CHAPTER - 1
1. INTRODUCTION
 1.1 DOTNET

 The .Net frame work is a comprehensive platform that can be a little difficult to describe. It has been described as a Development Platform an execution environment and the operating system among other things. In fact in some aside from embracing the web, Microsoft .NET acknowledges and responds

The framework's Base Class Library provides a large range of features including user interface, data access, database connectivity, cryptography, web application development, numeric algorithms, and network communications. The class library is used by programmers, who combine it with their own code to produce applications. Programs written for the .NET Framework execute in a software environment that manages the program's runtime requirements. Also part of the .NET Framework, this runtime environment is known as the Common Language Runtime (CLR). The CLR provides the appearance of an application virtual machine so that programmers need not consider the capabilities of the specific CPU that will execute the program. The CLR also provides other important services such as security, memory management, and exception handling. The class library and the CLR together constitute the .NET Framework.
C# DOT NET

C# is a multi-paradigm programming language encompassing imperative, declarative, functional, generic, object-oriented (class-based), and component-oriented programming disciplines. It was developed by Microsoft within the .NET initiative and later approved as a standard by Ecma (ECMA-334) and ISO (ISO/IEC 23270). C# is one of the programming languages designed for the Common Language Infrastructure. C# is intended to be a simple, modern, general-purpose, object-oriented programming language. Its development team is led by Anders Hejlsberg.
The C# language is disarmingly simple, with only about 80 keywords and a dozen built-in data types, but C# is highly expressive when it comes to implementing modern programming concepts. C# includes all the support for structured, component-based, object-oriented programming that one expects of a modern language built on the shoulders of C++ and Java. The C# language was developed by a small team led by two distinguished Microsoft engineers, Anders Hejlsberg and Scott Wiltamuth. Hejlsberg is also known for creating Turbo Pascal, a popular language for PC programming, and for leading the team that designed Borland Delphi, one of the first successful integrated development environments for client/server programming. At the heart of any object-oriented language is its support for defining and working with classes. Classes define new types, allowing you to extend the language to better model the problem you are trying to solve. In C# everything pertaining to a class declaration is found in the declaration itself. C# class definitions do not require separate header files or Interface Definition Language (IDL) files.

1.2 SQL SERVER:
SQL often referred to as Structured Query Language, is a database computer language designed for managing data in relational database management systems (RDBMS), and originally based upon relational algebra. Its scope includes data insert, query, update and delete, schema creation and modification, and data access control. SQL was one of the first languages for Edgar F. Code’s relational model in his influential 1970 paper, "A Relational Model of Data for Large Shared Data Banks" and became the most widely used language for relational databases.

The SQL language is sub-divided into several language elements, including:

· Clauses, which are in some cases optional, constituent components of statements and queries.

· Expressions which can produce either scalar values or tables consisting of columns and rows of data.

· Predicates which specify conditions that can be evaluated to SQL three-valued logic (3VL) or Boolean (true/false/unknown) truth values and which are used to limit the effects of statements and queries, or to change program flow.

· Queries which retrieve data based on specific criteria.

· Statements which may have a persistent effect on schemas and data, or which may control transactions, program flow, connections, sessions, or diagnostics.

· SQL statements also include the semicolon (";") statement terminator. Though not required on every platform, it is defined as a standard part of the SQL grammar.

1.3 CASE TOOLS
1.3.1 Use Case Diagram

A use case corresponds to a sequence of transactions, in which each transaction is invoked from outside the system (actors) and engages internal objects to interact with one another and will the system’s surroundings.

The description of a use case defines what happens in the system when the use case is performed. In essence, the use-case model defines the outside (actors) and Inside (use case) of the system’s behavior. Use cases represent specific flows of events in the system. The use cases are initiated by actors and describe the flow of events that these actors set off. An actor is anything that interacts with a use case: It could be a human user, external hardware, or another system. An actor represents a category of user rather than physical user. Several physical users can play the same role. For example, in terms of a Member actor, many people can be members of a library, which can be members of a library, which can be represented by one actor called Member.
A use-case diagram is a graph of actors, a set of use cases enclosed by a system boundary, communication associations between the actors and the use cases, and generalization among the use-cases.
1.3.2Sequence Diagram:

