.readObject();

 int port =Integer.parseInt(num);

 String data=jTextPane1.getText();

 soc=new Socket(ip,port);

oso=new ObjectOutputStream(soc.getOutputStream());

oso.writeObject(substr);

oso.writeObject(data);

osi=new ObjectInputStream(soc.getInputStream());

num=(String)osi.readObject();

 jTextField1.setText("");

 jTextPane1.setText("");

}

}catch (Exception e1)
{e1.printStackTrace();}

jButton2_actionPerformed(e);}});

jButton3.setText("Clear");

jButton3.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)
{

jButton3_actionPerformed(e);

}});

jPanel1.setLayout(null);

jPanel1.setBackground(new Color(255,255,255));

addComponent(jPanel1, jLabel3, 50,230,100,25);

addComponent(jPanel1, jLabel4, 25,50,100,25);

addComponent(jPanel1, jLabel2, 410,230,100,25);

addComponent(jPanel1, jTextField1, 144,50,180,25);

addComponent(jPanel1, jLabel1, 25,150,100,25);

 addComponent(jPanel1,jComboBox1, 144,150,100,25);

addComponent(jPanel1, jScrollPane1, 50,250,300,200);

addComponent(jPanel1, jScrollPane5, 410,250,150,100);

addComponent(jPanel1, jButton1, 410,50,100,25);

addComponent(jPanel1, jButton2, 410,100,100,25);

addComponent(jPanel1, jButton3, 410,150,100,25);

addComponent(jPanel1, jButton5, 410,200,125,25);

jLabel5.setText("Received Data");

jButton5.setText("Received Data");

jButton5.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e)
{

try
{

new receivedata(1);

}catch (Exception ex)
{}

}});

//jPanel1.setBackground(new Color(85, 85, 155));

this.setTitle("User : "+sourcename);

this.setLocation(new Point(2, 0));

this.setSize(new Dimension(550, 500));

this.setDefaultCloseOperation(EXIT_ON_CLOSE);

this.setResizable(false);

this.setVisible(true);

}

private void addComponent(Container container,Component c,int x,int y,int width,int height){

c.setBounds(x,y,width,height);

container.add(c);

}

public int connection()throws Exception
{

sousoc1=new Socket(server,1500);

oso=new ObjectOutputStream(sousoc1.getOutputStream());

oso.writeObject("hai");

 osi=new ObjectInputStream(sousoc1.getInputStream());

 port=(String)osi.readObject();

 p=Integer.parseInt(port);

 return p;

}

public void user(String username)throws Exception {

sousoc1=new Socket(server,1500);

oso=new ObjectOutputStream(sousoc1.getOutputStream());

 oso.writeObject("user");

 sourcename=username;

 String ia=InetAddress.getLocalHost().getHostName();

 oso=new ObjectOutputStream(sousoc1.getOutputStream());

 oso.writeObject(username+"&"+ia+"&"+String.valueOf(p));

}

private void jTabbedPane1_stateChanged(ChangeEvent e){

System.out.println("\njTabbedPane1_stateChanged(ChangeEvent e) called.");

}

private void jTextField1_actionPerformed(ActionEvent e) {

System.out.println("\njTextField1_actionPerformed(ActionEvent e) called.");

}

private void jButton1_actionPerformed(ActionEvent e){

System.out.println("\njButton1_actionPerformed(ActionEvent e) called.");

}

private void jButton2_actionPerformed(ActionEvent e){

System.out.println("\njButton2_actionPerformed(ActionEvent e) called.");

}

private void jButton3_actionPerformed(ActionEvent e){

System.out.println("\njButton3_actionPerformed(ActionEvent e) called.");

try
{

jTextField1.setText("");

sourcefield.setText("");

jComboBox1.setText("");

jTextPane1.setText("");

}catch (Exception z)
{}

}

public void receiver()throws Exception
{

 osi=new ObjectInputStream(u.ss1.getInputStream());

 String request=(String)osi.readObject();

String requestres[]=request.split(">");

if(requestres[0].equals(sourcename)){

request1=(String)osi.readObject();

rd.text.setText(request1);

}else {

request1=(String)osi.readObject();

String portno1="";

String node[]=request.split(">");

if(node.length==1)
{

substr=node[0];

portno1=node[0];

