INTRODUCTION

CHAPTER 1

INTRODUCTION
1.1.Objective:

· The main objective of this Project is to measure the quality of modularization of object-oriented projects by Coupling-based Structural metrics.

· Goal is to analyses or measure how the code is framed for the particular software and Applying Software metrics to show the result.

1.2.Methodology

Much work has been done during the last several years on automatic approaches for code reorganization. Fundamental to any attempt at code reorganization is the division of the software into modules, publication of the API (Application Programming Interface) for the modules, and then requiring that the modules access each other’s resources only through the published interfaces.

Our ongoing effort, from which we draw the work reported here, is focused on the case of reorganization of legacy software, consisting of millions of line of non-object oriented code that was never modularized or poorly modularized to begin with. We can think of the problem as reorganization of millions of lines of code residing in thousands of files in hundreds of directories into modules, where each module is formed by grouping a set of entities such as files, functions, data structures and variables into a logically cohesive unit. Furthermore, each module makes itself available to the other modules (and to the rest of the world) through a published API. The work we report here addresses the fundamental issue of how to measure the quality of a given modularization of the software.
1.3.Modularization

In this context "module" is considered to be a responsibility assignment rather than a subprogram. The modularizations include the design decisions which must be made before the work on independent modules can begin. Quite different decisions are included for each alternative, but in all cases the intention is to describe all "system level" decisions (i.e. decisions which affect more than one module).

SYSTEM ANALYSIS
CHAPTER 2

SYSTEM ANALYSIS
2.1 Analysis of Existing System:

In the existing system large number of coding are divided into only two modules, so each module contains large number of coding. So in the existing system performance analysis takes more time as well as not more accurate.

Some of the earliest contributions to software metrics deal with the measurement of code complexity and maintainability . From the standpoint of code modularization, some of the earliest software metrics are based on the notions of coupling and cohesion . Low intermodule coupling, high intramodule cohesion, and low complexity have always been deemed to be important attributes of any modularized software. The above-mentioned early developments in software metrics naturally led several researchers to question their theoretical validity. Theoretical validation implies conformance to a set of agreed-upon principles and these principles are usually stated in the form of a theoretical framework.

.
2.2. Process of Proposed System:

Modern software engineering dictates that a large body of software be organized into a set of modules. A module captures a set of design decisions

which are hidden from other modules and the interaction among the modules should primarily be through module interfaces. In software engineering parlance, a module groups a set of functions or subprograms and data structures and often implements one or more business concepts. This grouping may take place on the basis of similarity of purpose or on the basis of commonality of goal

In the Proposed system we considered the leaf nodes of the directory hierarchy of the original source code to be the most fine-grained functional modules. All the files (and functions within) inside a leaf level directory were considered to belong to a single module. In this manner, all leaf level directories formed the module set for the software. After that we apply Coupling-based Structural Metrics as follows
2.2.1.Coupling-Based Structural Metrics

Starting with this section, we will now present a new set of metrics that cater to the principles. We will begin with coupling-based structural metrics that provide various measures of the function-call traffic through the API’s of the modules in relation to the overall function-call traffic. For that we have find the following four factors.
1. Module interaction index

2. Non-API Function Closed ness Index

3. API Function Usage Index

4. Implicit Dependency Index

2.3. Difference b/w Existing and proposed System,

Existing system,

· Million lines of code are divided into two modules. It was very tedious to analysis the code.

· Not applied to different versions to show the difference.

Proposed System,

· For easy maintenance and analyzing each file is divided into single module.

· Metrics is applied to different version of a same software system.

PROBLEM FORMULATION
CHAPTER 3

PROBLEM FORMULATION
3.1 Hardware Specification
· Hard disk : 40 GB

· RAM : 512 MB

· Processor Speed : 3.00GHz

· Processor : Pentium IV Processor

3.2 Software Specification

· JDK 1.5

· Swing Builder

· MS-Access

3.3 Software Description
 JAVA

 Java is conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike Sheridan at sun Microsystems, inc 1991. It look 18 months to develop the first working version. This language was initially called “oak” but was renamed in “JAVA” in 1995. Between the implementation of oak in the fall of 1992 and public announcement of java in the spring of 1995, many more people contributed to the design and the evolution of language. Bill Joy, Arthur van Hoff,Jonathan Payn, Frank Yellin, and Tim Lindholm were key contribution to the maturing of the original prototype.
 Somewhat surprisingly, the original impetus for java was not the internet! Instead, the primary motivation was need for a platform –independent language that could be used to create software to be embedded in various consumer electronics devices, such as microwave oven and remote control.