Sequence diagram are easy and intuitive way of describing the behavior of a system by viewing the interaction between the system and its environment. A sequence diagram shows an interaction arranged in a time sequence. It shows the objects participating in the interaction by their lifelines and the messages they exchange, arranged in a time sequence. A sequence has two dimensions: the vertical dimension represents time, the horizontal represents different objects

1.3.3 Collaboration:

Collaboration is a recursive process where two or more people or organizations work together in an intersection of common goals — for example, an intellectual endeavor that is creative in nature by sharing knowledge, learning and building consensus. Most collaboration requires leadership, although the form of leadership can be social within a decentralized and egalitarian group. In particular, teams that work collaboratively can obtain greater resources, recognition and reward when facing competition for finite resources. Collaboration is also present in opposing goals exhibiting the notion of adversarial collaboration, though this is not a common case for using the word. Structured methods of collaboration encourage introspection of behavior and communication. These methods specifically aim to increase the success of teams as they engage in collaborative problem solving. Forms, rubrics, charts and graphs are useful in these situations to objectively document personal traits with the goal of improving performance in current and future projects.

1.3.4 Class:
A class diagram in the Unified Modeling Language (UML) is a type of static structure diagram that describes the structure of a system by showing the system's classes, their attributes, and the relationships between the classes. The class diagram is the main building block in object oriented modeling. They are being used both for general conceptual modeling of the systematic of the application, and for detailed modeling translating the models into programming code. The classes in a class diagram represent both the main objects and or interactions in the application and the objects to be programmed. In the class diagram these classes are represented with boxes which contain three parts:

A class with three sections.

· The upper part holds the name of the class

· The middle part contains the attributes of the class

· The bottom part gives the methods or operations the class can take or undertake

In the system design of a system, a number of classes are identified and grouped together in a class diagram which helps to determine the statically relations between those objects. With detailed modeling, the classes of the conceptual design are often split in a number of subclasses.

In order to further describe the behavior of systems, these class diagrams can be complemented by state diagram or UML state machine. Also instead of class diagrams Object role modeling can be used if you just want to model the classes and their relationships.

1.3.5 Activity:

Activity diagrams are graphical representations of workflows of stepwise activities and actions with support for choice, iteration and concurrency. In the Unified Modeling Language, activity diagrams can be used to describe the business and operational step-by-step workflows of components in a system. An activity diagram shows the overall flow of control. Activity diagrams are constructed from a limited repertoire of shapes, connected with arrows. The most important shape types:
· Rounded rectangles represent activities.

· Diamonds represent decisions.

· Bars represent the start (split) or end (join) of concurrent activities.

· A black circle represents the start (initial state) of the workflow.

· An encircled black circle represents the end (final state).

· Arrows run from the start towards the end and represent the order in which activities happen.

Hence they can be regarded as a form of flowchart. Typical flowchart techniques lack constructs for expressing concurrency. However, the join and split symbols in activity diagrams only resolve this for simple cases; the meaning of the model is not clear when they are arbitrarily combined with decisions or loops.

CHAPTER – 2

2. SOFTWARE AND HARDWARE REQUIREMENT
2.1 SOFTWARE REQUIREMENT
· Operating System
: Windows XP

· Front End
: C#.NET

· Back End
: Sql Server
· Word Processor
: MS-Word
2.2 HARDWARE REQUIREMENT
· Processor
: Intel® dual-Core(TM)

· RAM
: 1 GB

· Hard Disc
: 120 GB

· Key Board
: Standard 101/102 keys
· Mouse : Microsoft Mouse or compatible pointing device

