1. INTRODUCTION
KTR combines the advantages of both shared key tree and critical key. Among all schemes, it has a light communication overhead (i.e. its average rekey message size per event is the least or close to the smallest), incurs less computation and power consumption on mobile devices than the other schemes (i.e. its average number of decryption per event per user is the smallest), and requires least storage in mobile devices (i.e. its average number of keys held per user is the smallest). Because a mobile receiver generally only has limited resources, such an overhead saving can greatly benefit the receivers so that they can have a longer working duration and more computation capacity to process broadcast data.

Two categories of key management schemes in the literature may be applied in broadcast services: (1) logic key hierarchy (LKH) based techniques proposed for multicast services ; and (2) broadcast encryption techniques in current broadcast services (such as satellite TV). We notice that current broadcast encryption techniques, including BISS, Digicipher , Irdeto , Nagravision , Viaccess , and VideoGuard , cannot in fact support flexibility. They normally require users to possess decryption boxes to receive the subscribed programs, and the broadcast services can only provide to users a few packages, each of which includes a fixed set of programs (TV channels). Users cannot select individual programs within a package. If a user wants to change his subscription, the user needs to request another decryption box that can decrypt the subscribed programs. Hence, in this paper, we will focus on adapting more flexible

LKH-based techniques. Nevertheless, directly applying LKH in broadcast services is not the most efficient approach. In broadcast services, a program is equivalent to a multicast group, and users who subscribe to one program form a group. Intuitively, we could manage a separate set of keys for each program, and ask a user to hold m sets of keys for his subscribed m programs. This straightforward approach is inefficient for users subscribing to many programs. If users could use the same set of keys for multiple programs, there would be fewer requirements for users to handle keys. Furthermore, when a user changes subscription, we argue that it is unnecessary to change keys for the programs to which the user is still subscribing, as long as security can be ensured. In this way, rekey cost can be reduced and fewer users will be affected. Therefore, we propose a new key management scheme, namely key tree reuse (KTR), based on two important observations: (1) users who subscribe to multiple programs can be captured by a shared key tree, and (2) old keys can be reused to save rekey cost without compromising security. KTR has two components: shared key tree and shared key management, and its contribution include the following aspects.

PAGE
1

