Dynamic Search Algorithm in Unstructured Peer-to-Peer Networks
Abstract:

Designing efficient search algorithms is a key challenge in unstructured peer-to-peer networks. Flooding and random walk (RW) are two typical search algorithms. Flooding searches aggressively and covers the most nodes. However, it generates a large amount of query messages and, thus, does not scale. On the contrary, RW searches conservatively. It only generates a fixed amount of query messages at each hop but would take longer search time. We propose the dynamic search (DS) algorithm, which is a generalization of flooding and RW. DS takes advantage of various contexts under which each previous search algorithm performs well. It resembles flooding for short-term search and RW for long-term search. Moreover, DS could be further combined with knowledge-based search mechanisms to improve the search performance. We analyze the performance of DS based on some performance metrics including the success rate, search time, query hits, query messages, query efficiency, and search efficiency. Numerical results show that DS provides a good tradeoff between search performance and cost. On average, DS performs about 25 times better than flooding and 58 times better than RW in power-law graphs, and about 186 times better than flooding and 120 times better than RW in bimodal topologies.
Objective:

In this paper, we propose the dynamic search (DS) algorithm, which is a generalization of flooding and RW. DS overcomes the disadvantages of flooding and RW and takes advantage of different contexts under which each search algorithm performs well. The operation of DS resembles flooding for the short-term search and RW for the long-term search.
Existing System:

Flooding and RW are two typical examples of blind search algorithms by which query messages are sent to neighbors without any knowledge about the possible locations of the queried resources or any preference for the directions to send. Some other blind search algorithms include modified BFS (MBFS) , directed BFS expanding ring and random periodical flooding (RPF).These algorithms try to modify the operation of flooding to improve the efficiency. However, they still generate a large amount of query messages.
DISADVANTAGES:

In the existing system search cost is high.

It produces considerable query messages even when the resource distribution is scarce.

The search is especially inefficient when the target is far from the query source because the number of query messages would grow exponentially with the hop counts.

It’s more time consuming one.

Proposed System:

In this paper, we propose the dynamic search (DS) algorithm, which is a generalization of flooding and RW. DS overcomes the disadvantages of flooding and RW and takes advantage of different contexts under which each search algorithm performs well. The operation of DS resembles flooding for the short-term search and RW for the long-term search. In order to analyze the performance of DS, we apply the random graphs as the models of network topologies and adopt the probability generating functions to model the link degree distribution. We evaluate the performance of search algorithms in accordance with some performance metrics including the success rate, search time, number of query hits, and number of query messages, query efficiency, and search efficiency.
ADVANTAGES:

It reduces a search time.

It takes advantages of Flooding based and random walk technique.

Knowledge-based search algorithms take advantage of the knowledge learned from previous search results and route query messages with different weights based on the knowledge.
System Requirements:

Hardware requirements:

Processor : Any Processor above 500 MHz.

Ram : 128Mb.

Hard Disk : 10 Gb.

Compact Disk : 650 Mb.

Input device : Standard Keyboard and Mouse.

Output device : VGA and High Resolution Monitor.

Software requirements:
Operating System : Windows Family.

Language : JDK 1.5

Data Bases : Microsoft Sql Server
Front End : Java Swing
PROBLEM DEFINATION:

IN unstructured peer-to-peer (P2P) networks, each node does not have global information about the whole topology and the location of queried resources. Because of the dynamic property of unstructured P2P networks, correctly capturing global behavior is also difficult . Search algorithms provide the capabilities to locate the queried resources and to route the message to the target node. Thus, the efficiency of search algorithms is critical to the performance of unstructured P2P networks.

Previous works about search algorithms in unstructured P2P networks can be classified into two categories: breadth first search (BFS)-based methods, and depth first search (DFS)-based methods. These two types of search algorithms tend to be inefficient, either generating too much load on the system, or not meeting users’ requirements. Flooding, which belongs to BFS-based methods, is the default search algorithm for Gnutella network. By this method, the query source sends its query messages to all of its neighbors. When a node receives a query message, it first checks if it has the queried resource. If yes, it sends a response back to the query source to indicate a query hit. Otherwise, it sends the query messages to all of its neighbors, except for the one the query message comes from. The drawback of flooding is the search cost. It produces considerable query messages even when the resource distribution is scarce. The search is especially inefficient when the target is far from the query source because the number of query messages would grow exponentially with the hop counts. Fig. 1 illustrates the operation of flooding. The link degree of each vertex in this graph is 4. If the network grows unlimited from the query source, the number of query messages generated by flooding at each hop would be 4, 12, 36, . . . , respectively. If the queried resource locates at one of the third neighbors, it takes 4, 12, 36, 52 query messages to get just one query hit.

