
 CHAPTER 1
 INTRODUCTION
While going through the paper about various innovative technologies in the modern electronics world we came across the concept of fuzzy in the paper titled “ Implementation of fuzzy temperature control using microprocessor”. We found this concept to be quite interesting and we decided to implement this concept using microcontroller.
When Lotfi Zadeh introduced the world to fuzzy logic in 1965, he forgot to include, or rather was unprepared to include a user's manual., the Though he created fuzzy logic as a mathematical discipline that would allow designers create systems directly from human intuition and experience, the practice of actually applying it has for many years been a rather trial and error, arbitrary art. In other words, fuzzy logic's development methodology has remained a rather open issue. As a result initial users of fuzzy logic in real-world applications were intrepid researchers such as Abe Mamdani in the field of control engineering and Hans Zimmermann in business modeling. Today, this situation is much different. Fuzzy logic has become a commonly used technology and through the large number of successful applications development tools, as well as a development methodology, have evolved. The methodology has become part of an upcoming extension of an International Electrotechnical Commission standard (IEC 1131-3), providing designers with a guide through all steps of a fuzzy logic development project. With such standardized methodology, designers will be relieved from spending exuberant amounts of time experimenting with fuzzy logic before they can use it in their applications. Even better, designers will not need to study long and dry standards reports, because the upcoming generation of fuzzy logic design tools already incorporate much of this standardized methodology in their development environments.
The main aim of this project is to designed a system that can control the temperature of devices on the basis of fuzzy logic , and when the temperature exceeds the desired limit , the user is informed about the limit being exceeded using sms .In ihis report we are discussing the various components used and how to design a PCB.

CHAPTER2
FUZZY LOGIC
 Fuzzy Logic Control (FLC) is based on the theory of Fuzzy Sets. It has become popular with the increasing use of microcontrollers and embedded controllers. FLC can perhaps be best classified as a high-level programming paradigm. It is more suitable for embedded control when digital information processing is used, such as in the case of microcontrollers. A wide range of non-linear control tasks may be implemented with FLC. Since FLC is described by rules written in plain (English) language, no special programming skills are required. This feature makes FLC easy to review and modify. FLC is considered to be a robust methodology since typically the system response does not depend on a single rule or even a single input.
2.1 Fuzzy Logic Development Tools
 A key element of fuzzy logic is its characteristic trait which transforms the binary world of digital computing into a computation based on continuous intervals, true fuzzy logic must be emulated by a software program on a standard microcontroller processor. Initial attempts at this software emulation proved to be very inefficient. Even a small fuzzy logic system required approximately one second to compute on a standard 8051 microcontroller. For most real-time control applications, this was much too slow. Some vendors looked into hardware acceleration of fuzzy logic by designing fuzzy coprocessors. Today, such hardware acceleration devices are available from many vendors including Fujitsu, Siemens, SGS-Thomson, and VLSI. While fuzzy coprocessors can compute fuzzy logic systems in only fractions of a millisecond, a coprocessor design can be much more expensive than a software-only solution on a standard microcontroller.
 At compile time, fuzzyTECH clusters the rule base into segments, requiring the microcontroller to evaluate only a small fraction of the rule base at runtime. In the a case of a rule base containing 500 rules, the microcontroller first determines which of the segments contain rules that apply to the current input conditions. This can reduce the number of rules that need to be evaluated at runtime to perhaps 100. Rules that do not apply to the current input conditions in the fuzzy computation do not influence the result and would only add unnecessary cycles to the fuzzy computation. In another step, the microcontroller determines which of the rules are dominated by others. These dominated rules also play no part in influencing the result and are thus eliminated from the computation as well. This subsequent step can reduce the number of rules that must be computed at runtime to around 25, sometimes fewer. Typically, only 5% of the rules in a fuzzy logic system actually need to be computed. This two-step determination of a rule segment, containing the influencing rules before actually computing an inference result, is quite fast at runtime because it uses a segmentation made at compile time.
Another key technique implemented in the fuzzyTECH microkernel is resolution analysis. In a microcontroller implementation of fuzzy logic, computations in the defuzzification step often consume most of the total inference time. Hence, the major reason for the fast execution of fuzzy logic on standard microcontrollers lies in the identification and definition of intelligent shortcuts during compile time on the development PC. Because even very small modifications of the fuzzy logic system definition may require completely different shortcuts, this analysis must be performed by the fuzzyTECH compiler on each compile. This analysis is what makes hand-coding the fuzzy logic algorithm is so impractical. Any time even a small modification of the fuzzy logic system is made by the designer, very significant modifications in the assembly code may become necessary.
A fuzzy logic system implements a control strategy by "if-then" fuzzy rules that use fuzzily defined expressions such as "pretty_low" or "relatively_high". Many fuzzy logic systems consist of multiple components. For example, one component may estimate a process variable for which a sensor does not exist by utilizing related input signals. Based on this fuzzy estimation and other inputs, another component could define the actual control strategy. Each component of a fuzzy logic system contains a subset of the complete fuzzy rule set and is thus called a "rule block". While the first three steps of a fuzzy logic development - definition of variables, structure, and rules - are the design phase of the development, the next two steps cover the debugging phase. In the debugging phase, analyzers and editors are used to visualize the computation of the fuzzy logic inference. For example, the fuzzy rules are checked for consistency and completeness. In interactive debugging, the designer simulates specific input conditions for the fuzzy logic system and evaluates its reaction. If the performance is not satisfactory, the analyzers point the designer toward the respective rules and variables that require tuning. Depending on the application, process simulations and recorded process data may also be used in this fourth development step.
In some applications, the final tuning and verification of the fuzzy logic system can only be completed when the fuzzy logic system controls the process in real time. A technique known as "on-line" debugging lets designers connect the microcontroller to the PC running fuzzy TECH by a serial cable or in-circuit emulator. The designer may then conduct the same analyses on-line that were performed off-line in the previous development step.
Advantages of FLC
suitable for microcontroller-based systems.
 High level linguistic-variable-based control task description.
Easy to review and modify.
Robust.
May be used for linear and nonlinear control.
Easy to implement multi-input-multi-output control.
Smooth response.
Disadvantages of FLC
Difficult to program.
Difficult to model and evaluate with analytical methods.
FLC requires some numerical manipulations which are difficult to program separately for each application. Moreover, unlike, say PID (proportional-integral-differential) control, since FLC is not necessarily a single-input-single-output linear control paradigm, analytical methods to evaluate the controller's response and behavior do not exist.

CHAPTER 3
BLOCK DIAGRAM

 (
LM35
)
 Fig.3.1 Block diagram
3.1 DESCRIPTION:
The main aim of this project is to designed a system that can control the temperature of the devices on the basis of fuzzy logic .Using ADC0809, as an Analog to digital Converter. This is an 8-bit processing unit. The input to the ADC is a change in thermal temperature ,which is coming from the LM35 sensor that we have connected in our project. ADC then convert the temp. change into the required digital values. The MCU will further process the data on the basis of fuzzy logic written.and depending upon the temperature sensed the device is made to switch on or off and if temperature exceeds the safe limit the messaege is displayed on phone through modem. Here the refrence temperature can be entered through pc method or manual method.

CHAPTER 4
 POWER SUPPLY UNIT

 (
TRANSFORM
ER
) (
VOLTAGE REGULATOR
) (
SHUNT

CAPACITOR
) (
BRIDGE RECTIFIER
)

 Fig no. 4.1 Block diagram of power supply
The power supply circuit comprises of four basic parts:
The transformer steps down the 220 V a/c. into 12 V a/c. The transformer work on the principle of magnetic induction, where two coils: primary and secondary are wound around an iron core. The two coils are physically insulated from each other in such a way that passing an a/c. current through the primary coil creates a changing voltage in the primary coil and a changing magnetic field in the core. This in turn induces a varying a/c. voltage in the secondary coil.
The a/c. voltage is then fed to the bridge rectifier. The rectifier circuit is used in most electronic power supplies is the single-phase bridge rectifier with capacitor filtering, usually followed by a linear voltage regulator. A rectifier circuit is necessary to convert a signal having zero average value into a non-zero average value. A rectifier transforms alternating current into direct current by limiting or regulating the direction of flow of current. The output resulting from a rectifier is a pulsating D.C. voltage. This voltage is not appropriate for the components that are going to work through it.

 (
7805
)																1N4007								12-0-12 V																														1000uF					

Fig no.4.2 Circuit diagram of power supply				TRANSFORMER								 The
ripple of the D.C. voltage is smoothened using a filter capacitor of 1000 microF 25V. The filter capacitor stores electrical charge. If it is large enough the capacitor will store charge as the voltage rises and give up the charge as the voltage falls. This has the effect of smoothing out the waveform and provides steadier voltage output. A filter capacitor is connected at the rectifier output and the d.c voltage is obtained across the capacitor. When this capacitor is used in this project, it should be twice the supply voltage. When the filter is used, the RC charge time of the filter capacitor must be short and the RC discharge time must be long to eliminate ripple action. In other words the capacitor must charge up fast, preferably with no discharge.

