CONTENTS

INTRODUCTION:









SECTION 1: IMAGES

· Understanding Images

· Basic Image Formats

· Major Image File Formats

SECTION 2: BIMAT FILE FORMATS

· Importance of BITMAP

· What is BITMAP?

· Types of BITMAP

· Bitmap Colorless Images

· Bitmap Color Images

· Bitmap Structure

· Header Structure

· Palette Structure

· Bitmap Image Data

SECTION 3: RUN-LENGTH ENCODING
· What is RLE?

· Principle Of RLE

· Examples of RLE Implementations

· Encoder

· Decoder

· Basic Flow Chart

· Algorithm Implemented

SECTION 4: SOURCE CODE IN C


FUNCTIONS USED

BIBLIOGRAPHY

INTRODUCTION
This project can be used to compress a bitmap file and after compression the bitmap file will change into the RLE file format. Then, the RLE file can again be decompress to get the previous original bitmap file. Thus, the bitmap file can make simpler to stored and manipulate (i.e. edit, change, transferring, etc.). Finally, by using some concept from this algorithm, not only the bitmap file, other file format can also be made into the compressions formats.

SECTION # 1


UNDERSTANDING IMAGES
An image is composed of array of small squares, called pixels, arranged in rows and columns. Each pixel has a specific color value and location. They can be called as array of values, were value is a collection of numbers describing the attributes of a pixel in the image (in bitmaps, for example, the values are single binary digits). Often these numbers are fixed point representation of a range of real numbers; for example, integers through 0 to 255 often used to represent the number from 0.0 to 1.0. Often, too these numbers represent the intensity at a point in the image or he intensity of one color component at that point. The dimensions o the array are called the width and height of the image, and the number of its associated with each pixel in the array is called depth. 
BASIC IMAGE FORMATS
1. RASTER FORMAT: A Raster format breaks an image into a grid of equally sized pieces, called pixels, and records color information for each pixel. On increasing the magnification the pixels are visible as squares on the screen. A Raster program creates objects by grouping pixels. An object is stored as a group of pixels with information about each pixel color. Pixels can be blended to create soft edges and smooth transitions between objects. This makes the format a good choice to use for saving photographs.
An image in the Raster Format is resolution-dependent. We can specify the resolution and pixel dimensions when we create the image. If we late decide to increase its size, we enlarge each pixel, which lowers the image quality.

2. VECTOR FORMAT: A Vector image is composed of mathematical instructions for drawing the image. Each object is stored as a separate item with information about its relative position in the image; it’s starting and ending points, width, color, and curve information. This makes them suitable for logos, fonts and line drawings.

An image in the Vector Format is resolution-independent. It can be resized without losing details because it is stored as a set of instructions, not a collection of pixels. Each time you display an image, you recreate it. Vector files are comparatively smaller too. But vector cannot reproduce photo realistic images accurately.

MAJOR IMAGE FILE FORMATS

1. BMP: It is the windows standard for bitmap files. It is the most widely used format. A set of bits or bytes specifies the intensity of a pixel. It stores information through which the computer can recreate the picture on the screen.

We use the BMP format for windows wallpaper and other system graphics.

2. GIF: GIF (Graphics Interchange Format), it is a commonly used image format for Internet graphics. It limits the number of colors used in an image to a maximum of 256, thus reducing its color depth. As an image being converted to the *.GIF, all the colors within the image would be forced to best match the 256 index colors pre-determined by your computer’s operating system. This format is most suitable for images with few solid colors such as icons but is less suitable for photo-realistic images due to its limitation colors.

3. JPEG: JPG or JPEG (Joint Photographic Experts Group) file format is another commonly used image format for Internet graphics and for sending pictures as attachments via e-mail.
This file format is suitable for displaying photo-realistic images because it does not limit the number of colors used in any given image.

4. TIFF: TIFF (Tagged Image File Format) is a vector type file format in which image maintains its quality even when it is enlarged. It is one of the toughest to decode. An IFD (Image File Directory) in a TIFF is a table that identifies one or more variable-length chunks of data called tags, which hold information about the image. Its tags wholly define an image encoded in TIFF file, and the file format is highly extensible because additional features can be added simply by defining additional tag types.


SECTION # 2


IMPORTANCE OF BITMAP

* GUI-ONE OF THE MOST AMAZING THINGS IN A SWITCH FROM DOS TO WINDOWS.
When operating systems like windows were developed the most visible advantage was a user interface a noble man once said
“A picture is worth a thousand words” This was proved with the advent of UI. No longer had one had to remember long path names and users could live without the fear of mistyping the names of directories and then retype them again. The process of many system operations such as downloading a file may also be displayed graphically. The need for remembering hundreds of commands was extinct. Folder/File icons replaced typing paths and mouse substituted keyboard to certain extent. These fancy buttons and mouse pointers would have to make of lines. One of the most important things in creating a user-friendly interface is the use of bitmaps.

* MOTHER OF ALL IMAGE FILE FORMATS.
Bitmaps being the oldest can be rightly called the mother of all image formats. This is because all other image file formats are one or the other compressed forms of bitmaps only. It is the simplest to store and manipulate. It is wise to store uncompressed large bitmaps into compressed smaller forms and thus other file formats like GIF<JPG<ETC. were developed but the core of all of them is 
bitmap because while displaying these files must be decoded to the form of bitmaps as it most closely resembles the way images are displayed on screen and stored in video memory.
WHAT IS BITMAP?