On the other hand, random walk (RW) is a conservative search algorithm, which belongs to DFS-based methods. By RW, the query source just sends one query message (walker) to one of its neighbors. If this neighbor does not own the queried resource, it keeps on sending the walker to one of its neighbors, except for the one the query message comes from, and thus, the search cost is reduced. The main drawback of RW is the long search time. Since RW only visits one node for each hop, the coverage of RW grows linearly with hop counts, which is slow compared with the exponential growth of the coverage of flooding. Moreover, the success rate of each query by RW is also low due to the same coverage issue. Increasing the number of walkers might help improve the search time and success rate, but the effect is limited due to the link degree and redundant path.
PROPOSED SOLUTION:

DS is designed as a generalization of flooding, MBFS, and RW. There are two phases in DS. Each phase has a different searching strategy. The choice of search strategy at each phase depends on the relationship between the hop count h of query messages and the decision threshold n of DS.

Phase1. When h <= n

At this phase, DS acts as flooding or MBFS. The number of neighbors that a query source sends the query messages to depends on the predefined transmission probability p. If the link degree of this query source is d, it would only send the query messages to d. p neighbors. When p is equal to 1, DS resembles flooding. Otherwise, it operates as MBFS with the transmission probability p.

Phase2. When h > n

At this phase, the search strategy switches to RW. Each node that receives the query message would send the query message to one of its neighbors if it does not have the queried resource. Assume that the number of nodes visited by DS at hop h ¼ n is the coverage cn, and then the operation of DS at that time can be regarded as RW with cn walkers. However, there are some differences between DS and RW when we consider the whole operation.

Knowledge-Based Dynamic Search
In this section, we present the generic scheme to incorporate these knowledge-based search algorithms with our DS algorithm. We construct the probabilistic function based on the information learned from the past experiences, with respect to each search target, search time, and local topology information. Thus, a node has more information to intelligently decide how many query messages to send and to which peers these messages should be forwarded.
Implementation Plan:

The implementation can be preceded through Socket in java but it will be considered as one to all communication .For proactive broadcasting we need dynamic linking. So java will be more suitable for platform independence and networking concepts. For maintaining route information we go for SQL-server as database back end.
Phase Description:
	Phase
	Task
	Description

	Phase 1
	Analysis
	Analyze the information given in the IEEE paper.

	Phase 2
	Literature survey
	Collect raw data and elaborate on literature surveys.

	Phase 3
	Design
	Assign the module and design the process flow control.

	Phase 4
	Implementation
	Implement the code for all the modules and integrate all the modules.

	Phase 5
	Testing
	Test the code and overall process weather the process works properly.

	Phase 6
	Documentation
	Prepare the document for this project with conclusion and future enhancement.

[image: image1]
 Survey on Phase Diagram:

	 Date

Phase
	Aug/09
	Sep/09
	Oct /09
	Nov/09
	Dec/09

	Phase 1
	
[image: image2]
	
[image: image3]
	
	
	

	Phase 2
	
	
	
	
	

	Phase 3
	
	
	
	
	

	Phase 4
	
	
	
	
	

	Phase 5
	
	
	
	
	

	Phase 6
	
	
	
	
	

Modules:

Peer Construction

Searching

Knowledge based Searching
Peer Construction:

In this module, we construct a topology structure.

While getting each of the nodes, their associated port and ip address is also obtained.

For successive nodes, the node to which it should be connected is also accepted from the user.

While adding nodes, comparison will be done so that there would be no node duplication.

Then we identify which peer is going to request for a file.

Searching:

In this module a peer can be searching a file.

Phase1. When h <= n

At this phase, DS acts as flooding or MBFS. The number of neighbors that a query source sends the query messages to depends on the predefined transmission probability p. If the link degree of this query source is d, it would only send the query messages to d. p neighbors. When p is equal to 1, DS resembles flooding. Otherwise, it operates as MBFS with the transmission probability p.

Phase2. When h > n

At this phase, the search strategy switches to RW. Each node that receives the query message would send the query message to one of its neighbors if it does not have the queried resource. Assume that the number of nodes visited by DS at hop h ¼ n is the coverage cn, and then the operation of DS at that time can be regarded as RW with cn walkers. However, there are some differences between DS and RW when we consider the whole operation.

Knowledge Based Searching:

In this module we search the file more intelligently. Here we search the peer routing table whether the file is already searching or not. If we already search means it relays the query more intelligently to the corresponding peer.