When the rectifier output voltage is increasing, the capacitor charges to the peak voltage Vm. Just past the positive peak, the rectifier output voltage starts to fall but at this point the capacitor has +Vm voltage across it. Since the source voltage becomes slightly less than Vm, the capacitor will try to send current back through the diode of rectifier. This reverse biases the diode. The diode disconnects or separates the source the source form load. The capacitor starts to discharge through load. This prevents the load voltage from falling to zero. The capacitor continues to discharge until source voltage becomes more than capacitor voltage. The diode again starts conducting and the capacitor is again charged to peak value Vm. When capacitor is charging the rectifier supplies the charging through capacitor branch as well as load current, the capacitor sends currents through the load. The rate at which capacitor discharge depends upon time constant RC. The longer the time constant, the steadier is the output voltage. An increase in load current i.e. decrease in resistance makes time constant of discharge path smaller. The ripple increase and d.c output voltage V dc decreases. Maximum capacity cannot exceed a certain limit because the larger the capacitance the greater is the current required to charge the capacitor.
 The voltage regulator regulates the supply if the supply if the line voltage increases or decreases. The series 78xx regulators provide fixed regulated voltages from 5 to 24 volts. An unregulated input voltage is applied at the IC Input pin i.e. pin 1 which is filtered by capacitor. The out terminal of the IC i.e. pin 3 provides a regular output. The third terminal is connected to ground. While the input voltage may vary over some permissible voltage range, and the output voltage remains constant within specified voltage variation limit. The 78xx IC’s are positive voltage regulators whereas 79xx IC’s are negative voltage regulator. These voltage regulators are integrated circuits designed as fixed voltage regulators for a wide variety of applications. These regulators employ current limiting, thermal shutdown and safe area compensation. With adequate heat sinking they can deliver output currents in excess of 1 A. These regulators have internal thermal overload protection. It uses output transistor safe area compensation and the output voltage offered is in 2% and 4% tolerance.

CHAPTER 5
 MICROCONTROLLER UNIT

5.1 INTRODUCTION
 A microcontroller is a computer which is implemented on a single VLSI chip. It incorporates all the features found in microprocessor but also have additional features to make a complete microcomputer system on its own. It has built in RAM, ROM, parallel input/output (I/O), serial I/O, counters and a clock generator. It has also got on-chip peripheral devices.

5.2 MICROCONTROLLER Vs MICROPROCESSOR

Table 5.1 : Comparison between microcontroller & microprocessor
	MICROCONTROLLERS
	MICROPROCESSORS

	More opcodes & few bit handling instructions
	Less opcodes & more bit handling instructions

	Uses VLSI & have high processing speed
	Uses LSI & have low processing speed

	Peripherels are embedded on same chip
	Peripherels are interfaced externally

	High reliability & less flexibility
	Less reliability & more flexibility

	Multifunctionals pins are more
	Multifunctional pins are less

	It has got internal memory
	No internal memory is present

5.3 CHOOSING A MICROCONTROLLER
	There are basic three criteria in choosing microcontrollers which are as follow
1. The first and foremost criteria in choosing the microcontroller is that it must meet the task at hand efficiently and cost effectively. In analyzing the needs of a microcontroller based project, we must first see whether an 8-bit, 16-bit or 32-bit can best handle the computing needs of the task more effectively. Among other considerations in this category are: speed, power consumption, amount of RAM, ROM, number of I/O pins and timers, cost per unit.
2. The second criterion in choosing a microcontroller is hoe easy it is to develop products around it. Key considerations include the availability of an assembler, debugger, a code efficient C language compiler, emulator, technical support and both in-house and outside expertise.
3. The third criterion in choosing a microcontroller is its already availability in needed quantity booth now and in the future. Currently, of the leading 8-bit microcontroller, the 8051 family has the larger number of diversified suppliers. The 8051 was originally produced by Intel and several other companies involved in its manufacturing are Atmel, Philips/ Signetics, AMD, Infineon, Matra and Dallas semiconductor.
5.4 OVERVIEW OF THE 8051 FAMILY
In 1981, Intel corporation introduced an 8-bit microcontroller called the 8051. This microcontroler had 128bytes of RAM, 4K bytes of on-chip ROM, two timers, one serial port, and four ports all on the same chip. At that time it was also referred to as “system on a chip”. The 8051 is an 8-bit processor, meaning that the CPU can work on only 8-bits of data at a time. Data larger than 8-bit has to be broken into 8-bit pieces to be processed by the CPU. It has a total of four I/O ports each 8-bits wide. It can have a maximum of 64K bytes on-chip ROM, many manufacturers have put only 4K bytes on the chip. The 8051 becomes widely popular after Intel allowed other manufacturers to make and market any flavours of the 8051 they please with the condition that they remain code-compatble with the 8051. This has led to many versions of the 8051 with different speeds and amounts of on-chip ROM marketed by more than half a dozen manufacturers. It is important to note that although there are different flavours of the 8051 in terms of speed and amount of on-chip ROM, they all are compatible with the original 8051 as far as the instructions are concerned. This means if we write our program for one, it will run on any of them regardless of the manufacturer.
5.5 AT89C51 FROM ATMEL CORPORATION
The Atmel corporation has a wide selection of 8051 chips, as shown in Table 1 and 2. For example, the AT89C51 is a popular and inexpensive chip used in many small projects. It has 4K bytes of flash ROM. Notice that AT89C51-12PC, where “C” before the 51 stands for CMOS, which has the low power consumption, “12” indicates 12 MHz, “P” is for plastic DIP package, “C” is for commercial.

Table 5.2 : Versions of 8051 from ATMEL (All ROM flash)
	Part Number
	ROM
	RAM
	I/O Pins
	Timer
	Interrupt
	Vcc
	Packaging

	AT89C51
	4K
	128
	32
	2
	6
	5V
	40

	AT89LV51
	4K
	128
	32
	2
	6
	3V
	40

	AT89C1051
	1K
	64
	15
	1
	3
	3V
	20

	AT89C2051
	2K
	128
	15
	2
	6
	3V
	20

	AT89C52
	8K
	128
	32
	3
	8
	5V
	40

	AT89LV52
	8K
	128
	32
	3
	8
	3V
	40

The AT89C52 is a low-power, high-performance CMOS 8-bit microcomputer with 8K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard 80C51 and 80C52 instruction set and pinout.The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C52 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications.

5.6 FEATURES

• Compatible with MCS-51™ Products
• 8K Bytes of In-System Reprogrammable Flash Memory
• Endurance: 1,000 Write/Erase Cycles
• Fully Static Operation: 0 Hz to 24 MHz
• Three-level Program Memory Lock
• 256 x 8-bit Internal RAM
• 32 Programmable I/O Lines
• Three 16-bit Timer/Counters
• Eight Interrupt Sources
• Programmable Serial Channel
• Low-power Idle and Power-down Modes

5.7PIN DIAGRAM

Fig.5.1 Pin Diagram
1. Vcc : It is pin number 40 used to supply voltage to the microcontroller.

2. GND : It is pin number 20 and is connected to ground.

3. PORT 0 : Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs. Port 0 may also be configured to be the multiplexed low order address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification.

4. PORT 1 : Port 1 is an 8-bit bi-directional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification.
 		In addition, P1.0 and P1.1 can be configured to be the timer/counter 2 external count input (P1.0/T2) and the timer/counter 2 trigger input (P1.1/T2EX), respectively, as shown in the following table. Port 1 also receives the low-order address bytes during Flash programming and verification

	 Table 5.3: port 1, alternate functions
 (
P
o
r
t

Pin
A
l
terna
t
e

F
u
ncti
o
ns
P
1
.0
T
2

(
e
x
t
e
r
n
a
l

c
o
u
n
t

i
n
p
u
t

to

T
i
m
e
r/Cou
n
ter

2),
c
l
o
c
k
-
o
u
t
P
1
.1
T
2
EX

(
T
i
m
er/Co
u
nt
e
r

2

ca
p
tur
e
/re
l
oad

t
r
i
g
g
e
r

and
d
ir
e
ct
i
o
n

c
o
ntro
l
)
)

5. PORT 2 : Port 2 is an 8-bit bi-directional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups.
Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, Port 2 uses strong internal pul- lups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification.

6. PORT 3 : Port 3 is an 8-bit bi-directional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins, they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups.
Port 3 also serves the functions of various special features of the AT89C51, as shown in the following table. Port 3 also receives some control signals for Flash pro- gramming and verification.

Table 5.4: port 3 , alternate functions

	Port Pin
	Alternate Functions

	P3.0
	RXD (serial input port)

	P3.1
	TXD (serial output port)

	P3.2
	INT0 (external interrupt 0)

	P3.3
	INT1 (external interrupt 1)

	P3.4
	T0 (timer 0 external input)

	P3.5
	T1 (timer 1 external input)

	P3.6
	WR (external data memory write strobe)

	P3.7
	RD (external data memory read strobe)

.