CHAPTER - 3

3. SYSTEM DESIGN
3.1 DATA FLOW DIAGRAM

3.2 CASE TOOLS DIAGRAM
3.2.1 Use case Diagram
[image: image1.png]

3.2.2 Sequence Diagram
[image: image2.emf]bill trancation

login

stock detail purchase detail

stock return about

 new register

use login

re enter password

to maintain the stock detail

to be purchase the product

provided the bill

to be enter the new reg

stock some time return

other information

3.2.3 Collaboration Diagram
[image: image3.emf]5: re enter password

login

stock

detail

bill

trancation

purchase

detail

stock

return

about

 new

register

1: to be enter the new reg

2: to maintain the stock detail

3: use login

4: to be purchase the product

6: provided the bill

7: stock some time return

8: other information

 3.2.4 Class Diagram
[image: image4.png]

3.2.5Activity Diagram
[image: image5.emf]login

false

enter the

new login

stock

detail

purchase

detail

bill

trancation

stock

return

bill bacup

CHAPTER - 4

4. MODULE DISCRIPTION

Modules:
 4.1 Login

 4.2 Registration

4.3 Stock detail

4.4 Bill transaction

4.5 Purchasing
4.1 Login
 The user login module is used to grant access to other modules only for the authorized people on giving valid username and password.
4.2 Registration
Login module accepts the name and password for existing user and validates it. For new user create a account. This module will allow the user to buy and enjoy the accessibilities if they have an account (User-Id & Password) .only admin can access have permission to change the password. When users have no account earlier they can create an account through admin.
4.3 Stock details
In the stock detail module the availability of stock is checked by entering the code. If the stock is available it shows the stock detail otherwise it does not show the details. If stock is not

available it can be purchased. Stock detail displays icode, iname, iprice, quantity, here the availability of stock, quantity, prices are checked.
4.4 Bill detail
In this module the bill detail are shown. Whenever the bill no is entered it shows the product to de bought by the customer. It is very useful for resales of product and also to check the bill details of the certain customer.

4.5 Purchasing

This module will give the information that supports to buy a fresh product or to sell a second hand product. Also it shows the icode, inumber, unit price, quanity, and amount. It will also give bill detail in it.

CHAPTER - 5

5. IMPLEMENTATION
5.1 Database Tables
Stock detail.cs
[image: image6.png]BatchNo Medi

neN Company

101 METACINTAE Z1C
102 CROCINTABS ERT
105 ACTIONS00P JKH
104 PIRAXTABS QAW
105 JLAXTABS 5AS
121 RANBAXY WG
F100 FAIR &LOVEL Kk

MRP
2835
a7
2m
360
B
1144
02

Expiry Dat _Location

03710
03113
o1ji4
03116
03113
iz
03115

B
a
o2
a
H
o1
2

Tax Percen Tax Amoun Uni

135
007
om0
o0
010
044
228

27.00
350
2m0
350
360
1100
.00

Price

Bill truncation.cs
[image: image7.png]2
z
g

Amount Date ime

5058 02/05/2003 1:05:46 PH
.08 02j05/2009 1:06:26 PH
s 02j05/2003 1:06:43 PH1
42525 02j05j2009 1:07:07 PH

Purchase detail.cs
[image: image8.png]No_Purchase D BatchNo Medicine N_Company _Purchase P_Expiry Dat U Tax Percen Tax Amoun Quan

20j11j2008 103 ACTIONS00P JKH 170 0114 170 o om0 El
20j11j2008 100 ANACINTAES DSD 103 08j10 100 3 003 150
20j11j2008 102 CROCINTABS ERT 308 0313 300 2 06 &
20j11ja08 Floo FAIR &LOVEL Kk 37.10 o315 3500 6 210 150
20j11j2008 105 JLAXTABS 5AS 309 0313 300 3 0.09 120
20j11j2008 105 JLAXTABS 5AS 309 0313 300 3 0 e
20j11j2008 101 METACINTAE Z4C 2782 0310 2650 s 132 =
1otjz009 121 RANBAXY WA 1032 o2jiz 10.50 4 0e EY

5.2 TESTING

Testing is the name given to the checking and analysis process that ensure that the software conforms to its specification. In this project few testing techniques were applied at different stages of the project so as to test the performance of the project. The testing activity can be carried at the implementation to verify that the project behaves as intended by the designers. During these activities the software reliability was checked to a large extent. The successful testing process must confirm that the system is free of defects and is ready to use.

5.2.1 MODULE TESTING

 It is a process of testing the system module, what are all the inputs given and what all are outputs produced and whether they are required. Here after completing each module a testing was performed.

5.2.2 SYSTEM TESTING

System testing is a series of different tests whose primary purpose is to exercise the computer-based system. It also tests to find discrepancies between the system and its original objective, current specification. The requirements of our project were analyzed and a test activity was performed whether the system has the necessary software to run this project. If not then the software is then installed into the system and the project will be implemented on it.

5.2.3 INTEGRATED TESTING

This is a very important testing process in any project. This testing mainly focuses on the combination of several parts of the project and making it to work. Here this testing activity was done at the end of the project and based on the results of this testing the output will be determined.