}

for(int z=1;z<node.length;z++){

 if(z==(node.length)-1){

 substr=substr+node[z];

}else
{

substr=substr+node[z]+">";

}

portno1=node[1];

}

soc=new Socket(server,1500);

 oso=new ObjectOutputStream(soc.getOutputStream());

 oso.writeObject("port");

 oso.writeObject(portno1);

 osi=new ObjectInputStream(soc.getInputStream());

 String num=(String)osi.readObject();

 String ip=(String)osi.readObject();

 int port =Integer.parseInt(num);

 soc=new Socket(ip,port);

 oso=new ObjectOutputStream(soc.getOutputStream());

 oso.writeObject(substr);

 oso.writeObject(request1);

osi=new ObjectInputStream(soc.getInputStream());

 num=(String)osi.readObject();

}

oso=new ObjectOutputStream(u.ss1.getOutputStream());

oso.writeObject("received");

}

}

RECEIVE DATA PROCESS

import java.io.*;

import javax.swing.*;

import java.awt.event.*;

class receivedata extends JFrame implements ActionListener{

JButton jButton1;

JButton jButton2;

JPanel panel=new JPanel();

static JTextArea text=new JTextArea();

JScrollPane pane=new JScrollPane(text);

public receivedata(int f)throws Exception{

jButton1=new JButton();

jButton2=new JButton();

jButton1.setText("Clear");

jButton2.setText("Cancel");

panel.setLayout(null);

panel.add(pane);

panel.add(jButton1);

panel.add(jButton2);

pane.setBounds(5,5,390,350);

jButton1.setBounds(75,400,100,25);

jButton2.setBounds(200,400,100,25);

add(panel);

jButton1.addActionListener(this);

jButton2.addActionListener(this);

setSize(400,500);

setVisible(true);

setDefaultCloseOperation(DO_NOTHING_ON_CLOSE);

}

public void actionPerformed(ActionEvent e)
{

try{

if(e.getSource()==jButton1){

text.setText("");

}

if(e.getSource()==jButton2){

dispose();

}

}catch (Exception e1)
{

e1.printStackTrace();

}

}

}

CHAPTER 7
OUTPUT RESULTS
SCREEN SHOTS
TOPOLOGY CREATION

NODE CREATION

[image: image1.png]PROGRESS THROUGH KNOWLEDGE

[image: image20.png]5] Network Construction

User Details

No of Nodes.

Node Name

Source Node

Neighbour Node

LINK CREATION

[image: image28.png]Message X

oK

[image: image21.png]5] Network Construction

User Details

No of Nodes.

Node Name

Source Node

Neighbour Node

NODE LOGIN

[image: image22.png]UserName Nodet]

Signin

USER INTERACTION SCREEN

[image: image23.png]Select File Select File

Receiver Node

Received Data

Message Details Path Details

SELECTING SAMPLE FILE FROM SOURCE NODE: NODE1

[image: image29.png]Message X

oK

[image: image24.png]Select File

Receiver Node

Received Data

Message Details Path Details

SELECTING DESTINATION NODE:

[image: image25.png][ser: Nodet

Select File

Receiver Node

Message Details

{sathishiDeskiopiSample File.bd]

Select File

Noded]

Received Data

Path Details

Sample TextFile

RECEIVING DATA AT DESTINATION NODE:

[image: image30.png]Look In: |[] Desktop

81k
Ink
incher.ink
ar

[imermetnk
) Networkxt
) Report.xt

[C) Sampie et

) SetupBtwDownloadsE.exe

) Stortcutto Local Area Connectionink

[T

File Name: [Sample File.t

Files of Type: |All Files

[image: image26.png]Select File Select File

Receiver Node

ReceivedD:

Message Details Path Details

DATA TRASFER PATH DETAILS:

[image: image27.png]Select File Select File

Send

Receiver Node

Received Data

Message Details Path Details
Node1»Node2-Node3

CHAPTER 8
CONCLUSION

8.1 SUMMARY
Mobile ad-hoc network is a relatively new innovation in the field of wireless technology. These types of networks operate in the absence of fixed infrastructure, which makes them easy to deploy at any place and at any time. Thus wireless research today primarily focuses on the functional aspect of manets which I have implemented as a project for the improved delivery of packets from one node to another. Here security plays the leading role. Using this we can interconnect different platforms and devices, offer services on demand and make it all secure and trusted. The system is compatible to changes that may occur in future. It also lessens the monotonous, tedious and repetitive work.