7. RST : Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device.

8. ALE/PROG : Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE pulse is skipped during each access to external Data Memory.
If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only dur- ing a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode.

9. PSEN : Program Store Enable is the read strobe to external program memory. When the AT89C52 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory.

10. EA/VPP : External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to VCC for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP.

11. XLAT 1 : Input to the inverting oscillator amplifier and input to the internal clock operating circuit.

12. XLAT 2 : Output from the inverting oscillator amplifier.

5.8 ARCHITECTURE OF 8052 MCS :

		Fig.5.2 Architecture of 8052
The basic 8051 chip includes a number of peripheral I/O devices including two timer/Counters, 8-bit I/O ports, and a UART. The inclusion of such devices on the 8051 chip is shown in figure 1.4. These I/O devices will be described later.
5.9 MEMORY AND REGISTER ORGANIZATION
 (
FFFFh
) The AT89C52 implements 256 bytes of on chip RAM. The upper 128 bytes occupy a parallel address space to the Special Function Registers. That means the upper 128 bytes have the same addresses as the SFR space but are physically separate from SFR space. When an instruction accesses an internal location above address 7FH, the address mode used in the instruction specifies whether the CPU accesses the upper 128 bytes of RAM or the SFR space. Instructions that use direct addressing access SFR space. For example, the following direct addressing instruction accesses the SFR at location 0A0H (which is P2).

		MOV 0A0H, #data

Instructions that use indirect addressing access the upper 128 bytes of RAM. For example, the following indirect addressing instruction, where R0 contains 0A0H, accesses the data byte at address 0A0H, rather than P2 (whose address is 0A)
 MOV @R0, #data

Note that stack operations are examples of indirect addressing, so the upper 128 bytes of data RAM are available at stack space
5.9.1 External Code Memory
 The executable program code is stored in this code memory. The code memory size is limited to 64KBytes (in a standard 8051). The code memory is read-only in normal operation and is programmed under special conditions e.g. it is a PROM or a Flash RAM type of memory.
5.9.2 External RAM Data Memory
 This is read-write memory and is available for storage of data. Up to 64KBytes of external RAM data memory is supported (in a standard 8051).
5.9.3 Internal Memory
The 8052’s on-chip memory consists of 256 bytes organised as follows:
Lower 128 bytes:	00h to 1Fh	Register Banks
20h to 2Fh	Bit Addressable RAM
30 to 7Fh	General Purpose RAM
 Upper 128 bytes:	80h to FFh	Special Function Registers

CHAPTER 6
 ANALOG TO DIGITAL CONVERTER
The process of conversion of analog signal to digital signal is referred to as analog to digital conversion. The system used for realizing this conversion is referred to as an analog-to-digital converter (A/D converter or ADC). The A/D conversion is a quantizing process where by an analog signal is represented by equivalent binary states.
Table 6.1: Types of available ADC’s
	Manufacturers
	Type
	Availability
	Cost
	Comments

	National semiconductor
	AD0808
	Easily
	125/-
	8-bit ADC

	National semiconductor
	AD0809
	Easily
	225/-
	8-bit ADC

	Intersil, Harris
	ICL7109
	Moderate
	275/-
	7 segment LED

	Intersil, Harris
	ICL7107
	Moderate
	65/-
	ADC with LED display driver

6.1	Successive Approximation A/D converter
This is the most popular method of analog to digital conversion. It has an excellent compromise between accuracy and speed. An unknown voltage Vin is compared with a fraction of reference voltage, Vr. For n-bit digital output, comparison is made many times with different fractions of Vr and the value of a particular bit is set to 1, if Vin is greater than the set fraction of Vr. It includes three major elements:

· The D/A converter
· The Successive Approximation Register
· The comparator.

6.2	Signal conversion
 The output signal from the humidity and temperature sensors is in analog form and the data can be fed to the microcontroller only in digital form so an Analog to digital converter is to be used. The 8-bit A/D converter ADC 0809 uses successive approximation as the conversion technique. The ADC0809 data acquisition component is a monolithic CMOS device with an 8-bit analog-to-digital converter, 8- channel multiplexed and microprocessor compatible control logic. The converter features a high impedance chopper stabilized comparator, a 25R voltage divider with analog switch tree and a successive approximation register. The 8 –Channel multiplexer can directly access any of 8-single-ended analog signals. The device eliminates the need for external zero and full –scale adjustments. Easy interfacing to microprocessors is provided by the latched and decoded multiplexed address inputs and latched TTL TRI-STATE outputs. Incorporating the most desirable aspects of several A/D conversion Techniques has optimized the design of the ADC0809. The ADC0808, ADC0809 offers high speed. High accuracy, minimal temperature dependence, excellent long-term accuracy and repeatability, and consumes minimal power. These features make this device ideally suited to applications from process and machine control to consumer and automotive applications.

6.3	Key specifications of ADC0809
· Easy interface to all microprocessors and microcontrollers.
· Resolution: 8 Bits.
· Operates ratio metrically or with 5 VDC or analog span.
· No zero or full scale adjusts required.
· 8-channel multiplexer with address logic.
· Total Unadjusted Error = ½ LSB.
· Single supply 5 VDC
· Low Power 15m W, conversion time 100s

 (
116
) Fig 6.1 : DIP connection diagram for ADC 0809/0808
6.4	Working and Pin Description
The 8-channel multiplexer can be controlled by a microcontroller through a 3-bit address decoder with address load to select any one of eight single-ended analog switches connected directly to the comparator. Channel 0 of the multiplexer has been selected permanently by grounding the address pins of multiplexer in the electronics hardware i.e. Pin no. 23, Pin no. 24 and Pin no. 25.
The comparison and the converting methods used eliminate the possibility of missing codes, non-monotonicity, and the need for zero or full-scale adjustment. Also featured are latched 3-state outputs from the SAR and latched inputs to the multiplexer address decoder. The single 5V supply and low power requirements make the ADC 0808 especially useful for a wide variety of applications. Ratio metric conversion is made possible by access to the reference voltage input terminals. The ADC 0809 are characterized for operation from – 40 0C to 85 0C. The ADC 0809/0808 contains a network with 256-300 resistors in series. Analog switch taps are made at the junction of each resistor and at each end of the network. In operation, a reference of 5V is applied across the network of 256 resistors. An analog input VIN is first compared to the center point of the ladder via the appropriate switch. If VIN is larger than VREF / 2, the internal logic changes the switch points and now compares VIN and ¾ VREF.
This process, known as successive approximation, continues until the best match of VIN and VREF is made. N defines a specific tap of the resistor network. When the conversion is complete, the logic loads a binary word corresponding to this tap into the output latch and an end of conversion (EOC) logic level appears. The output latch holds this data valid until a new conversion is completed and new data is loaded into the latches.
The data transfer occurs in about 100ns so that valid data is present virtually all the time in the latches. The data outputs are activated when the output enable is high, and in TRI-STATE when output enable is low. The enable delay time is approximately 100ns.each conversion requires 40 clock periods. The device may be operated in the free running mode by connecting the start conversion line to the end of conversion line. However, to ensure start-up under all possible conditions, an external start conversion pulse is required during power up conditions.
The EOC line (pin 7) will be in the low state for a maximum of 40 clock periods to indicate “busy”. A START pulse that occurs while the A/D is BUSY will reset the SAR and start a new conversion with the EOC signal remaining in the low state until the end of this new conversion. When the conversion is complete, the EOC line will go to the high Voltage State. An additional 4-clock period must be allowed to elapse after EOC goes high, before a new conversion cycle is requested.
Start conversion pulses that occurs during this last 4 clock period interval may be ignored. This is a problem only for high conversion rates and keeping the number of conversions per second less than fCLOCK/44 automatically guarantees proper operation. The transfer of new digital data to the output is initiated when EOC goes to the high Voltage State. The reference applied across the 256 networks determines the analog input range. A reference voltage of 5V is applied to the pin number 12 of the ADC 0808. Since the conversion completes with in 256 steps. By using VREF = 5V, each step have voltage of 20mv as 5 / 256 = 20mv.The pin numbers 1, 2, 3, 4, 5, 26, 27, 28 of the ADC 0808 describes the 8 multiplexer channels. Any channel can be selected by using three address bits ADDA (pin 25), ADDB (pin 24), ADDC (pin 23). In the hardware channel (INO) pin number 26 is selected permanently by grounding ADDA, ADDB, ADDC.
The 8-bit digital output we are getting at the pin numbers 21, 20, 19, 18, 8, 15, 14, 17 of ADC 0809 are connected to port 2 of the 8051 microcontroller. Pin10 of ADC 0809 is for CLK input. Since ADC 0809 have clock between 50 KHz to 800 KHz. A reference of 5V is provided at pin12 of ADC 0809. ````

 Fig. 6.2 Interfacing of microcontroller with ADC

CHAPTER 7
SERIAL COMMUNICATION

7.1 OVERVIEW OF ASYNCHRONOUS SERIAL COMMUNICATIONS
7.1.1 RS-232 Serial Communications
The EIA RS-232 serial communication standard is a universal standard, originally used to connect teletype terminals to modem devices. Figure 7.1(a) shows a PC connected to a device such as a modem or a serial printer using the RS-232 connection. In a modern PC the RS-232 interface is referred to as a COM port. The COM port uses a 9-pin D-type connector to attach to the RS-232 cable. The RS-232 standard defines a 25-pin D-type connector but IBM reduced this connector to a 9-pin device so as to reduce costand size. Figure 6.1(b) shows a simple simplex serial communication link where data is beingtransmitted serially from left to right. A single Tx (transmit) wire is used for transmission and the return (Gnd) wire is required to complete the electrical circuit.Figure 6.1(c) shows the inclusion of another physical wire to support full-duplex (or half-duplex) serial communication. The RS-232 (COM port) standard includes additional signal wires for “hand-shake” purposes, but the fundamental serial communication can be achieved with just two or three wires as shown.