5.2.4 WHITE BOX TESTING

White Box Testing focus on the program control structure. Test cases are derived to ensure that all statements in the program have been executed at least once during testing and that all logical conditions have been exercised.
Basic Path Testing, a White Box technique, makes use of program graphics to derive a set of linearly independent tests that will ensure coverage. Condition and data flow testing further exercise program logic and loop testing complements other white box techniques by providing a procedure for exercising loops of varying degrees of complexity.

5.2.5 BLACK BOX TESTING

Black Box test are designed to validate functional requirements without regard to the interval working of the program. This technique focuses on the information domain of Software, deriving test case coverage. Equivalence partitioning divides input domain into Classes to data that are likely to exercise specific software function.

A classical system testing problem is finger pointing. This occurs when a defect is uncovered and one system element developer blames the other for the problem. In order to avoid this scenario the following measures are adopted.

· Error handling paths are designed that test all information coming from other elements of the system.

· A series of tests are conducted that stimulate bad data and other potential errors at the software interface.

· The result of the tests is recorded to use as evidence if finger point does occur.

· Participate in the design of system tests to ensure that the software if adequately tested.
TEST RESULT

The listed tests were conducted at various development stages. Throughput was conducted .the errors were debugged. The integration testing will be performed once the system is integrated. The results were and analyzed and alternations were made. The test results proved positive and henceforth the application is feasible and the test is approved.

5.3 CODING

Purchase detail. Cs

private void button1_Click(object sender, EventArgs e)

{

try

{

//int txtamt1 = Convert.ToInt32(txtqty.Text) * Convert.ToInt32(txtuni.Text);

// txtamt.Text = txtamt1.ToString();

//txtamt.Text =Convert.ToInt32 (txtuni.Text)/100 * Convert.ToInt32(txttax.Text);

decimal p, q, z, m, j, a, f;

if (txtuni.Text =="")

{

// MessageBox.Show("Enter the Purchase Price", MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

MessageBox.Show("You must Enter a Purchase Price.", "Purchase Entry Error",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

txtuni.Focus ();

}

p = decimal.Parse(txtuni.Text);

if ((txtsell.Text) == "")

a = decimal.Parse(txttaxper.Text) * a;

// txttaxamt.Text = System.Convert.ToString(z).ToString();

txttaxamt.Text = z.ToString();

int d;

string s2 = txttaxamt.Text;

d = s2.LastIndexOf(".");

// string ssa = s2.Substring(0, d + 2);

// txttaxamt.Text = ssa;

// MessageBox.Show(d.ToString());

if (d==d)

{

string ssa = s2.Substring(0, d + 3);

txttaxamt.Text = ssa;

}

else

{

txttaxamt.Text = z.ToString();

}

// txttaxamt.Text = FormatException(a, "#,###.##");

// Label8.Text = Format(count, "#,###.##")

int n;

string s1 = txtpri.Text;

n = s1.LastIndexOf(".");

//MessageBox.Show(n.ToString());

if (n == n)

{

string sss = s1.Substring(0, n + 3);

txtpri.Text = sss;

}

else

{

txtpri.Text = m.ToString();

}

// txtpri.Text = sss;

txtmrpp.Text = f.ToString();

int k;

string s = txtmrpp.Text;

k= s.LastIndexOf(".");

// string ss = s.Substring(0, k+ 3);

// txtmrpp.Text = ss;

if (k == k)

Decimal ded;

ded = (x) - Decimal.Parse(txtded.Text);

// txttotamt.Text = x.ToString();

txttotamt.Text = ded.ToString();

}

catch (Exception ex)

{

MessageBox.Show("YOU MUST ENTER THE FORMAT 0.00",ex.Message);

}

}

Stock detail.cs

private void button4_Click(object sender, EventArgs e)

{

try

{

decimal p, q, z, m, j, a, f;

if ((txtsell.Text) == "")

{

//MessageBox.Show("Enter the Sell Price");

MessageBox.Show("You must Enter a Sell Price.", "Sell Entry Error",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

txtsell.Focus();

}

j = decimal.Parse(txtsell.Text);

q = 100;

a = j / q;

// MessageBox.Show(z.ToString());

if (txttaxper.Text == "")

{

MessageBox.Show("You must Enter a Tax Percentage.", "VAT Entry Error",

MessageBoxButtons.OK, MessageBoxIcon.Exclamation);

txttaxper.Focus();