In conclusion, it is stated that this project “ROUTING WITH SECURITY IN MOBILE Ad Hoc NETWORKS” with its sound plan, proper organization, complete harmony and co-ordination, has been completed successfully in according to the needs and satisfaction of the client.

8.2 FUTURE ENHANCEMENT

There are many features implemented in this project but still some will be implemented in future. Any project doesn’t end with the developed software. With a course of time any software will have to undergo changes owing to many factors.

This project can be extended for the secure transmission of a large collection of network host over a long distance. Also better and even more security techniques can be introduced in order to provide the routing in a secured way. Sending the image across different systems can be enhanced. Instead of limiting the search to a smaller location, larger area can be used.
The security protocols that can be used for the wireless networks can be standardized so that the vulnerability in the networks can be minimized to the maximum extent. Location privacy, protecting information about node location and network structure can be enhanced.

CHAPTER 9

BIBLIOGRAPHY

1.
David B. Johnson, �Routing in Ad Hoc Networks of Mobile Hosts,� Proceedings of the IEEE Workshop on Mobile Computing Systems and Applications, pages 158�163, December 1994.

2.
David B. Johnson and David A. Maltz, �Dynamic Source Routing in Ad Hoc Wireless Networks,� Mobile Computing, edited by Tomasz Imielinski and Hank Korth, Chapter 5, pages 153�181. Kluwer Academic Publishers, 1996.

3. A Load Balancing Algorithm Using Radio Signal Strength and Sensitivity for the Multipath Source Routing Protocol. By Hadeel T. El-Kassabi. Ottawa-Carleton Institute for Computer Science, School of Computer Science, Carleton University, Ottawa, Ontario.
4. P. Jacquet et al., “Optimized Link State Routing Protocol for Ad Hoc Networks,” Proc. IEEE Int’l Multi Topic Conf., 2001, IEEE Press, 2001, pp. 62-68.

5. R. Ogier, F. Templin, and M. Lewis, “Topology Dissemination Based on Reverse-Path Forwarding (TBRPF),” IETF Manets Working Group Internet Draft, 14 Oct. 2003; www.ietf.org/internet-drafts/ draft-ietf-manet-tbrpf-11.txt.

6. N. Milanovic et al., “Bluetooth Ad-Hoc Sensor Network,” Proc. 2002 Int’l Conf. Advances in Infrastructure for e-Business, e-Education, e-Science, and e-Medicine on the Internet, Scuola Superiore G. Reiss Romoli, 2002; www.informatik.hu-berlin.de/ ~milanovi/ bt_adhoc_sensor.pdf.

CHAPTER 10
APPENDIX

MANETS:
Mobile Ad hoc Network is created using surrounding electronic devices as intermediate switches when they are idle and if they are capable of performing the task. It is useful for disaster management. It removes the dependence of fixed network.

SOURCE ROUTING:
A sending node must provide the sequence of all nodes through which a packet will travel. This concept is said to be Source Routing.

DSR:
Dynamic Source Routing is a fairly simple algorithm based on the concept of source routing. Each node maintains its own route cache, essentially a routing table, of these addresses. Source nodes determine routes dynamically and only as needed; there are no periodical broadcasts from routers.

RREQ:
Route Request Packet – This packet is sent whenever the source node wants to establish a connection.

RREP:
Route Reply Packet – This packet is sent in response to a RREQ packet.

RERR:
Route Error Packet – This packet is sent if any route disconnects while data transfer is in process.

Sender

Receiver

Server

Calculate

Path

Dynamic Source Routing

Path Check with previous used path

Message transfer from source node to destination node

Measure available paths

Calculate shortest path

Path Check with Previously used path

Dynamic routing Algorithm

Receiver receive packets

Get Destination IP and data

Setup Request Zone to all neighbors and Target Node

Send Route Reply

Send Route Request to all neighbors

Yes

No

IS this the Destn. node?

Set the first entry as the current path

Send Route Reply to next node

Is this the Source node?

Is it the Destn. node?

Send Data packet with Security to next node

Receive the data

Admin Screen

Serial NoCreation

Access Permission

Exit

1: Detect Serial No

2:

3: createAccess

4:

5: logout

PAGE
28