(a) Serial communication link

(b) Simple transmission using two wires

Fig no 7.1 Serial communication

 Two way communication using three wires

The serial data is transmitted at a predefined rate, referred to as the baud rate. The term baud rate refers to the number of state changes per second which is the same as the bit rate for this particular communication scheme. Typical baud rates are: 9600 bps; 19,200 bps; 56kbps etc.

Asynchronous Serial Communications:-

Since data is sent is a serial fashion, without any reference to a timing clock to help synchronise the receiver clock in terms of frequency and phase, the system is said to be non-synchronous, or asynchronous. The baud rate clocks at each end of the RS-232 link are set to the same frequency values but there is no mechanism to synchronise these clocks. Assume the bytes are ascii coded to represent the characters A, B and C. The receiver needs to know exactly where each character starts and finishes. To achieve this the data character is framed with a start bit at the beginning of each character and a stop bit at the end of each character. Figure 7.2(b) shows the start bit as a low logic level and the stop bit as a high logic level. Thus the receiver can detect the start bit and it then clocks in the next eight

a) Sequence without framing

b) Framed data

c) Framed data including a parity bit

Fig 7.2 Asynchronous transmission

character bits. The receiver then expects to find the stop bit, existing as a logic high bit. This is a crude form of synchronisation applied to a system which is inherently non-synchronous. A high price is paid for this form of synchronisation in terms of bandwidth, as for every eight bits of data transmitted two bits are required to support the framing. Ten bits are transmitted to support eight bits of data thus the scheme is, at best, just eighty percent efficient.
Within a microcomputer data is transferred in parallel, because that is the fastest way to do it. For transferring data over long distances, however, parallel data transmission requires too many wires. Therefore, data to be sent long distances is usually converted from parallel form to serial form so that it can be sent on a single wire or pair of wires.

Serial data received from a distant source is converted to parallel form so that it can be easily transferred on the microcomputer buses.
i. Serial Interface
Basic concepts concerning the serial communication can be classified into categories below:
1. Interfacing requirements
1. Transmission format
1. Error check in data communication
1. Standards in serial I/O
 Io/Interfacing Requirements
The serial interface requirement is very much similar to parallel interface requirement. Computer identifies the peripheral through port address and enable if using the read and write signals. The primary difference between the parallel I/O and serial I/O is the number of lines used for data transfer. Parallel I/O requires the entire bus while the serial I/O requires only one or pair of data lines for communication.
ii. Transmission Format
Transmission format for communication is concerned with the issues such as synchronization, direction of data flow, speed, errors and medium of transmission. Serial data can be sent synchronously or asynchronously.
iii. Synchronous Data Transmission
For synchronous data transmission data is sent in blocks at a constant rate. The start and end of the block are identified with specific bytes or bit patterns.
iv. Asynchronous Data Transmission
For asynchronous transmission each data character has a bit which identifies its start and 1 or 2 bits, which identifies its end. Since each character is individually identified, characters can be sent at any time (asynchronously), in the same way that a person types on a keyboard.
The asynchronous format is character oriented. Each character carries the information of the start and stop bits. When no data is being transferred ,a receiver stage high at the logic 1 called mark; logic 0 is called space. The transmission of data begins with one start bit (low) followed by a character and one or two stop bits (high). This is known as framing. The asynchronous format is generally used in low speed transmission (less than 20k bits/sec) in serial I/O one bit is sent out at a time. Therefore how long the bit stays on or off is determined by the speed at which bits are transmitted. The receiver should be set up to receive the bits at the same rate of transmission; otherwise the receiver may not be able to differentiate between the two consecutive 0s and 1s.
The rate at which the bits are transmitted (bits/sec) is called baud. Each equipment has its own baud requirements. The figure shown below shows how the ASCII character A (41) will be transmitted with the 1200 baud with the framing information of one start and one stop bit. The bit time (delay between any two successive bits) is 0.83ms; this is determined by the baud as follows.

 Mark
		Start Bit
Transmission Data			 Stop Bit

Fig 7.4 Asynchronous data format

7.2 Serial Port Description
The electrical speifications of the serial port are contained in the EIA { Electronics industry Association} RS232 standard
It states many parameters such as
1. A “Space” {logic 0} will between +3 and +25 Volts.
2. A “Mark” {logic 1} will between -3 and -25 Volts.
3. The region between +3 and -3 volts is undefined.
4. An open circuit voltage should never exceed 25 volts.{In Reference to GND}
A short circuit current should not exceed 500 ma.The driver should be able to handle this without damage
This chip is used when interfacing micro controller with PC to check the Baud rate and changes the voltage level because micro controller is TTL compatible whereas PC is CMOS compatible
Many receivers designed for RS-232 are sensitive to differentials of 1v or levels. These connectors come in two forms: A male and a female connector. There are theD-Type 9 pin connector and D-Type pin connector both of which are male on the back of the PC.The female connector has holes that allow the pins on the male end to be inserted into the connector.

 Fig 7.6 DB - 9
The female DB-9 connector is typically used as the "plug" that goes into a typical PC. If you see one of these on the back of your computer, it is likely not to be used for serial communication, but rather for things like early VGA or CGA monitors (not SVGA) or for some special control/joystick equipment.
This is the connector that you are more likely to see for serial communications on a "generic" PC. Often you will see two of them side by side (for COM1 and COM2).
 TABLE NO. 7.2 PIN CONNECTOR

	
	9 Pin Connector on a DTE device (PC connection)

	Male RS232 DB9
	

	Pin Number
	Direction of signal:

	1
	Carrier Detect (CD) (from DCE) Incoming signal from a modem

	2
	Received Data (RD) Incoming Data from a DCE

	3
	Transmitted Data (TD) Outgoing Data to a DCE

	4
	Data Terminal Ready (DTR) Outgoing handshaking signal

	5
	Signal Ground Common reference voltage

	6
	Data Set Ready (DSR) Incoming handshaking signal

	7
	Request To Send (RTS) Outgoing flow control signal

	8
	Clear To Send (CTS) Incoming flow control signal

	9
	Ring Indicator (RI) (from DCE) Incoming signal from a modem

The TD (transmit data) wire is the one through which data from a DTE device is transmitted to a DCE device. This name can be deceiving, because this wire is used by a DCE device to receive its data. The TD line is kept in a mark condition by the DTE device when it is idle. The RD (receive data) wire is the one on which data is received by a DTE device, and the DCE device keeps this line in a mark condition when idle.

RTS stands for Request To Send. This line and the CTS line are used when "hardware flow control" is enabled in both the DTE and DCE devices. The DTE device puts this line in a mark condition to tell the remote device that it is ready and able to receive data. If the DTE device is not able to receive data (typically because its receive buffer is almost full), it will put this line in the space condition as a signal to the DCE to stop sending data. When the DTE device is ready to receive more data (i.e. after data has been removed from its receive buffer), it will place this line back in the mark condition. The complement of the RTS wire is CTS, which stands for Clear To Send. The DCE device puts this line in a mark condition to tell the DTE device that it is ready to receive the data. Likewise, if the DCE device is unable to receive data, it will place this line in the space condition. Together, these two lines make up what is called RTS/CTS or "hardware" flow control
DTR stands for Data Terminal Ready. Its intended function is very similar to the RTS line. DSR (Data Set Ready) is the companion to DTR in the same way that CTS is to RTS. Some serial devices use DTR and DSR as signals to simply confirm that a device is connected and is turned on. The Software Wedge sets DTR to the mark state when the serial port is opened and leaves it in that state until the port is closed. The DTR and DSR lines were originally designed to provide an alternate method of hardware handshaking. It would be pointless to use both RTS/CTS and DTR/DSR for flow control signals at the same time.

CD stands for Carrier Detect. Carrier Detect is used by a modem to signal that it has a made a connection with another modem, or has detected a carrier tone.