The term bitmap is throwbacks from when monitors could only display one other color besides black for two colors data files that store an image, each bit in data file represent one pixel: a 1 meant the pixel was on, a 0 meant the pixel was off.

A bitmap file stores the information a computer needs to recreate a picture. You and I see an image on the screen as a beautiful sunset, but the compute sees it as ones and zero’s it’s what the computer does with those one’s and zeros that enables it to reproduce the original image. Ultimately the bits and bytes in the bitmap tell the computer what color to paint each pixel in the image.

A bitmap representation stores the graphic/image data in the same manner that the compute monitor contents are stored in video memory. A monitor screen image is composed of small points, termed pixels. The numbers of pixels that compose a monitor image determine the quality of the image. The more the pixel, the higher the resolution.

The BMP file format is the native bitmap file format for windows native because it closely matches the format in which windows stores bitmaps internally.

This file format can be store uncompressed so reading BMP.

Files are fairly simple: most other graphics formats are compressed and some like GIF are difficult to decompress.

The term bitmap strictly speaking applies to only 1-bpp bi level systems for multiple bpp systems we use a more general term pixmap or pixel map.

Window bitmap files are stored in a device independent bitmap (DIB) format that allows windows to display bitmap on any type of display device. The term “device independent” means the bitmap specifies pixel color in a form independent of the method used by a display to represent color. The default filename extension of a windows DIB file is .BMP
TYPES OF BITMAP

Different types of bitmap display various types of colors depending upon how they are stored. The bits per pixel or the colors depending upon many colors the bitmap can show. Thus bitmaps are classified according to their color depth or how many bits are used to defined the characteristics of a pixel.

BMP encodes color info 1, 4, 8, 16, 24-bpp or color depth that determines maximum number of colors.

THE BITMAP ARE BROADLY CLASSIFIED AS

1. Colorless images
1.1 Monochrome Images

1.2 Grayscale Images

2. Color Images
8-Bitmap

16-Bitmap

24-Bitmap
BITMAP COLORLESS IMAGES
MONOCHROME BITMAPS
Bits per pixel: 1

In a monochrome (black/white), images each pixel is stored as a single 0 or 1 value (bit)

These are just 2 color data files with each bit in the data files representing 1 pixel. Therefore, a two color image is a map of bits.

GRAYSCALE BITMAP
Bits per pixel: 4
A grayscale image usually requires that each pixel be stored as a value between 0-256 (byte). As the names suggest grayscale bitmaps represent images with shades of gray. The term grayscale is used to indicate an 8-bit image that contains black, white, and 254 shades of gray. A black and white image uses up to 256 shades of gray to represent brightness.

BITMAP COLOR IMAGES
In a color image each pixel represented a three values one for each of the primary colors (red, blue, green). The size of a color image depends upon the number of shades of each primary color that is stored.

8-BIT BITMAP
Bits per pixel: 8

A common semi-standard can store 256 different colors is termed as 8-bit color. It is first in the color bitmap files. Here each byte represents a pixel. This means each byte gives the color of the pixel. By color we don’t mean either red, green, blue but a mixture of these three.

16-BIT BITMAP
Bits per pixel: 16

These are highly color bitmaps that can display a maximum of 65,000 colors; there is not much difference in the space management of 16 and 24 bit bitmaps so these types of image don’t find much use, as we prefer 24 bits bitmaps that five much better resolutions.

24-BIT BITMAP

Bits per pixel: 24

Another semi-standard that does yield photographic quality (high color) is 24-bit color. Each pixel value is represented as 3 byte thus 256 different shades of red, green, blue are possible for each pixel; yielding 256 X 256 X 256 possible combined colors (16,777,216). These images take up maximum space. These images do not require a color look up table as each byte represents one shade.

BITMAP STRUCTURE
A file in any operating system is not just a collection of image data. There is other information too that is stored with them which are also referred much especially in image files. Properties of files such as the amount of memory it takes, offset to data, horizontal/vertical resolution, bits per pixel (types of bitmaps), planes etc. are stored besides a color or reference table in some image files (usually 8-bit bitmap files). So the first few bytes are usually dedicated to these structures, which store this information, which can be read at a later time.

Bitmaps, being image files, too pack some other data side from the proper bitmap. For 256-color bitmaps, it hs a 54-byte header followed by 1024-byte palette table. After that, is the actual bitmap, which starts at the lower left hand corner? An 8-bit bitmap are structurally divided into three parts:

*HEADER (54 Bytes)
#BITMAP files Header (14 Bytes)
#BITMAP Info Header (40 Bytes)
* Palette/Color information (8-1024 Bytes)
* BITMAP data (varies in size)

Images like those which are 24 bits images don’t need to store the color information in table as they represent each pixel by e.g. 3 bytes in case of 24 bit bitmaps so these 3 bytes can be used to store the respective values in blue, green, red. Thus, there is no palette table in 24 bit bitmaps.

HEADER STRUCTURE
As discussed earlier an image file contains other information about the image besides the image. In a file at the user level we are satisfied with the image that we think is only stored in file. There is other information like file size, dimensions, resolution image width/height etc. which can’t be dynamically created as and when the user wants also, merely extensions of files are not enough to recognize a file. They can change by anyone. So every file is given a signature which tells the operation system of the software used to open it whether it is a valid file or not. This is more information is stored in a structure known as a header.

In an 8-bit the header is of 54 bytes and divided into two partd.