CONCLUSION:

In this paper, we have proposed the DS algorithm, which is a generalization of the flooding, MBFS, and RW. DS overcomes the disadvantages of flooding and RW, and takes advantage of various contexts under which each search algorithm performs well. It resembles flooding or MBFS for the short-term search and RW for the long-term search. We analyze the performance of DS based on some metrics including the success rate, search time, number of query hits, and number of query messages, query efficiency, and search efficiency. Numerical results show that proper setting of the parameters of DS can obtain short search time and provide a good tradeoff between the search performance and cost. Under different contexts, DS always performs well. When combined with knowledge-based search algorithms, its search performances could be further improved.

REFRENECE:

D. Stutzbach, R. Rejaie, N. Duffield, S. Sen, and W. Willinger, “Sampling Techniques for Large, Dynamic Graphs,” Proc. Ninth IEEE Global Internet Symp. (Global Internet ’06), Apr. 2006.

[2] A.H. Rasti, D. Stutzbach, and R. Rejaie, “On the Long-Term Evolution of the Two-Tier Gnutella Overlay,” Proc. Ninth IEEE

Global Internet Symp. (Global Internet ’06), Apr. 2006.

[3] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,B. Richard, S. Rollins, and Z. Xu, “Peer-to-Peer Computing,”

Technical Report HPL-2002-57, HP, 2002.

[4] K. Sripanidkulchai, The Popularity of Gnutella Queries and ItsImplications on Scalability, white paper, Carnegie Mellon Univ.,Feb. 2001.

[5] M. Jovanovic, F. Annexstein, and K. Berman, “Scalability Issues in Large Peer-to-Peer Networks: A Case Study of Gnutella,”technical report, Laboratory for Networks and Applied Graph Theory, Univ. of Cincinnati, 2001.

[6] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks,” Proc. 22nd Int’l Conf. Distributed Computing Systems (ICDCS ’02), pp. 5-14, July 2002.

[7] G. Kan, “Gnutella,” Peer-to-Peer Harnessing the Power of Disruptive Technologies, O’Reilly, pp. 94-122, 2001.

[8] RFC-Gnutella 0.6, http://rfc-gnutella.sourceforge.net /developer/ testing/index.html, 2008.

[9] C. Gkantsidis, M. Mihail, and A. Saberi, “Random Walks in Peer-to-Peer Networks,” Proc. IEEE INFOCOM ’04, pp. 120-130,

2004.

[10] L.A. Adamic, R.M. Lukose, A.R. Puniyani, and B.A. Huberman, “Search in Power-Law Networks,” Physical Rev., E, vol. 64, 046135,2001

Diagrams:

Architecture Diagram:

[image: image4]
USECASE DIAGRAM:

[image: image5.emf]Searching

Flooding

Randomwalk

Knowledgebased

Class Diagram:
[image: image6.emf]PeerLogin

peerName

peerIP

peerPort

fileName

searchFile()

FileSearch

fileName

peerName

flooding()

randomwalk()

knowledgebased()

SearchTime

searchTime

comparison()

Sequence Diagram:
[image: image7.emf]NodeNodeSearchSearchthresholdthresholdRoutingTableRoutingTableFloodingFloodingRandomwalkRandomwalkKnowlegeBasedKnowlegeBased

Check Routingtable

Search

available

Knowledge Based

No

check

check = floodingflooding search

check = Randomwalk

Randomwalk

Collaboration Diagram:

[image: image8.emf]Node

RoutingTable

Flooding

Randomwalk

KnowlegeBased

Searchthreshold

2: check

3: available or not

5:

1: Search

8: flooding

4: knowledge

6:

7: check

9: randomwalk

Activity Diagram:

[image: image9.emf]PeerLogin

Searching

check routing table

Knowledge

based

peervalue < threshold

FloodingRandom

walk

Search

yes

No

yesNo

Non Functional Requirements

Scalability is a desirable property of a system, a network, or a process, which indicates its ability to either handle growing amounts of work in a graceful manner or to be readily enlarged For example, it can refer to the capability of a system to increase total throughput under an increased load when resources (typically hardware) are added. An analogous meaning is implied when the word is used in a commercial context, where scalability of a company implies that the underlying business model offers the potential for economic growth within the company.

Reliability (systemic def.) is the ability of a person or system to perform and maintain its functions in routine circumstances, as well as hostile or unexpected circumstances.

Integrity as a concept has to do with perceived consistency of actions, values, methods, measures, principles, expectations and outcome. People use integrity as a holistic concept, judging the integrity of systems in terms of those systems' ability to achieve their own goals (if any). A value system's abstraction depth and range of applicable interaction may also function as significant factors in identifying integrity due to their congruence or lack of congruence with empirical observation A value system may evolve over time while retaining integrity if those who espouse the values account for and resolve inconsistencies.

Peer1

Peer2

Routing

 Table

Check the Peer Routing table

Update routing table

Search the File