James L.Weaver’s view
 Java is a programming language that is well suited to designing software that works in conjunction with in internet. Java: a simple, object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded and dynamic language.

Java Features
The Virtual Machine
· A "real" machine runs machine code for that machine only.

· A "virtual" machine runs its own sort of binary data

· The Java Virtual Machine (JVM) is a normal program on each architecture

· It takes Java Byte code as its input language

· Using non-native machine code as the input is called "interpreting".
Program Portabilty
a) The Java Virtual Machine (JVM) is a normal program on each architecture

b) It takes Java Byte code as its input language

c) A single Java program will run on any platform

[image: image1.png]
Fig 3.1 Java Platform Description

The Big Idea
a) If the JVM has been ported to a platform then that platform can run any Java program.

b) If a program is written in Java then it can be run on any platform with a JVM.

Features of Java
DISTRIBUTED: Java: a simple, object-oriented, distributed, interpreted, robust, secure, architecture neutral, portable, high performance, multithreaded and dynamic language.

a) Make use of the platform independence. Distribute it between platforms APPLETS: Build a JVM into a browser or let a browser access an external JVM b) Write your browser in Java Download Java Swings within the web pages. c) The domain functionality is constituted in concordance with that of the modular design of that of the virtual configuration in the internal phase of java applets
JDBC

In an effort to set an independent database standard API for Java, Sun Microsystems developed Java Database Connectivity, or JDBC. JDBC offers a generic SQL database access mechanism that provides a consistent interface to a variety of RDBMSs. This consistent interface is achieved through the use of “plug-in” database connectivity modules, or drivers. If a database vendor wishes to have JDBC support, he or she must provide the driver for each platform that the database and Java run on.

To gain a wider acceptance of JDBC, Sun based JDBC’s framework on ODBC. As you discovered earlier in this chapter, ODBC has widespread support on a variety of platforms. Basing JDBC on ODBC will allow vendors to bring JDBC drivers to market much faster than developing a completely new connectivity solution.

JDBC was announced in March of 1996. It was released for a 90 day public review that ended June 8, 1996. Because of user input, the final JDBC v1.0 specification was released soon after.

The remainder of this section will cover enough information about JDBC for you to know what it is about and how to use it effectively. This is by no means a complete overview of JDBC. That would fill an entire book.

JDBC Goals

Few software packages are designed without goals in mind. JDBC is one that, because of its many goals, drove the development of the API. These goals, in conjunction with early reviewer feedback, have finalized the JDBC class library into a solid framework for building database applications in Java.

The goals that were set for JDBC are important. They will give you some insight as to why certain classes and functionalities behave the way they do. The eight design goals for JDBC are as follows:

1. SQL Level API

The designers felt that their main goal was to define a SQL interface for Java. Although not the lowest database interface level possible, it is at a low enough level for higher-level tools and APIs to be created. Conversely, it is at a high enough level for application programmers to use it confidently. Attaining this goal allows for future tool vendors to “generate” JDBC code and to hide many of JDBC’s complexities from the end user.
2. SQL Conformance
SQL syntax varies as you move from database vendor to database vendor. In an effort to support a wide variety of vendors, JDBC will allow any query statement to be passed through it to the underlying database driver. This allows the connectivity module to handle non-standard functionality in a manner that is suitable for its users.
3. JDBC must be implemental on top of common database interfaces
 The JDBC SQL API must “sit” on top of other common SQL level APIs. This goal allows JDBC to use existing ODBC level drivers by the use of a software interface. This interface would translate JDBC calls to ODBC and vice versa.
4. Provide a Java interface that is consistent with the rest of the Java system
Because of Java’s acceptance in the user community thus far, the designers feel that they should not stray from the current design of the core Java system.
Finally we decided to proceed the implementation using Java networking.

SYSTEM DESIGN

CHAPTER 4

SYSTEM DESIGN
4.1 Design Overview

Design involves identification of classes, their relationships as well as their collaboration. In objectory, classes were divided into Entity classes ,interface classes and the control classes. The Computer Aided Software Engineering tools that are available commercially do not provide any assistance in this transition. CASE tools take advantage of meta modeling are helpful only after the construction of class diagram is completed.
In the Fusion method ,it used some object-oriented approaches like Object Modeling Technique(OMT),Class_Responsibility_Collaborator(CRC) and Objectory,used the term Agents to represent some of the hardware and software systems .In Fusion method, there was no requirement phase ,where in a user will supply the initial requirement document. Any software project is worked out by both analyst and designer. The analyst creates the Use case diagram. The designer creates the Class diagram. But the designer can do this only after the analyst has created the Use case diagram. Once the design is over it is need to decide which software is suitable for the application.
4.2 Data Flow Diagram

The DFD is also called as bubble chart.It is a simple graphical formalism that can be used to represent a system in terms of the input data to the system,various processing carried out on these data,and the output data is generated by the system.