}

else

{

// z = decimal.Parse(txttaxper.Text) * z;

a = decimal.Parse(txttaxper.Text) * a;

txttaxp.Text = System.Convert.ToString(a).ToString();

int v;

string v1 = txttaxp.Text;

v = v1.LastIndexOf(".");

// string vv = v1.Substring(0, v + 3);

// txttaxp.Text = vv;

if (v == v)

{

string vv = v1.Substring(0, v + 3);

txttaxp.Text = vv;

}

else

{

txttaxp.Text = System.Convert.ToString(a).ToString();

}

// m = p + z;

f = j + a;

// txtpri.Text = m.ToString();

txtmrpp.Text = f.ToString();

int k;

string s = txtmrpp.Text;

k = s.LastIndexOf(".");

// string ss = s.Substring(0, k+ 3);

// txtmrpp.Text = ss;

if (k == k)

{

string ss = s.Substring(0, k + 3);

txtmrpp.Text = ss;

}

else

{

txtmrpp.Text = f.ToString();

}

}

}

catch (Exception ex)

{

MessageBox.Show("YOU MUST ENTER THE FORMAT 0.00 ", ex.Message);

txtbat.Focus();

}

}

5.4 Screen Shots
Login.cs

[image: image9.png]Pharmacy Management

l& T
N

Main.cs

[image: image10.png]§ WELCOME

TimeLogIn | 30241P

Henu

About

DEVELOPED BY VSV TEAM
email: vsv@gmail.com
PhigBrb543310

Stockdetail.cs

[image: image11.png]ADMIN ACCESS

BatchNo Mex N Tax Percen Tax Amoun Unit Price

ineN_Company MRP.

Quna [] 101 WETACINTA 26C 2.5 s 155 700
102 cRoci TaEs T a5 : 00 bt

103 ACTIONS00P 31 s . 000 s

o — 104 PRAKTISS QAW 360 s 010 pres
105 s sas a0 s 010 a6

2t Ry W i) ' 0 110

s 22 .00

MedicineName | | ™™ FAIR BLOVEL KA w2
we

Expiry Date |:|

Locaton :l

Unit Price

var [CR—

In Percentage

MRP

— T —)

Bill trancation.cs

[image: image12.png]ADMIN ACCESS

iiNo Amount Date Time
[5058 02/05/2003 1:05:46 PH
2 .08 02j05/2009 1:06:26 PH
3 s 02j05/2003 1:06:43 PH1
Total Amount 4 425,25 02j05j2009 1:07:07 PH

570.89

Purchase detail.cs

[image: image13.png]ADMIN ACCESS

e N Company Purchase P Expiry Dat U

Invoice No Purchase D Batch No Medi Price Tax Percen Tax Amoun Quan

C: 20{11/2008 103 ACTIONS00P JKH 1.70 01414 1.70 o 0.00 50
Q) Find oz aijaoe 102 croc TaBs T s oy w2 006 P
FaS23 20/11/2008 F100 FAIR 8 LOVEL KKA 37.10 0315 35.00 6 210 150
U105 2011/2008 105 JULAX TABS SAS 3.09 0313 3.00 3 0.09 180
U147 20{11/2008 105 JULAX TABS SAS 3.09 0313 3.00 3 0.09 20
ME101 20{11/2008 101 METACIN TAB ZXC. 27.82 0310 26.50 5 1.32 25
RAL2L 11jo1j2009 121 RANBAXY WA 10.92 0zf1z 10.50 4 0.42 30
[= ST = |

Stock return.cs

[image: image14.png]ADMIN ACCESS

Bill No. I | Date EI3 BatchNo Medi

Batch No. [currentstock

wedicneame ||

wec]
e —

onecel |

‘E)Rezum ‘ A, pelete

FromDate | v| ToDate |

e N Manufactu Purchase D Return Dat Quan

‘ﬁazlculazor

] m

 CHAPTER - 6

6. CONCLUSION

 The project “pharmacy management “was designed successfully and it was executed with successful database connectivity. As the project has cs.net as the front end and SQL as the back end, it has been tested through the system testing of each and every module. The five different modules which has been individually connected with database. The customer can buy products through the pharmacy management, and payment is also carried out through the payment system which is very useful for the customers. We can also check the current status of the stock which is updated for each and every second.
Login

Enter into Website

Exit

Homepage

Stock details

 Registration

Report

Purchasing

Bill Transaction

Stop

15