1. BITMAP FILE HEADER
This header stores the information about the files as a whole. First two bytes store the signature of the file. Next comes the file size there is two reserved bytes and then stored the offset to the actual image data. This is required as sometimes we may want to access the image information thus skipping the header and palette table. This can be done by reading the offset of the data from this location.

2. A BITMAP INFO HEADER
The bitmap info header essentially contains information specifically about the part of the file that contains the actual bitmap image. Information like image width and height is useful while allocation video memory before displaying the image. Horizontal and vertical resolutions help in setting the right monitor modes for different bitmaps.

PALETTE STRUCTURE

Palette store information about the color used in image. An image palette is a collection of the colors contained in an image with a 4-bit to 8-bit color depth. Palette information is stored after the header in the bmp file format.

NEED FOR PALETTE

24-bits per pixel (8-green, 8-blue, 8-red) are expensive to store and transit. To solve this problem we use palette, which makes it possible to represent all those colors, not in the same image but separately in a table. Hence 8-bits images have a palette table.

THE PALETTE STRUCTURE

The color table, defined as an array of RGBQUAD structures contains as many elements as many elements as there are colors in the bitmap. The color table is not present for bitmaps with 24 colors bits because each pixel is represented by 24-bit red-green-blue (RGB) values in the actual bitmap data area. The color in the table should appear in order of importance. This helps a display driver render a bit map on a device that cannot display as many colors as there are in the bitmap.
4-bits define each color one each for blue, green, red and one reserved byte.
INDEX                       BLUE                    GREEN                   RED               UNUSED

00000000

   84

          252

       84


0

00000001

  252

          252

       84

            0

00000002

    84

            84

      252

0

00000003

  252
                        84

      252

0

BITMAP IMAGE DATA

The bitmap bit’s, immediately following the color table, consist of an array of BYTE values representing consecutive rows or scan lines of the bitmap each scan line consists of consecutive bytes representing the pixels in the scan line in the left to right order the number of byte’s representing a scan line depends on the color format and the width, in pixels, in bitmap. If necessary, a scan line must be zero padded to the end on a 32 bit boundary. However segment boundaries can appear any where in the bitmap. It is stored from bottom up. This means that first byte in an array represents as the pixel in the lower left corner of the bitmap and the last byte represents the pixels in the upper right corner.

Each scan line is padded to the nearest 4 byte boundary if the number of bytes per line of bitmap is an odd number; each line is padded with an extra byte to align bitmap data on 16 bit boundaries.

The only odd thing worth mentioning is that bitmaps stored in reverse scan line order. We can thin of the image flipped up side down, thus in a 256 color. BMP file, the first byte of the bitmap data is the color index of the pixel in the image’s lower left corner the second byte is the color index pixel to the right and so on.

Since the bitmaps have their own color table defined or provide the value of each color so they are called Device Independent Bitmap. BMP specifies pixel color in the form independent of method used by a display to represent color. This allows displaying of bitmaps on any type of display device.

Each pixel in the bitmap is represented by 1 byte index into the color table where the actual values of RGB are stored this accounts for better space management as 1 byte represent each color so reference to the amen color can be made from different places in the bitmap using 1 byte only for example if the first byte in the bitmap is 0x1f, the first pixel has the color of the thirty-second entry.

SECTION #3


RLE – RUN LENGTH ENCODING
WHAT IS RLE ?

Run-Length Encoding (RLE) is a very simple form of data compression encoding. It is based on simple principle of encoding data. This principle is to every stream which is formed of the same data values (representing values is called a run) i.e. sequence of repeated data values is replaced with count number and a single value. This intuitive principle works best on certain data type in which sequences of repeated data values can be noticed; RLE is usually applied to the files that a contain large number of consecutive occurrences of the same byte pattern.

RLE may be used on any kind of data regardless of its content, but data which is being compressed by RLE determines how good compression ratio will be achieved. So RLE is used to text files which contain multiple spaces for indention and formatting paragraphs, tables and charts. Digitized signals also consist of unchanged streams so such signals can also be compressed by RLE. A good example of such signal is monochrome images, and questionable compression would be probably achieved if such compression was used on continuous-tone (photographic) images.
Fair compression ratio may be achieved if RLE is applied on computer generated color images.

RLE is a loss less type of compression and cannot achieve great compression ratios, but a good point of that compression is that it can be easily implemented and quickly executed.

PRINCIPLE OF RLE

As it was said above basic RLE principle is that the run of characters is replaced with the number of the same characters and a single character.
Example:

Before:      R      T      A      A      A      A      S      D      E      E      E      E      E

After      RLE    compression:     R      T      *4A       S      D       *5E
In the above example each stream of the same characters is being replaced with the number of characters, single character and character *, at the first sight usage of * may seem redundant but characters * which represents control character (which may variously implemented) are necessary because some streams consist of the same characters or number of characters represents the number of repetition and character after the number is the character which will be repeated. If control character or run of control characters (in our example *) are in a stream which is being encoded then one extra character is coded. It is important to realize that the encoding process is effective only if there are sequences of 4 or more repeating characters because three characters are used to conduct RLE so for instance coding two repeating characters would lead to expansion and coding three repeating characters wouldn’t cause compression or expansion. The decoding process is also very simple, if there aren’t control characters the stream is just copied and if control character occurred then it must be removed and appropriate character is copied in a defined number of times. It can be notice that the process of decoding control characters don’t lead to any special procedures. 
It is important to point out that there are many different run-length encoding schemes. The above example has just been used to demonstrate the basic principle of RLE encoding. In a particular case the implementation of RLE depends on what type of data is being compressed.
EXAMPLES OF RLE IMPLEMENTATIONS

RLE algorithms are parts of various image compression techniques like BMP, PCX, TIFF, and is also used in PDF file format, but RLE also exists as separate compression technique and file format.