Data flow diagram
[image: image2.png]
4.3.UML Diagram

[image: image3]
4.4.Class Diagram

[image: image4]
4.5.Object Interaction Diagram

[image: image5]
IMPLEMENTATION

CHAPTER 5

IMPLEMENTATION
Implementation is the stage of the project when the theoretical design is turned out into a working system. Thus it can be considered to be the most critical stage in achieving a successful new system and in giving the user, confidence that the new system will work and be effective.

The implementation stage involves careful planning, investigation of the existing system and it’s constraints on implementation, designing of methods to achieve changeover and evaluation of changeover methods.

Implementation is the process of converting a new system design into operation. It is the phase that focuses on user training, site preparation and file conversion for installing a candidate system. The important factor that should be considered here is that the conversion should not disrupt the functioning of the organization.

5.1. Modular Description

List of Modules

1. Getting input.

2. Code Parsing.

3. Finding Application metadata.

4. Storing into Database.

5. Applying Metrics.

6. Graphical Representation.

5.1.1.Getting Input
User or tester will import file/project to our tool. The desired project which is to be tested is given as a input to this module. This is done in Java using File Input Stream
5.1.2.Code Parsing
The tool will partition the source code by its file type. Also in this module the file will be partition in to the form which is easy for applying our metrics. String Tokenizer and File Name Filter are used for this purpose
5.1.3.Finding Application metadata

In this module the tool will find the size/total number of lines in the project. After that calculate what are the functions/methods are involved in this project. How many methods call from other modules, how many modules call other modules and what are all the functions from other module and find how many classes and modules in a given file
5.1.4.Storing into Database

The output from the above module is stored in the database. It can be done using JDBC-ODBC Driver
5.1.5.Applying Metrics

This module is heart of our project. Here we are going to calculate the quality of software based on the modules, function and size. There are three types of metrics used to calculate the quality of software.
5.1.5.Graphical Representation

Each metric is given various output/result. Using these outputs we can draw a graph. Finally the graph will denote the quality
5.2.Metrics Description
5.2.1.Module Interaction Index

This metric calculates how effectively a module’s API functions are used by the other modules in the system. Assume that a module m has n functions[image: image6.emf] of which the n1 API functions are given by the subset [image: image7.emf]. Also assume that the system S has [image: image8.emf]modules. We now express Module Interaction Index (MII) for a given modulem and for the entire software system S by

[image: image9.emf]
5.2.2. Non-API Function Closedness Index

We now analyze the function calls from the point of view of non-API functions. Recall that the module encapsulation principles P2 also require minimization of non-API-based intermodule call traffic. Ideally, the non-API functions of a module should not expose themselves to the external world. In reality, however, a module may exist in a semi modularized state where there remain some residual intermodule function calls outside the API’s. (This is especially true of large legacy systems that have been partially modularized.) In this intermediate state, there may exist functions that participate in both intermodule and intramodule call traffic. We measure the extent of this traffic using a metric that we call “Non-API Function Closedness Index,” or NC. let [image: image10.emf] represent the set of all functions, the API functions, and the non-API functions, respectively, in module m. Ideally, [image: image11.emf]. But since, in reality, we may not be able to conclusively categorize a function as an API function or as a non-API function, this constraint would not be obeyed. The deviation from this constraint is measured by the metric

[image: image12.emf]
5.2.3.API Function Usage Index

This index determines what fraction of the API functions exposed by a module is being used by the other modules. When a big, monolithic module presents a large and versatile collection of API functions offering many different services, any one of the other modules may not need all of its services. That is, any single other module may end up using only a small part of the API. The intent of this index is to discourage the formation of such large, monolithic modules offering services of disparate nature and encourage modules that offer specific functionalities. Suppose that m has n API functions and let us say that [image: image13.emf]number of API functions are called by another module [image: image14.emf] Also assume that there are k modules [image: image15.emf]that call one or more of the API functions of module m. We may now formulate an API function usage index in the following manner

[image: image16.emf]
5.2.4.Implicit Dependency Index

An insidious form of dependency between modules comes into existence when a function in one module writes to a global variable that is read by a function in another module. The same thing can happen if a function in one module writes to a file whose contents are important to the execution of another function in a different module. And the same thing happens when modules interact with one another through database files. We refer to such intermodule dependencies as implicit dependencies.

