 (
SYNTAX BASED COLORING EDITOR
) (
by
B.Nagarajan C.Prasannakumar
Final year IT
)


Base Paper for Syntax Based Coloring Editor
Introduction
Syntax highlighting is a feature of some text editors that display text especially source code in different colors and fonts according to the category of terms. This feature eases writing in a structured language such as a programming language or a markup language as both structures and syntax errors are visually distinct. Highlighting does not affect the meaning of the text itself; it's made only for human readers/editors.
Syntax highlighting is a form of secondary notation, since the highlights are not part of the text meaning, but serve to reinforce it. Some editors also integrate syntax highlighting with other features, such as spell checking or code folding, as aids to editing which are external to the language.
Practical considerations
Syntax highlighting is one strategy to improve the readability and context of the text; especially for code that spans several pages. The reader can easily ignore large sections of comments or code, depending on what one desires.
Syntax highlighting also helps programmers find errors in their program. For example, most editors highlight string literals in a different color. Consequently, spotting a missing delimiter is much easier because of the contrasting color of the text. Brace matching is another important feature with many popular editors. This makes it simple to see if a brace has been left out or locate the match of the brace the cursor is on by highlighting the pair in a different color.
Some text editors can also export the color markup in a format that is suitable for printing or for importing into word-processing or other kinds of text-formatting software; for instance an HTML, colorized LaTeX, PostScript or RTF version of its syntax highlighting.
Multi-document editors
For editors that support more than one language, the user can usually specify the language of the text, such as C, LaTeX, HTML, or the text editor can automatically recognize it based on the file extension or by scanning contents of the file. This automatic language detection presents potential problems. For example, a user may want to edit a document containing: more than one language (for example when editing an HTML file that contains embedded JavaScript code).
A language that is not recognized (for example when editing source code for an obscure or relatively new programming language).
A language that differs from the file type (for example when editing source code in an extension-less file in an editor that uses file extensions to detect the language) 
In these cases, it is not clear what language to use and a document may not be highlighted or be highlighted incorrectly.
Syntax elements
Most editors with syntax highlighting allow different colors and text styles to be given to dozens of different lexical sub-elements of syntax. These include keywords, comments, control-flow statements, variables, and other elements. Programmers often heavily customize their settings in an attempt to show as much useful information as possible without making the code difficult to read.
Example
// Create "windowCount" Window objects:
int windowCount = 10;
Window **windows = new Window *[max];
for (int i = 0; i < windowCount; ++i)
 {
    windows[i] = new Window();
}
In this example, the editor has recognized the keywords int, new, and for. The comment at the beginning is also highlighted in a specific manner to distinguish it from working code.
History and limitations
The Live Parsing Editor (LEXX) was written for the VM operating system for the computerization of the Oxford English Dictionary in 1985 and was one of the first to use color syntax highlighting. Its live parsing capability allowed user-supplied parsers to be added to the editor, for text, programs, data file, etc. See: LEXX – A programmable structured editor, Cowlishaw, M. F., IBM Journal of Research and Development, Vol 31, No. 1, 1987, IBM Reprint order number G322-0151
Since most text editors highlight syntax based on complex pattern matching heuristics rather than actually implementing a parser for each possible language, which could be prohibitively complex, the highlighting is almost never completely accurate. Moreover, depending on the pattern matching algorithms, the highlighting "engine" can become very slow for certain types of language structures. Some editors overcome this problem by not always parsing the whole file but rather just the visible area, sometimes scanning backwards in the text up to a limited number of lines for "syncing".
However, modern language-specific IDEs (in contrast to text editors) generally perform actual language parsing so they can be completely accurate.
See the Programming features section of the Comparison of text editors article for a list of some editors that have syntax highlighting.


ABSTRACT
This project “SYNTAX BASED HIGHLIGHTING EDITOR“ is designed to find out bugs in the syntax of the coding using color codes, and fonts in any program language.
Using this logical idea we created an editor for c program language, which will differentiate the keywords, member variables, member function, constants etc using different colors.
Typical features:
String searching algorithm – search string with a replacement string. Different methods are employed, Global(ly) Search And Replace, Conditional Search and Replace, Unconditional Search and Replace.
Cut, copy, and paste – most text editors provide methods to duplicate and move text within the file, or between files.
Text formatting – Text editors often provide basic formatting features like line wrap, auto-indentation, bullet list formatting, comment formatting, and so on.
Undo and redo – As with word processors, text editors will provide a way to undo and redo the last edit. Often—especially with older text editors—there is only one level of edit history remembered and successively issuing the undo command will only "toggle" the last change. Modern or more complex editors usually provide a multiple level history such that issuing the undo command repeatedly will revert the document to successively older edits. A separate redo command will cycle the edits "forward" toward the most recent changes. The number of changes remembered depends upon the editor and is often configurable by the user.
Filtering – Some advanced text editors allow the editor to send all or sections of the file being edited to another utility and read the result back into the file in place of the lines being "filtered". This, for example, is useful for sorting a series of lines alphabetically or numerically, doing mathematical computations, and so on.
Syntax highlighting – contextually highlights software code and other text that appears in an organized or predictable format.
This will be very use full to finding the bugs in the syntax of the c program language, and provides an user friendly environment for users. This will be enhanced for other program language in the future.


SYSTEM REQUIREMENTS
Software requirements:
Operating system		:	any platform which support JVM
Frontend			:	JAVA
Backend			:	MYSQL
Hardware requirements:
Processor			:	P4 and above
Hard disk			:	minimum 10GB
Ram				:	512MB


Syntax based coloring editor by Nagarajan and PrasannaKumar

image1.gif