COMPUSERVE STANDING FOR RLE FORMAT
CompuServe RLE file format standard was formed in the 80’s and defines the compression for 1-bit image.

Header sequence in RLE file represents Graphic Mode Control, control is initiated when program runs onto a sequence of three characters, those characters are:-
ASCII ESC (HEX 1B), ASCII G (HEX 47) and the third character are ASCII H (HEX 48) or M (HEX 4D). Third character represents resolution, there are two possible graphics modes, and those are high resolution graphic mode (256 x 192 pixels) represented by sequence <ESC><G><H> and medium resolution graphic mode (128 x 96 pixels) which is represented by <ESC><G><M> sequence. After header sequence starts; basic data sequence consists of a pair of run length encode ASCII characters. The first number represents number of the background (turned off) pixels. Each number of a pair represents the count number of pixels plus 32 decimal, i.e. from each number 32 is subtracted and that number represents how many next pixels will be turned on or turned off 
depending on what number of pair we observe. Usually it is used ASCII ~ (HEX 7E, DEC 126) as highest possible value, because RLE file format was used as file which was to show graphic on terminals. Previous facts lead to conclusion that in each byte we can denote repetition of 94 pixels (126 – 32). For example pair <D><’>(HEX: 44 27, DECIMAL 68 39)means next 68 (decimal) pixels are turned off and then 39 (decimal) pixels are turned on.
Data in file is written in such away that if the last pixel set was on position 254 then the pixel will be on the first position in next line i.e. pictures are being drawn from up to down. Let’s illustrate this with an example; if the last pixel ser on line was on position 252 and data sequence consists of pair 21 hex, 27hex i.e. one background pixel and seven foreground pixels of current line are turned on, and then the rest of five pixels turned on, on the beginning of the next line.

The ending sequence for RLE standard consists of three characters <ESC><G><N>, <ESC> is a control character which ends the graphic display. Basic convention is that control character shouldn’t affect the display. All control characters should be ignored besides <ESC> and <BEL> characters, <BEL> can be optionally used, so in some cases RLE file ending sequence consists of <BEL><ESC><G><N>. In other words end of RLE file according to standard is <ESC><G><H> or <BEL><ESC><G><N>.
Example – RLE file (all numbers are in ASCII HEX format):

1B       47       48      7E       20      7E       20       7E       20       7E       20      …

.      .      .       .          .         .            .          .  .          .         .        .                      .

.      41                        36.     .                           .  .   .                              .      .    .
.       .    .   .    .              .             .           .            .            .           .                     .
.      .       .    07 1B 47 4E
1B 47 48 – is header <ESC><G><H> and represents high resolution, first data sequence pair 20hex, 7Ehex means that first 94dec pixels are all turned on, the second data sequence is the same so second 94d pixels are also turned on ( the first 188d pixels are turned on so far), and so on. Then somewhere in the file pairs 41h 36h occurs which means that next 33d pixel are turned off and after that 22d pixels are turned off, etc. Last four characters are the ending sequence, which was described above.
MS WINDOWS STANDARD FOR RLE FILE FORMAT

MS Windows standard for RLE have the same file format as well-known BMP file format, but its RLE format is defined only 4-bit and 8-bit color images.

 Two types of RLE compression is used 4bit RLE and 8bit RLE as expected the first type is used for 4-bit images, second for 8-bit images.

4bit RLE
Compression sequence consists of two bytes, first byte (if nor zero) determines number of pixels, which will be drawn. The second byte specifies two colors, high-order 4 bits (upper 4 bits) specifies the first color, low-order 4 bits specifies the second color this means that after expansion 1st, 3rd and other odd pixels will be in color specified by high-order bits, while even 2nd, 4th and other even pixels will be in color specified by low-order bits. If first byte is zero then the second byte specifies escape code. (See table at next page)
	Second byte
	Definition

	0
	End-of-line

	1
	End-of-RLE(Bitmap)

	2
	Following two bytes defines offset in x and y direction ( x is right & y is up). The skipped pixels get color zero.

	>=3
	When expanding following >=3 nibbles (4bits) are just copied from compressed file, file/memory pointer must be on 16bit boundary so adequate number of zeros follows


Table 1. Definition of escape codes (the first byte of compression sequence is 0)
Examples for 4bit RLE:
	Compressed data
	Expanded data

	06 52
	5 2 5 2 5 2

	08 1B
	1 B 1 B 1 B 1 B

	00 06 83 14 34
	8 3 1 4 3 4

	00 02 09 06
	Move 9 position right and 6 up

	00 00
	End-of-line

	04 22
	2 2 2 2

	00 01
	End-of-RLE (Bitmap)


8bit RLE

Sequence when compressing is also formed from 2 bytes, the first byte (if not zero) is a number of consecutive pixels, which are in color specified by the second byte.

Same as 4bit RLE if the byte is zero the second byte defined escape code, escape codes 0, 1, 2, and have same meaning as described in Table 1. while if escape code is >=3 then when expanding the following >=3 bytes will be just copied from the compressed file, if escape code is 3 or other greater odd number then zero follows to ensure 16bit boundary.