The last remaining line is RI or Ring Indicator. A modem toggles the state of this line when an incoming call rings your phone.

The Carrier Detect (CD) and the Ring Indicator (RI) lines are only available in connections to a modem. Because most modems transmit status information to a PC when either a carrier signal is detected (i.e. when a connection is made to another modem) or when the line is ringingthese two lines are rarely used
Data is transmitted and received on pins 2 and 3 respectively. Data Set Ready (DSR) is an indication from the Data Set (i.e., the modem or DSU/CSU) that it is on. Similarly, DTR indicates to the Data Set that the DTE is on. Data Carrier Detect (DCD) indicates that a good carrier is being received from the remote modem.
Pins 4 RTS (Request To Send - from the transmitting computer) and 5 CTS (Clear To Send - from the Data set) are used to control. In most Asynchronous situations, RTS and CTS are constantly on throughout the communication session. However where the DTE is connected to a multipoint line, RTS is used to turn carrier on the modem on and off. On a multipoint line, it's imperative that only one station is transmitting at a time (because they share the return phone pair). When a station wants to transmit, it raises RTS. The modem turns on carrier, typically waits a few milliseconds for carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up. When the station has finished its transmission, it drops RTS and the modem drops CTS and carrier together.
Clock signals (pins 15, 17, & 24) are only used for synchronous communications. The modem or DSU extracts the clock from the data stream and provides a steady clock signal to the DTE. Note that the transmit and receive clock signals do not have to be the same, or even at the same baud rate.
7.3 MAX 232:-
The MAX 232 IC contains the necessary drivers{two} and receivers {two}, to adapt the RS- 232 signal voltage levels to TTL logic.It became popular,because it just needs one voltage{+5V} and generates the necessary RS-232 voltage levels{approx -10V AND +10V} internally.This greatly simplified the design of circuitry.And this made the IC so popular.MAX232 is just a driver/receiver.It does not generate the necessary RS-232 sequence of marks and spaces with the right timing,it does not decode RS-232 signal, it does not provide a serial /parallel conversion.All it does is to convert signal voltage levels.
Serial RS-232 (V.24) communication works with voltages (-15V ... -3V for high [sic]) and +3V ... +15V for low [sic]) which are not compatible with normal computer logic voltages. On the other hand, classic TTL computer logic operates between 0V ... +5V (roughly 0V ... +0.8V for low, +2V ... +5V for high). Modern low-power logic operates in the range of 0V ... +3.3V or even lower The MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where ±12V is not available. These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than 5µWThe MAX232 from Maxim was the first IC which in one package contains the necessary drivers (two) and receivers (also two), to adapt the RS-232 signal voltage levels to TTL logic. It became popular, because it just needs one voltage (+5V) and generates the necessary RS-232 voltage levels (approx. -10V and +10V) internally. This greatly simplified the design of circuitry. Circuitry designers no longer need to design and build a power supply with three voltages (e.g. -12V, +5V, and +12V), but could just provide one +5V power supply, e.g. with the help of a simple 78x05 voltage converter.

Typically a pair of a driver/receiver of the MAX232 is used for
· TX and RX
and the second one for
· CTS and RTS.
.

Fig 7.5 Pin Description
Table 7.1 MAX232
	

	Nbr
	Name
	Purpose
	Signal Voltage

	1
	C1+
	+ connector for capacitor C1
	capacitor should stand at least 16V

	2
	V+
	output of voltage pump
	+10V

	3
	C1-
	- connector for capacitor C1
	capacitor should stand at least 16V

	4
	C2+
	+ connector for capacitor C2
	capacitor should stand at least 16V

	5
	C2-
	- connector for capacitor C2
	capacitor should stand at least 16V

	6
	V-
	output of voltage pump / inverter
	-10V

	7
	T2out
	Driver 2 output
	RS-232

	8
	R2in
	Receiver 2 input
	RS-232

	9
	R2out
	Receiver 2 output
	TTL

	10
	T2in
	Driver 2 input
	TTL

	11
	T1in
	Driver 1 input
	TTL

	12
	R1out
	Receiver 1 output
	TTL

	13
	R1in
	Receiver 1 input
	RS-232

	14
	T1out
	Driver 1 output
	RS-232

	15
	GND
	Ground
	0V

	16
	VCC
	Power supply
	+5V

Many receivers designed for RS-232 are sensitive to differentials of 1v or levels. These connectors come in two forms: A male and a female connector. There are theD-Type 9 pin connector and D-Type pin connector both of which are male on the back of the PC.The female connector has holes that allow the pins on the male end to be inserted into the connector.

 Fig 7.6 DB - 9
The female DB-9 connector is typically used as the "plug" that goes into a typical PC. If you see one of these on the back of your computer, it is likely not to be used for serial communication, but rather for things like early VGA or CGA monitors (not SVGA) or for some special control/joystick equipment.
This is the connector that you are more likely to see for serial communications on a "generic" PC. Often you will see two of them side by side (for COM1 and COM2).
 TABLE NO. 7.2 PIN CONNECTOR

	
	9 Pin Connector on a DTE device (PC connection)

	Male RS232 DB9
	

	Pin Number
	Direction of signal:

	1
	Carrier Detect (CD) (from DCE) Incoming signal from a modem

	2
	Received Data (RD) Incoming Data from a DCE

	3
	Transmitted Data (TD) Outgoing Data to a DCE

	4
	Data Terminal Ready (DTR) Outgoing handshaking signal

	5
	Signal Ground Common reference voltage

	6
	Data Set Ready (DSR) Incoming handshaking signal

	7
	Request To Send (RTS) Outgoing flow control signal

	8
	Clear To Send (CTS) Incoming flow control signal

	9
	Ring Indicator (RI) (from DCE) Incoming signal from a modem

The TD (transmit data) wire is the one through which data from a DTE device is transmitted to a DCE device. This name can be deceiving, because this wire is used by a DCE device to receive its data. The TD line is kept in a mark condition by the DTE device when it is idle. The RD (receive data) wire is the one on which data is received by a DTE device, and the DCE device keeps this line in a mark condition when idle.

RTS stands for Request To Send. This line and the CTS line are used when "hardware flow control" is enabled in both the DTE and DCE devices. The DTE device puts this line in a mark condition to tell the remote device that it is ready and able to receive data. If the DTE device is not able to receive data (typically because its receive buffer is almost full), it will put this line in the space condition as a signal to the DCE to stop sending data. When the DTE device is ready to receive more data (i.e. after data has been removed from its receive buffer), it will place this line back in the mark condition. The complement of the RTS wire is CTS, which stands for Clear To Send. The DCE device puts this line in a mark condition to tell the DTE device that it is ready to receive the data. Likewise, if the DCE device is unable to receive data, it will place this line in the space condition. Together, these two lines make up what is called RTS/CTS or "hardware" flow control
DTR stands for Data Terminal Ready. Its intended function is very similar to the RTS line. DSR (Data Set Ready) is the companion to DTR in the same way that CTS is to RTS. Some serial devices use DTR and DSR as signals to simply confirm that a device is connected and is turned on. The Software Wedge sets DTR to the mark state when the serial port is opened and leaves it in that state until the port is closed. The DTR and DSR lines were originally designed to provide an alternate method of hardware handshaking. It would be pointless to use both RTS/CTS and DTR/DSR for flow control signals at the same time.

CD stands for Carrier Detect. Carrier Detect is used by a modem to signal that it has a made a connection with another modem, or has detected a carrier tone.

The last remaining line is RI or Ring Indicator. A modem toggles the state of this line when an incoming call rings your phone.

The Carrier Detect (CD) and the Ring Indicator (RI) lines are only available in connections to a modem. Because most modems transmit status information to a PC when either a carrier signal is detected (i.e. when a connection is made to another modem) or when the line is ringingthese two lines are rarely used
Data is transmitted and received on pins 2 and 3 respectively. Data Set Ready (DSR) is an indication from the Data Set (i.e., the modem or DSU/CSU) that it is on. Similarly, DTR indicates to the Data Set that the DTE is on. Data Carrier Detect (DCD) indicates that a good carrier is being received from the remote modem.
Pins 4 RTS (Request To Send - from the transmitting computer) and 5 CTS (Clear To Send - from the Data set) are used to control. In most Asynchronous situations, RTS and CTS are constantly on throughout the communication session. However where the DTE is connected to a multipoint line, RTS is used to turn carrier on the modem on and off. On a multipoint line, it's imperative that only one station is transmitting at a time (because they share the return phone pair). When a station wants to transmit, it raises RTS. The modem turns on carrier, typically waits a few milliseconds for carrier to stabilize, and then raises CTS. The DTE transmits when it sees CTS up. When the station has finished its transmission, it drops RTS and the modem drops CTS and carrier together.
Clock signals (pins 15, 17, & 24) are only used for synchronous communications. The modem or DSU extracts the clock from the data stream and provides a steady clock signal to the DTE. Note that the transmit and receive clock signals do not have to be the same, or even at the same baud rate.