Detecting implicit dependencies often requires a dynamic runtime analysis of the software. Such analysis is time consuming and difficult to carry out for complex business applications, especially applications that run into millions of lines of code and that involve business scenarios that can run into thousands, each potentially creating a different implicit dependency between the modules. Here, we propose a simple static-analysis-based metric to capture

such dependencies. This metric, which we call the Implicit Dependency Index (IDI), is constructed by recording for each module the number of functions that write to global entities (such as variables, files, databases), with the proviso that such global entities are accessed by functions in other modules. We believe that the larger this count is in relation to the size of the intermodule traffic consisting of explicit function calls, the greater the insidiousness of implicit dependencies.

For each module mi, we use the notation [image: image17.emf][image: image18.emf]to denote the number of dependencies created when a function in mi writes to a global entity that is subsequently accessed by some function in [image: image19.emf]Let[image: image20.emf], [image: image21.emf] denote the number of explicit calls made by all the functions in mi to any of the functions in [image: image22.emf] We claim that the larger [image: image23.emf] is in relation to [image: image24.emf]the worse the state of the software system. We therefore define the metric as follows:

[image: image25.emf]
SYSTEM TESTING
CHAPTER 6

SYSTEM TESTING
 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

6.1 TYPES OF TESTS

Unit testing

 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program input produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

Functional test

Functional tests provide a systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation , and user manuals.
Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output
 : identified classes of application outputs must be exercised.

Systems/Procedures : interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify business process flows,data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test

System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

White Box Testing

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level .

Black Box Testing

 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested . Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.

6.2 Unit Testing:

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.
Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.

Test objectives
· All field entries must work properly.
· Pages must be activated from the identified link.
· The entry screen, messages and responses must not be delayed.
Features to be tested

· Verify that the entries are of the correct format
· No duplicate entries should be allowed
· All links should take the user to the correct page.
6.3 Integration Testing

Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

6.4 Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.

CONCLUSION

CHAPTER 7

CONCLUSION

We reported on two types of experiments to validate the metrics. In one type, we applied the metrics to two different versions of the same software system. Our experiments confirmed that our metrics were able to detect the improvement in modularization in keeping with the opinions expressed in the literature as to which version is considered to be better. The other type of experimental validation consisted of randomizing a well-modularized body of software and seeing how the value of the metrics changed. This randomization very roughly simulated what sometimes can happen to a large industrial software system as new features are added to it and as it evolves to meet the changing hardware requirements. For these experiments, we chose open-source software systems. For these systems, we took for modularization the directory structures created by the developers of the software. It was interesting to see how the changes in the values of the metrics confirmed this process of code disorganization.
APPENDIX
APPENDIX

Screenshots
CODE ANALYSER

[image: image26.png]
OPENING THE INPUT PROJECT
[image: image27.png]
INPUT PROJECT AFTER PARSING

[image: image28.png]
FINDING METRIC FACTORS
[image: image29.png]
OUTPUT OF METRIC FACTORS

[image: image30.png]
APPLING FORMULA

[image: image31.png]
OUTPUT

[image: image32.png]
[image: image33.png][image: image34.png]
[image: image35.png][image: image36.png]

REFERENCES

REFERENCES

Websites:

· http://en.wikipedia.org/wiki/Diffie-Hellman

· http://pajhome.org.uk/crypt/rsa/rsa.html

· http://java.sun.com/j2se/1.4.2/docs/guide/security/jce/JCERefGuide.html
Books:
· S. Sarkar, A.C. Kak, and N.S. Nagaraja, “Metrics for Analyzing Module Interactions in Large Software Systems,” Proc. 12th Asia- Pacific Software Eng. Conf. (APSEC ’05), pp. 264-271, 2005.
· Java 2: The Complete Reference, Fifth Edition by Herbert Schildt
[image: image37.emf]

Getting Input From the User

Finding Essential Factors

Showing Chart

 DB

Apply Metric and Stored to DB

 API

1. Find Class

2. Find Interface

3. Find functions

4. Find Factor

5. Apply Formula

Finding Classes

1. Insert classes

Finding functions

1. Finding functions for classes and interface.

Apply Formula1. 1.Applying all the formulas

Finding Interfaces

1. Insert Interface

Finding Factors

1. Finding necessary Factors for formula.

Showing Chart as Output

Input

er

API

Non-Api

Database

Getting Input

Getting Values from DB and applying Formula

Find API and Stored to DB

Find Non-Api and Stored to DB

Showing Chart for all Factor

PAGE
2