Examples for 8bit RLE

	Compressed data
	Expanded data

	06 52
	52 52 52 52 52 52

	08 1B
	1B 1B 1B 1B 1B 1B 1B 1B

	00 03 n83 14 34
	83  14 34

	00 02 09 06
	Move 9 position right and 6 up

	00 00
	End-of line

	04 2A
	2A 2A 2A 2A

	00 01 
	END-OF RLE (Bitmap)


EXAMPLE OF FILE USAGE IN OTHER FILE FORMATS
RLE scheme which will be described in this chapter is being used in PDF and TIFF file format. RLE encoded data consists of compression sequences, one compression sequence starts with number n (byte), this byte may be followed by 1 to 128 byte, so this 2 to 129 bytes from one compression sequence.

If n is between 0 to 127 inclusive then following n+1 (1 to 128) bytes are just copied during decompression. If n is between 129 and 255 inclusive then byte which follows n is being copied 256-(n-1) i.e. 2 to 128 times in decompressed file. If 128 occur then we reach the end of compressed data.


This scheme is similar to Pack Bits encoding scheme known to Macintosh users.

Example:

	Compressed data-hex format
	Decompressed data-hex format

	07 A4 56 C9 90 E5 F1 DB 32
	A4 56 C9 E5 F1 DB 32

	02 23 A1 56
	23 A1 56

	FE 12
	12 12 12

	FC 6C
	6C 6C 6C 6C 6C


ENCODER

As you’ve saw the implementation is very easy, you get two bytes, if they are equal output this value, and continue encoding, of course you have to discard the repeated bytes. Note that the value can’t be greater than 255; we are using a byte to represent it. If the byte were not equal, then output the first, make the second the first, and get the next byte as a second, and start again.
· Get two byte

· Loop

· Are they equal?

· Yes

· Output both of them

· Count how many bytes repeated we have

· Output the value

· Update pointer to the input file

· Get next two bytes

· Repeat

· No

· Output the first byte

· Put the second, as first

· Get a byte for the second one

· Update pointer to input file

· Repeat

DECODER

The decoder is easier than the encoder, remember: a decoder almost always is easier than an encoder. As before, pseudo code, just rewrite it in your favorite language.

· Get on byte, put it to the output file, and how it’s the ‘last’ byte.

· Loop

· Get one byte

· Is the current byte equal to last?

· Yes

· Now get another byte, this is ‘counter’
· Put current byte in the output file

· Copy ‘counter’ times the ‘last’ byte to the output file

· Put last copied byte in ‘last’ (or leave it alone)

· Repeat

· No

· Put current byte to the output file

· Now ‘last’ is the current byte

· Repeat.

BASIC FLOW CHART
























ALGORITHM FOR IMPLEMENTATION
COMPRESSION:

WHILE There Are Still Input bytes


Read a byte from the input file in the TEMP_BUFFER


TEMPCNT=TEMPCNT+1


IF TEMPCNT=3


     IF all bytes in the TEMP_BUFFER are equal



len=3



WHILE next byte is equal to the 1st byte in the TEMP_BUFFER




len=len+1




IF len=128




     Flush first byte to TEMP_BUFFER and its count i.e., len to





 output file





 and len=0



IF next byte is not equal





 set first byte of TEMP_BUFFER to the newly read char


END IF


ELSE



send  first byte in the TEMP_BUFFER to the output file


IF second byte and third byte are not equal



shift the third byte to the first pos


TEMPCNT=1



ELSE




bring third byte to first pos




TEMPCNT=1


END ID

 END WHILE

DECOMPRESSION:

WHILE there are still input byte


Read a byte from the input file in the TEMP_BUFFER


IF VALUE of the byte is>127


REPEAT till I=0



Uncompress the data bytes the no. of time as above

ELSE


J=VALUE+1


REPEAT till J=0



Uncompress the non-repeating data bytes the no. of times as above

END WHILE

SECTION #4


Source codes
/*********************************************************************

FILE DESCRIPTIONS

NAME           : BMP.CPP

PURPOSE     : DISPLAYS HEADER INFORMATION OF THE INPUT BMP       


    FILE

*********************************************************************/
/**************************INCLUDED FILES*************************/

#define  PRO 2

#include<stdio.h>               //File functions and standard input functions

#include<conio.h>              //clrscr(),getch()

#include<iostream.h>         //various cpp functions

#include<string.h>             //String manipulation functions

#include<fcntl.h>              //various File Open Flags (modes)

#include<io.h>                 //File functions

#include<process.h>

#include "COMPRESS.CPP"       //Compression and Decompression functions

struct BMPHeader

{

/****** BITMAP FILE HEADER ******/

    unsigned short bfType ;           // Bitmap File Signature 'BM' or 19778

    long           bfSize,                     // File Size In Bytes

                      bfReserved,            // Reserved Bytes Usually Zero


 bfOffBits;              // Offset To Bitmap Data In Bytes

/****** BITMAP INFO HEADER ******/

     long
   biSize,                  // Bitmap Info Header Size In bytes


   biWidth,             // Width Of The Bitmap in Pixels


   biHeight;            // Height Of The Bitmap in Pixels

    unsigned short     biPlanes,         // Number Of Planes Of The Bitmap (usually 1)



   biBitCount;    // Bits Per Pixel Of The Bitmap (usually 1/4/8/24)