CHAPTER 8
 					LCD
8.1 LCD Background

Frequently, an 8052 program must interact with the outside world using input and output devices that communicate directly with a human being. One of the most common devices attached to an 8052 is an LCD display. Some of the most common LCDs connected to the 8051 are 16x2 and 20x2 displays. This means 16 characters per line by 2 lines and 20 characters per line by 2 lines, respectively.
44780 BACKGROUND
The 44780 standard requires 3 control lines as well as either 4 or 8 I/O lines for the data bus. The user may select whether the LCD is to operate with a 4-bit data bus or an 8-bit data bus. If a 4-bit data bus is used the LCD will require a total of 7 data lines (3 control lines plus the 4 lines for the data bus). If an 8-bit data bus is used the LCD will require a total of 11 data lines (3 control lines plus the 8 lines for the data bus).
The three control lines are referred to as EN, RS, and RW.
The EN line is called "Enable." This control line is used to tell the LCD that you are sending it data. To send data to the LCD, your program should make sure this line is low (0) and then set the other two control lines and/or put data on the data bus. When the other lines are completely ready, bring EN high (1) and wait for the minimum amount of time required by the LCD datasheet (this varies from LCD to LCD), and end by bringing it low (0) again.
The RS line is the "Register Select" line. When RS is low (0), the data is to be treated as a command or special instruction (such as clear screen, position cursor, etc.). When RS is high (1), the data being sent is text data which sould be displayed on the screen. For example, to display the letter "T" on the screen you would set RS high.
The RW line is the "Read/Write" control line. When RW is low (0), the information on the data bus is being written to the LCD. When RW is high (1), the program is effectively querying (or reading) the LCD. Only one instruction ("Get LCD status") is a read command. All others are write commands--so RW will almost always be low.
Finally, the data bus consists of 4 or 8 lines (depending on the mode of operation selected by the user). In the case of an 8-bit data bus, the lines are referred to as DB0, DB1, DB2, DB3, DB4, DB5, DB6, and DB7.
 Hardware configuration :-
As we've mentioned, the LCD requires either 8 or 11 I/O lines to communicate with. For the sake of this tutorial, we are going to use an 8-bit data bus--so we'll be using 11 of the 8052's I/O pins to interface with the LCD.
Let's draw a sample psuedo-schematic of how the LCD will be connected to the 8052.

Fig 8.1 Connection diagram of LCD with microcontroller

As you can see, we've established a 1-to-1 relation between a pin on the 8051 and a line on the 44780 LCD. Thus as we write our assembly program to access the LCD, we are going to equate constants to the 8052 ports so that we can refer to the lines by their 44780 name as opposed to P0.1, P0.2, etc. Let's go ahead and write our initial equates:
DB0 EQU P1.0
DB1 EQU P1.1
DB2 EQU P1.2
DB3 EQU P1.3
DB4 EQU P1.4
DB5 EQU P1.5
DB6 EQU P1.6
DB7 EQU P1.7
EN EQU P3.7
RS EQU P3.6
RW EQU P3.5
DATA EQU P1
Having established the above equates, we may now refer to our I/O lines by their 44780 name. For example, to set the RW line high (1), we can execute the following insutrction:
SETB RW
HANDLING THE EN CONTROL LINE
As we mentioned above, the EN line is used to tell the LCD that you are ready for it to execute an instruction that you've prepared on the data bus and on the other control lines. Note that the EN line must be raised/lowered before/after each instruction sent to the LCD regardless of whether that instruction is read or write, text or instruction. In short, you must always manipulate EN when communicating with the LCD. EN is the LCD's way of knowing that you are talking to it. If you don't raise/lower EN, the LCD doesn't know you're talking to it on the other lines.
Thus, before we interact in any way with the LCD we will always bring the EN line low with the following instruction:
CLR EN
And once we've finished setting up our instruction with the other control lines and data bus lines, we'll always bring this line high:
SETB EN
The line must be left high for the amount of time required by the LCD as specified in its datasheet. This is normally on the order of about 250 nanoseconds, but check the datasheet. In the case of a typical 8051 running at 12 MHz, an instruction requires 1.08 microseconds to execute so the EN line can be brought low the very next instruction. However, faster microcontrollers (such as the DS89C420 which executes an instruction in 90 nanoseconds given an 11.0592 Mhz crystal) will require a number of NOPs to create a delay while EN is held high. The number of NOPs that must be inserted depends on the microcontroller you are using and the crystal you have selected.

Let's write the code:

WAIT_LCD:
CLR EN ; Start LCD command
CLR RS ;It's a command
SETB RW ;It's a read command
MOV DATA,#0FFh ;Set all pins to FF initially
SETB EN ;Clock out command to LCD
MOV A,DATA ;Read the return value
JB ACC.7,WAIT_LCD ;If bit 7 high, LCD still busy
CLR EN ;Finish the command
CLR RW ;Turn off RW for future commands
RET
Thus, our standard practice will be to send an instruction to the LCD and then call our WAIT_LCD routine to wait until the instruction is completely executed by the LCD. This will assure that our program gives the LCD the time it needs to execute instructions and also makes our program compatible with any LCD, regardless of how fast or slow it is.
INITIALIZING THE LCD
Before you may really use the LCD, you must initialize and configure it. This is accomplished by sending a number of initialization instructions to the LCD.
The first instruction we send must tell the LCD whether we'll be communicating with it with an 8-bit or 4-bit data bus. We also select a 5x8 dot character font. These two options are selected by sending the command 38h to the LCD as a command. As you will recall from the last section, we mentioned that the RS line must be low if we are sending a command to the LCD. Thus, to send this 38h command to the LCD we must execute the following 8051 instructions:
CLR RS
MOV DATA,#38h
SETB EN
CLR EN
LCALL WAIT_LCD
We've now sent the first byte of the initialization sequence. The second byte of the initialization sequence is the instruction 0Eh. Thus we must repeat the initialization code from above, but now with the instruction. Thus the the next code segment is:
CLR RS
MOV DATA,#0Eh
SETB EN
CLR EN
LCALL WAIT_LCD
Programming Tip: The command 0Eh is really the instruction 08h plus 04h to turn the LCD on. To that an additional 02h is added in order to turn the cursor on.
The last byte we need to send is used to configure additional operational parameters of the LCD. We must send the value 06h.
CLR RS
MOV DATA,#06h
SETB EN
CLR EN
LCALL WAIT_LCD
Programming Tip: The command 06h is really the instruction 04h plus 02h to configure the LCD such that every time we send it a character, the cursor position automatically moves to the right.
So, in all, our initialization code is as follows:
INIT_LCD:
CLR RS
MOV DATA,#38h
SETB EN
CLR EN
LCALL WAIT_LCD
CLR RS
MOV DATA,#0Eh
SETB EN
CLR EN
LCALL WAIT_LCD
CLR RS
MOV DATA,#06h
SETB EN
CLR EN
LCALL WAIT_LCD
RET
Having executed this code the LCD will be fully initialized and ready for us to send display data to it.
CLEARING THE DISPLAY
When the LCD is first initialized, the screen should automatically be cleared by the 44780 controller. However, it's always a good idea to do things yourself so that you can be completely sure that the display is the way you want it. Thus, it's not a bad idea to clear the screen as the very first opreation after the LCD has been initialiezd.
An LCD command exists to accomplish this function. Not suprisingly, it is the command 01h. Since clearing the screen is a function we very likely will wish to call more than once, it's a good idea to make it a subroutine:
CLEAR_LCD:
CLR RS
MOV DATA,#01h
SETB EN
CLR EN
LCALL WAIT_LCD
RET
How that we've written a "Clear Screen" routine, we may clear the LCD at any time by simply executing an LCALL CLEAR_LCD.
Programming Tip: Executing the "Clear Screen" instruction on the LCD also positions the cursor in the upper left-hand corner as we would expect.
WRITING TEXT TO THE LCD
Now we get to the real meat of what we're trying to do: All this effort is really so we can display text on the LCD. Really, we're pretty much done.
Once again, writing text to the LCD is something we'll almost certainly want to do over and over--so let's make it a subroutine.
WRITE_TEXT:
SETB RS
MOV DATA,A
SETB EN
CLR EN
LCALL WAIT_LCD
RET
CURSOR POSITIONING
The above "Hello World" program is simplistic in the sense that it prints its text in the upper left-hand corner of the screen. However, what if we wanted to display the word "Hello" in the upper left-hand corner but wanted to display the word "World" on the second line at the tenth character? This sounds simple--and actually, it is simple. However, it requires a little more understanding of the design of the LCD.
The 44780 contains a certain amount of memory which is assigned to the display. All the text we write to the 44780 is stored in this memory, and the 44780 subsequently reads this memory to display the text on the LCD itself. This memory can be represented with the following "memory map":