    long           biCompression,    // Type Of Compression For A Compressed Bitmap



   biSizeImage,      // Bitmap Data Size In Bytes



   biXPelsPerMeter,  // Horizontal Resolution Of The Bitmap



   biYPelsPerMeter,  // Vertical Resolution Of The Bitmap



   biClrUsed,        // No. Of Colors Used In Bitmap



   biClrImportant;   // No. Of Important Colors In Bitmap

  } Header;

void showheader();                             // Funtion Prototype Declared

int loadbmp(char[]);

int result;

void showheader(void)                       //Shows Header Details

{

printf("\n\t ******************************************************");

printf("\n\t                 BITMAP HEADER DETAILS");

printf("\n\t   ******************************************************");


printf("\n\n\t\t\tBITMAP FILE HEADER") ;


printf("\n\nFile Signature::%d",Header.bfType) ;


printf("\nFile Size::%ld bytes",Header.bfSize) ;


printf("\nReserved 1::%ld",Header.bfReserved) ;


printf("\nReserved 2::%ld",Header.bfReserved) ;


printf("\nOffset To Image Data::%ld bytes",Header.bfOffBits) ;


printf("\n\n\t\t\tBITMAP INFO HEADER") ;


printf("\n\nBitmap Header Size::%ld bytes",Header.biSize) ;

printf("\nImage Width::%ld pixels",Header.biWidth) ;

printf("\nImage Height::%ld pixels",Header.biHeight) ;

printf("\nNo. Of Planes In The Image::%d",Header.biPlanes) ;

printf("\nNo. Of Bits Required To Represent A Pixel::%d bpp",Header.biBitCount);

printf("\nCompression Bit::%ld",Header.biCompression) ;

printf("\nBytes Required For Image Data Alone::%ld bytes",Header.biSizeImage) ;

printf("\nHorizontal Resolution::%f dpi",(float)(Header.biXPelsPerMeter/39.78)) ;

printf("\nVertical Resolution::%f dpi",(float)(Header.biYPelsPerMeter/39.78)) ;

printf("\nNo. Of Colors Used::%ld",Header.biClrUsed) ;

printf("\nNo. Of Important Colors::%ld",Header.biClrImportant) ;


return ;

}

void main()

  {

            char iflname[20],oflname[20];

            clrscr();

            printf("\nEnter a path for the input file:");

            scanf("%s",&iflname);

            printf("\Enter the output file name:");

            scanf("%s",&oflname);

            result=loadbmp(iflname);

  if(result!=PRO)

          {

                   RLEmain(iflname,oflname);

                 }

  getch();

 }

int loadbmp(char *filename)        //For loading bitmap image

  {

          FILE *bmp;

          bmp=fopen(filename,"rb");

     if(bmp==NULL)

          {

                printf("couldn't open file:");

                getch();

                return PRO;

            }

           fread(&Header,54,1,bmp);        //Reads BMP header details

        if(Header.bfType!=19778 || Header.bfReserved!=0 || Header.biPlanes!=1)

         {

              printf("Not a valid Bitmap:");

              getch();

              fclose(bmp);

              return PRO;

           }

       if(Header.biCompression!=0)

           {

               printf("Compressed Bitmap's are not displayed:");

               getch();

               fclose(bmp);

               return PRO;

            }

if(Header.biBitCount!=8)

          {

                 printf("Not a 8 bit color image:");

                 getch();

                 fclose(bmp);

                 return PRO;

           }

clrscr();

showheader();                   //Shows bitmap header details

fclose(bmp);                    //Closes the input bitmap image file

getch();        

}

/*********************************************************************




      FILE DESCRIPTIONS



 NAME       : COMPRESS.CPP



 PURPOSE: RUN LENGTH ENCODING ALGORITHM        





  IMPLEMENTATION

*********************************************************************/

#define LIMIT     1

#define NON_MATCH 2

#define EOF_FOUND 3

int get_byte();

int process_comp();

/****************** Function Prototype Declare************************/

void showDsummary(char *argv,char *cod);

void showsummary(char *argv,char *cod);

void encode ();                              

void flush_outbuf();

void process_uncomp(unsigned char);

void decode(void);

FILE *fpin, *fpout;

unsigned char tmpbuf[4];    //Array used to store sequence of repeating

int ch, tmpbuf_cnt;              //bytes

double lin,lin1 ;

double lout,lout1 ;

double compression ;

double comp_ratio;

char decoded[30];

unsigned char outbuf[128];   //Array used to store sequence of none repeating




       //bytes

int outbuf_cnt;

void showsummary(char *inf, char *otf)     //Displays the Compression summary

  {


clrscr();

   printf("\n\t ******************************************************");

   printf("\n\t                       COMPRESSION   SUMMARY");

   printf("\n\t   ******************************************************");


printf("\n\nInput File::   %s",inf);


printf("\nOutput File::   %s",otf);


printf("\nInput File Size::   %f bytes",lin);


printf("\nOutput File Size::   %f bytes",lout);


printf("\nCompression::   %f %",compression);


printf("\nCompression Ratio::   %f",comp_ratio);

       }

void showDsummary(char *inf1,char *otf1)       //Displays Decompression Details

     {

      printf("\n\t   ****************************************************");

      printf("\n\t                    DECOMPRESSION    SUMMARY");

      printf("\n\t   ****************************************************");

                      printf("\n\nCompressed File::   %s",inf1);


 printf("\nDecompressed File::   %s",otf1);


 printf("\nCompressed File Size::   %f bytes",lout1);


 printf("\nDecompressed File Size::   %f bytes",lin1);

      }

void RLEmain(char *in, char *cod)                   //Main Function for Compress.cpp

    {

         char decod[30] ;

         int i,j ;

         int handle,handle1 ;

        fpin = fopen(in, "rb") ;

/*Modify the output file extension to <filename.RLE>*/

    for(i=strlen(cod) ; cod[i]!='.' ; i--) ;

        if(i==0)

            i=strlen(cod) ;

            cod[i+1]='R' ;

            cod[i+2]='L' ;

            cod[i+3]='E' ;

            cod[i+4]='\0' ;

         fpout = fopen(cod, "wb");

        clrscr();

        printf("\n\t\t\t ****************************");

        printf("\n\t\t\t             MENU");

        printf("\n\t\t\t ****************************");

        printf("\n\n\t\t\t1->COMPRESS");

        printf("\n\n\t\t\t2->EXIT");

        printf("\n\n\n\t\tENTER YOUR CHOICE: ");

        scanf("%d",&j);

    switch(j)

    {

     case 1: {

    encode();           //Calls encoding function

    fclose(fpin) ;

    fclose(fpout) ;

    handle = open(in, O_RDONLY) ;

    lin=filelength(handle) ;

    close(handle) ;

    handle = open(cod, O_RDONLY) ;

    lout=filelength(handle) ;

    close(handle) ;

    compression=(float)((lin-lout)/(float)lin)*100 ;

    comp_ratio  = (float)(lout/lin) ;

   showsummary(in,cod);

   getch();

   clrscr();

  break;

}

  case 2:

  {

  exit(0);

  }

  }

   printf("\n\t\t\t ****************************");

   printf("\n\t\t\t             MENU");

   printf("\n\t\t\t ****************************");

   printf("\n1->DECOMPRESS:");

   printf("\n2->EXIT:");

   printf("\nEnter ur choice:");

   scanf("%d",&ch);

   switch(ch){

 case 1:

   {

   strcpy(decod,cod) ;

    for(i=strlen(decod) ; decod[i]!='.' ; i--) ;

    decod[i]=‘D’ ;

    decod[i+1]='.' ;

    decod[i+2]=‘B’ ;

    decod[i+3]=‘M’ ;

    decod[i+4]='P' ;

    decod[i+5]='\0' ;

     fpin = fopen(cod, "rb") ;

     fpout = fopen(decod, "wb");

     decode();

     fclose(fpin);

     fclose(fpout);

    handle1 = open(decod, O_RDONLY) ;

    lin1=filelength(handle1) ;

    close(handle) ;

    handle1 = open(cod, O_RDONLY) ;

    lout1=filelength(handle1) ;

    close(handle) ;

    clrscr();

    showDsummary(cod,decod);

    break;

    }

    case 2:

    {

    exit(0);

    }

}

return;

}

void encode ()

{

    int ret_code ;

    tmpbuf_cnt = 0 ;      /* no. of char's in tmpbuf */

    outbuf_cnt = 0 ;      /* no. of char's in outbuf */

    while (get_byte() != EOF)      //Sets ch to the next byte in the input file.

    {


tmpbuf[++tmpbuf_cnt] = (unsigned char) ch; //starts from tmpbuf[1]



if (tmpbuf_cnt == 3)


{

                          /* see if all 3 match each other */   


    if ((tmpbuf[1] == tmpbuf[2]) && (tmpbuf[2] == tmpbuf[3]))


    {


       /* they do - add compression */


       /* this will process all bytes in input file until



  a non-match occurs, or 128 bytes are processed,



  or we find eof */


       ret_code=process_comp();


       if (ret_code == EOF_FOUND)



        break;       /* stop compressing */


       if (ret_code == NON_MATCH)



        tmpbuf_cnt=1;  /* save the char that didn't match */


       else

                                      /* we just compressed the max. of 128 bytes */


                tmpbuf_cnt=0;


      }


      else


      { 


                 /* we know the first byte doesn't match 2 or more



            others, so just send it out as uncompressed. */



       process_uncomp(tmpbuf[1]);

                            * see if the last 2 bytes in the buffer match */  


       if (tmpbuf[2] == tmpbuf[3])


       {

                                   /* move byte 3 to position 1 and pretend we just



        have 2 bytes -- note that the first byte was



        already sent to output */   



   tmpbuf[1]=tmpbuf[3];



   tmpbuf_cnt=2;


       }


       else


       {

                                /* send byte 2 and keep byte 3 - it may match the



     next byte.  Move byte 3 to position 1 and set



     count to 1.  Note that the first byte was



     already sent to output */



  process_uncomp(tmpbuf[2]);



  tmpbuf[1]=tmpbuf[3];



  tmpbuf_cnt=1;


       }


    }


} //end if(tempbuf_cnt==3)

        } /* end while */

 flush_outbuf()

}

int process_comp()

{

     /* we start out with 3 repeating bytes */

     register int len = 3;

     /* we're starting a repeating chunk - end the non-repeaters */

     flush_outbuf();

     while (get_byte() != EOF)

     {


if (ch != tmpbuf[1])


{


    /* send no. of repeated bytes to be encoded */

                         fputc((--len) | 0x80, fpout) ;


    /* send the byte's value being repeated */

                         fputc(tmpbuf[1], fpout);