In the above memory map, the area shaded in blue is the visible display. As you can see, it measures 16 characters per line by 2 lines. The numbers in each box is the memory address that corresponds to that screen position.
Thus, the first character in the upper left-hanad corner is at address 00h. The following character position (character #2 on the first line) is address 01h, etc. This continues until we reach the 16th character of the first line which is at address 0Fh.
However, the first character of line 2, as shown in the memory map, is at address 40h. This means if we write a character to the last position of the first line and then write a second character, the second character will not appear on the second line. That is because the second character will effectively be written to address 10h--but the second line begins at address 40h.
Thus we need to send a command to the LCD that tells it to position the cursor on the second line. The "Set Cursor Position" instruction is 80h. To this we must add the address of the location where we wish to position the cursor. In our example, we said we wanted to display "World" on the second line on the tenth character position.
Referring again to the memory map, we see that the tenth character position of the second line is address 4Ah. Thus, before writing the word "World" to the LCD, we must send a "Set Cursor Position" instruction--the value of this command will be 80h (the instruction code to position the cursor) plus the address 4Ah. 80h + 4Ah = C4h. Thus sending the command C4h to the LCD will position the cursor on the second line at the tenth character position:
CLR RS
MOV DATA,#0C4h
SETB EN
CLR EN
LCALL WAIT_LCD

 									 CHAPTER 9
RELAYS
Introduction

Fig 9.1 Electromagnetic solenoid valve

The electromagnetic relay consists of a multi-turn coil, wound on an iron core, to form an electromagnet. When the coil is energised, by passing current through it, the core becomes temporarily magnetised. The magnetised core attracts the iron armature. The armature is pivoted which causes it to operate one or more sets of contacts.
When the coil is de-energised the armature and contacts are released. The coil can be energised from a low power source such as a transistor while the contacts can switch high powers such as the mains supply. The relay can also be situated remotely from the control source. Relays can generate a very high voltage across the coil when switched
off. This can damage other components in the circuit. To prevent this a diode is

connected across the coil.

As there are always some chances of high voltage spikes back from the switching circuit i.e. heater so an optocoupler/isolator MCT2e is used. It provides and electrical isolation between the microcontroller and the heater. MCT2e is a 6-pin IC with a combination of optical transmitter LED and an optical receiver as phototransistor. Microcontroller is connected to pin no 2 of MCT2e through a 470-ohm resistor. Pin no.1 is given +5V supply and pin no.4 is grounded.
To handle the current drawn by the heater a power transistor BC-369 is used as a current driver. Pin no.5 of optocoupler is connected to the base of transistor. It takes all it’s output to Vcc and activates the heater through relay circuit. The electromagnetic relay consists of a multi-turn coil, wound on an iron core, to form an electromagnet. When the coil is energized, by passing current through it, the core becomes temporarily magnetized. The magnetized core attracts the iron armature. The armature is pivoted which causes it to operate one or more sets of contacts. When the coil is de-energised the armature and contacts are released. Relays can generate a very high voltage across the coil when switched off. This can damage other components in the circuit. To prevent this a diode is connected across the coil. Relay has five points. Out of the 2 operating points one is permanently connected to the ground and the other point is connected to the collector side of the power transistor. When Vcc reaches the collector side i.e. signal is given to the operating points the coil gets magnetized and attracts the iron armature. The iron plate moves from normally connected (NC) position to normally open (NO) position. Thus the heater gets the phase signal and is ON. To remove the base leakage voltage when no signal is present a 470-ohm resistance is used.

 Fig 9.2 Circuit diagram
 CHAPTER 10

TEMPERATURE SENSOR

The LM35 is an integrated circuit sensor that can be used to measure temperature with an electrical output proportional to the temperature (in oC)
The LM35 - An Integrated Circuit Temperature Sensor
· You can measure temperature more accurately than a using a thermistor.
· The sensor circuitry is sealed and not subject to oxidation, etc.
· The LM35 generates a higher output voltage than thermocouples and may not require that the output voltage be amplified

· It has an output voltage that is proportional to the Celsius temperature.
· The scale factor is .01V/oC
· The LM35 does not require any external calibration or trimming and maintains an accuracy of +/-0.4 oC at room temperature and +/- 0.8 oC over a range of 0 oC to +100 oC.
· Another important characteristic of the LM35DZ is that it draws only 60 micro amps from its supply and possesses a low self-heating capability. The sensor self-heating causes less than 0.1 oC temperature rise in still air.
 The LM35 comes in many different packages, including the following.
· TO-92 plastic transistor-like package,
· T0-46 metal can transistor-like package
· 8-lead surface mount SO-8 small outline package
· TO-202 package. (Shown in the picture above)
[bookmark: LM35Circuit]
· Here is a commonly used circuit. For connections refer to the picture above.
· In this circuit, parameter values commonly used are:
· Vc = 4 to 30v
· 5v or 12 v are typical values used.
· Ra = Vc /10-6
· Actually, it can range from 80 K to 600 K , but most just use 80 K.

 Fig10.1 LM 35
· You will need to use a voltmeter to sense Vout.
· The output voltage is converted to temperature by a simple conversion factor.
· The sensor has a sensitivity of 10mV / oC.
· Use a conversion factor that is the reciprocal, that is 100 oC/V.
· The general equation used to convert output voltage to temperature is:
· Temperature (oC) = Vout * (100 oC/V)
· So if Vout is 1V , then, Temperature = 100 oC
· The output voltage varies linearly with temperature.

CHAPTER 11

GSM - GLOBAL SYSTEM FOR MOBILE COMMUNICATION

Cellular telecommunication is one of the fastest growing and most demanding telecommunication application. Currently, it represents a large and continuously increasing percentage of all new telephone subscriptions worldwide. In many cases, cellular solutions successfully compete with traditional wire networks and cordless telephones. In the future, cellular systems employing digital technology will become the universal method
of telecommunication. In 1982 the Nordic Post, Telephone and Telegraph (PTT)
submitted a proposal to Conférence Européenne des Postes et Télécommunications (CEPT) outlining a common European telecommunication service at 900 MHz. A standardization group
called Global System for Mobile communication (GSM) was established to formulate the specifications for this pan-European mobile cellular radio system. During 1982 to 1985, discussions centered around whether to develop an analogue or digital system. In 1985, GSM decided to develop a digital system. In 1986, companies participated in a field test in Paris to
determine whether a narrowband or broadband solution would be employed. In May 1987, the narrowband Time Division Multiple Access (TDMA) solution was chosen.
11.1 GSM SYSTEM ARCHITECTURE

 Fig. 11.1 GSM Architecture

11.2 THE SWITCHING SYSTEM

The switching system (SS) is responsible for performing call processing and subscriber-related functions. The switching system includes the following functional units.

· Home location register (HLR)- The HLR is a centralized network database that stores and manages all mobile subscriptions belonging to a specific operator. It acts as a permanent store for a person’s subscription information until that subscription is canceled. The information stored includes:
· Subscriber identity
· Subscriber supplementary services
· Subscriber location information
· Subscriber authentication information
The HLR can be implemented in the same network node as the MSC or as a stand-alone database. If the capacity of a HLR is exceeded by the number of subscribers, additional HLRs may be added.

· Mobile services switching center (MSC)-The MSC performs the telephony switching functions of the system. It controls calls to and from other telephone and data systems. It also performs such functions as toll ticketing, network interfacing, common channel signaling and others.

· Visitor location register (VLR)- The VLR database contains information about all the mobile subscribers currently located in an MSC service area. Thus, there is one VLR for each MSC in a network. The VLR temporarily stores subscription information so that the MSC can service all the subscribers currently visiting that MSC service area. When a subscriber roams into a new MSC service area, the VLR connected to that MSC requests information about the subscriber from the subscriber’s HLR. The HLR sends a copy of the information to the VLR and updates its own location information. When the subscriber makes a call, the VLR will already have the information required for call set-up.

· Authentication center (AUC)-A unit called the AUC provides authentication and encryption parameters that verify the user's identity and ensure the confidentiality of each call. The AUC protects network operators from different types of fraud found in today's cellular world. The AUC is a database connected to the HLR which provides it with the authentication parameters and ciphering keys used to ensure network security.

· Equipment identity register (EIR)-The EIR is a database that contains information about the identity of mobile equipment that prevents calls from stolen, unauthorized, or defective mobile stations. The AUC and EIR are implemented as stand-alone nodes or as a combined AUC/EIR node

11.3 THE BASE STATION SYSTEM (BSS)

All radio-related functions are performed in the BSS, which consists of base station controllers (BSCs) and the base transceiver stations (BTSs) & transcoder controller.

· BSC-The BSC provides all the control functions and physical links between the MSC and BTS. It is a high-capacity switch that provides functions such as handover, cell configuration data, and control of radio frequency (RF) power levels in base transceiver stations. A number of BSCs are served by an MSC.

· BTS-The BTS handles the radio interface to the mobile station. The BTS is the radio equipment (transceivers and antennas) needed to service each cell in the network. A group of BTSs are controlled by a BSC.

· TRC -The purpose of a TRC is to multiplex network traffic channels from multiple BSCs onto one 64 Kbits/s PCM channel which reduces network transmission costs. The TRC can be combined with the BSC or exist as a stand-alone node.

CHAPTER 12
CIRCUIT DIAGRAM

Working of the project:- now we have reached a situation where we can create the circuit diagram of our project.
The main aim of this project is to designed a system that can control the temperature of devices on the basis of fuzzy logic ,and also with the help of this project we can able to store data like environmental condition and the thermal power plant conditions according to the these natural conditions.
In our project we can divide our project in two parts on the basis of the processing units used in this project. Microcontroller-at89c52 and PC are considered as the processing units in our project.
Explanation on the basis of two processing units.
MCU-At89c52:- MCU is an intelligent device that can decisions on the basis of logic written in it according to different conditions. In our project ,MCU is drectly connected to the ADC ,we are here using ADC0809, as an Analog to digital Converter. This is an 8-bit processing unit. The input to the ADC is a change in thermal temperature ,which is coming from the LM35 sensor that we have connected in our project. ADC then convert the temp. change into the required digital values. The MCU will further process the data on the basis of fuzzy logic written in the controller.
MCU will make relay on and off according to the temperature coming from the LM35 through ADC. For making different on and OFF we have conned our driver ckt to the ULN2003. ULN2003 is and driver ckt.The main advantage of using this driver ckt is that I can easily drive the high load devices easily with the help of MCU. MCU is and +5v driven digital device while relay are +6v and above driven devices , so we need a driver ckt fro driving these type of critical devices.Here we are also using keys to enter the temperature when we are using manual method. Buzzer is also being used to know about exceeded limit.

 MCU are further connected to two main units one is called GSM modem and another is called PC . For the PC ,we can explain it further. But for the GSM , it is very important to first know ,what is the working of GSM modem and what is its function.
GSM modem:-
A GSM modem is a wireless modem that works with a GSM wireless network. A wireless modem behaves like a dial-up modem. The main difference between them is that a dial-up modem sends and receives data through a fixed telephone line while a wireless modem sends and receives data through radio waves.
A GSM modem can be an external device or a PC Card / PCMCIA Card. Typically, an external GSM modem is connected to a computer through a serial cable or a USB cable. A GSM modem in the form of a PC Card / PCMCIA Card is designed for use with a laptop computer. It should be inserted into one of the PC Card / PCMCIA Card slots of a laptop computer.
Here in our project MCU will send Temp to reporting user through MAX232. Max232 is basically an line driver for TTL and RS 232 logic. We are implementing GSM interfacing with MCU through Serial communication.
Serial Communication Between MCU and PC.
First of before doing the serial communication we have to keep in mind that PC is working on RS-232 logic having different logic that MCU have because MCU is working on TTL logic . In case of logic 1 is consider as -3 to -24 volt while logic 0 is consider as +3 to +24 volt while in case of MCU logic 1 is consider as +5 volt while logic 0 is consider as 0 volt . So PC and MCU have different logic level . For doing communication between any two devices we must bring both the devices on to the same potential.
Another concept that is used for doing serial communication is the boud rate. i.e. bits transmitted per second .When ever we want to do communication another thing that we have to consider is that both the communicating device should transmit and receive at same boud rate.

CHAPTER 13
PCB DESIGNING

13.1 FABRICATION OF PCB:-
Printed circuit board is a mechanical assembly consisting of layers of fibre glass sheet laminated with etched copper patterns. It is used to mount electronics components in a manner suitable for packaging. Also known as printed wiring board , this PCB yet is not a finished product .It will always require connections to the outside world to get power, exchange information or display results.

					Fig 13.1 General PCB Diagram
It will need to fit into a rack to perform its functions.There may be areas that will ensure height restrictions on the board on the board (such as a battery holder moulded into the case fitted in a rack the board is supposed to slide into).

					
					Fig 13.2 Unetched Copper Board
The function of a PCB includes the thickness of copper limited to the surfaces.The amount of current carried by the board dictates the thickness of the copper foil.

13.2 THE PCB LAYOUT:-

 			Fig 13.3 Layout of PCB
 The PCB layout can be draw either manually or by ECAD software.Here the manual process is used .

 			Fig 13.4 Marking Process

We can use either marker to draw our circuit or using dry transfers , donuts ets to trace our circuit directly onto the copper surface of the board.This is the quickest method to get a circuit pattern on the board but it always difficult to trace accurately especially if we are using any IC packages in the circuit.

13.3 ETCHING:-
Etching is the process of removing the unwanted copper from the plated board.we put a mask to resist on the copper that we want to retain after the etch.

				Fig 13.5 Etching process with ferric chloride

These portions that remain on the board are the traces that carry electrical current between the devices.The etching solution includes the following :
Ferric chloride:It is a messy stuff but easier to get and cheaper than most alternatives .It ant metal including stainless steel,so when setting up a PCB etching area,use a plastic or ceramin sink , with plastic fittings and screws wherever possible and seal any metal screws etc with silicone .
If the copper water pipes get splashed or dipped, sleeve or cover them in plastic.Fume extraction is normally required ,although a cover over the tank or tray when not in use;is a good idea.Addind a teaspone of table salt to make the etchant clearer for easy inspection.Avoid Anhydrous ferric chloride as it creates a lot of heat when dissolved.Always add powder very slowly to the water , never add water to the powder;use gloves and glasses.warm the etchant by putting the etching tray inside a large tray filled with water.

				

13.4 CLEANING:-
In order to proceed with other process we have to clean our PCB.Dirt obstacles spoil the work , so it is necessary to ensure that PCB is free from Greece , dirt and other contamination.

Fig13.6 Cleaning process
 Do not clean the PCB until you are ready to drill or to make other process because resist protects the board from oxidation.Use acetone or alcohol to remove resist.Clean upper board with steel wool,S.O.S under running water.Rinse board with soap and water.Be sure to remove all soap residue.Dry thourougly with lint-free cloth.Be sure to scrape any burrs that appear on the edge of the board that may have resulted from the cutting/shearing process.PCB will generally corrode after few months , especially if it has been fingerprinted .

13.5 DRILLING:-
To make holes on your PCB you need to drill.A good vertical drill stands and drill bits .While drilling with carbide bits , its imperative to to hold the PCB down firmly,as the drill bits will snatch the board if it not held down tightly.A good amount of light is needed while drilling to ensure accuracy.It can be

	 Fig 13.7 Drilling process

Useful to raise the working surface about 15 cm above normal desk height for more comfortable viewing.
13.6 MASKING:-
The upper layer of the PCB is pront to oxidation if it hasto be worked on later .Masking is important to prevent the PCB from oxidation.

			 Fig 13.8 Masking process

13.7 ASSEMBLING OF COMPONENTS:-
The components are assembled on the PCB as per design.Soldering is done to fix the components on the PCB.soldering is the process that uses heat to melt a metallic compound around the lead and onto the copper part of the board.

Fig 13.9 Assembling of components

 CHAPTER 14
INTRODUCTION TO C#

image3.emf

image4.png

image5.png

image6.wmf
PC

Device

e.g. Modem

or Printer

RS-232 Serial Comms.

Connection

0 0 1 0 0 1 1 0 1 0

oleObject1.bin

image7.wmf
Tx

Gnd

9-pin

D-type

connector

9-pin

D-type

connector

oleObject2.bin

image8.wmf

Gnd

9-pin

D-type

connector

9-pin

D-type

connector

Tx

Rx

oleObject3.bin

image9.wmf
PC

Device

e.g. Modem

or Printer

RS-232 Serial Comms.

Connection

'A'

'B'

'C'

D7 D6 D5 D4 D3 D2 D1 D0

'C'

'A'

'B'

oleObject4.bin

image10.wmf
'B'

D7 D6 D5 D4 D3 D2 D1 D0

'C'

'A'

Stop

bit

Start

bit

Character frame,10 bits in total

oleObject5.bin

image11.wmf
'B'

D7 D6 D5 D4 D3 D2 D1 D0

'C'

'A'

Stop

bit

Start

bit

Character frame,11 bits in total

Parity

bit

P

oleObject6.bin

image12.jpeg

image13.png

image14.png

image15.emf

image16.png

image17.png

image18.png

image19.png

image20.wmf

R4

NO

MCT2E

1

6

2

5

4

VCC

RELAY

3

5

4

1

2

BC

-

369

VCC

D11

From P3.0 of

microcon

troller

J4

HEATER

1

2

NC

phase

R2

oleObject7.bin

R4

NO

MCT2E

1

6

2

5

4

VCC

RELAY

3

5

4

1

2

BC-369

VCC

D11

From P3.0 of

microcontroller

J4

HEATER

1

2

NC

phase

R2

image21.jpeg

image22.png

image23.png

image24.png

image25.jpeg

image26.jpeg

image27.jpeg

image28.jpeg

image29.jpeg

image30.jpeg

image31.jpeg

image32.jpeg

image33.jpeg

image1.png

image2.emf