   /* save the non-matching character just read */

                         tmpbuf[1]=(unsigned char) ch;


    return NON_MATCH;


}


/* we know the new byte is part of the repeating seq */

                     len++;


if (len == 128)


{


    fputc((--len) | 0x80, fpout);


    fputc(tmpbuf[1], fpout);


    return LIMIT;


}

     } /* end while */


/* if flow comes here, we just read an EOF */


fputc((--len) | 0x80, fpout);


fputc(tmpbuf[1], fpout);


return EOF_FOUND;

}

/*This adds 1 non-repeating byte to outbuf.  If outbuf becomes full

 with 128 bytes, it flushes outbuf.*/

void process_uncomp(unsigned char char1)

{

    outbuf[outbuf_cnt++] = char1;

    if (outbuf_cnt == 128)

       flush_outbuf();

}

void flush_outbuf()         //This flushes any non-compressed data not yet sent.

                                         // On exit, outbuf_cnt will equal zero.           

{

    register int pos=0;

    if(!outbuf_cnt)       // if outbuf_cnt is 0, return

       return;

    /* send no. of unenclosed bytes to be sent */

    fputc(outbuf_cnt - 1, fpout);   //Putting In File No. Of Times A Char. Occurs

    for ( ; outbuf_cnt; outbuf_cnt--)

       fputc(outbuf[pos++], fpout);

}

int get_byte()    //This reads the next byte into ch.  It returns EOF 

                          // at end-of-file, or on error.      

{

     ch = fgetc(fpin);

     if (feof(fpin) || ferror(fpin))

     {if (tmpbuf_cnt == 1)


    process_uncomp(tmpbuf[1]);


 else


    {


    if (tmpbuf_cnt == 2)


       {


       process_uncomp(tmpbuf[1]);


       process_uncomp(tmpbuf[2]);


       }


    }


 return EOF;


 }

     return 0;

}

void decode ()

{

    int ch, i;

    while (1)

    {

       ch=fgetc(fpin);

       if (feof(fpin) || ferror(fpin))


   break;

       if (ch > 127)

       {


  i = ch - 127;            /* i is the number of repetitions */


  /* get the byte to be repeated */

                       ch = fgetc(fpin);    


  if (feof(fpin) || ferror(fpin))


  {


     puts("\nERROR:End of file\n");


     break;


  }


     /* uncompress a chunk */

                          for ( ; i ; i--)


     fputc(ch, fpout);

       }

       else

       {

                        /* copy out some uncompressed bytes */


  i = ch + 1;    /* i is the no. of bytes */

                        /* uncompress a chunk */


  for ( ; i ; i--)


  {


     ch = fgetc(fpin);


     if (feof(fpin) || ferror(fpin))


     {



puts("\nERROR:End of file\n");



break;


     }


     fputc(ch, fpout);


  } //end for

       } //end else

    } /* end while */

} //end sub

PROGRAM OUTPUT

***************************************************

COMPRESSION DECOMPRESSION SOFTWARE           ***************************************************

Enter a Path for the Input File: c:\Bubbles.bmp

Enter the Output File Name: Bubbles1.bmp

      ******************************************************

    BITMAP HEADER DETAILS           ******************************************************

BITMAP FILE HEADER

File Signature::



19778

File Size::




5174 bytes

Reserved 1::




0

Reserved 2::




0

Offset To Image Data::

1078 bytes

BITMAP INFO HEADER

Bitmap Header Size::





40 bytes

Image Width::






64 pixels

Image Height::






64 pixels

No. Of Planes In The Image::



1

No. Of Bits Required To Represent A Pixel::8 bpp

Compression Bit::






0

Bytes Required For Image Data Alone::

4096 bytes

Horizontal Resolution::




95.022624 dpi

Vertical Resolution::





95.022624 dpi

No. Of Colors Used::





0

No. Of Important Colors::




0
******************************************************

COMPRESSION SUMMARY

******************************************************

Input File::   

c:\Bubbles.bmp

Output File::   

bubbles1.RLE

Input File Size::   
    5174.000000 bytes

Output File Size::   
    1913.000000 bytes

Compression::   

63.026672 %

Compression Ratio::  
     0.369733

 ******************************************************

DECOMPRESSION DETAILS

******************************************************

Compressed File::   

 bubbles.RLE

Decompressed File::   
           bubblesD.BMP

Compressed File Size::   
1913.000000 bytes

Decompressed File Size:: 
5174.000000 bytes


[image: image1.png]
                                        File Name::   

    Bubbles.bmp

                                              Input File Size::   
              5174.000000 bytes

                                       Output File Size::   
    1913.000000 bytes

                                       Compression::   

    63.026672 %

                                       Compression Ratio::  
    0.369733

COMPRESSION :: FUNCTIONS USED

1. void comp(void)

This is the main working module which calls all other functions needed for completing the task of compressing the stream of data coming in. It calls the function get_byte( ) to read in the characters (one by one) from the input stream(raw data of pixels) into a temporary buffer tmpbuf[4]  Then the three bytes in the buffer are checked for equivalence. If they are same then a function required for compression i.e., process_comp() is called, otherwise the function process_uncomp( ) is called. When the end of input file is reached, i.e. there is no more data to be encoded, the encode ( ) function calls flush_outbuf ( ) to flush out whatever un-encoded data was there in the buffer. 

2. int get_byte(void)
This function reads one character at a time from the input stream using the C library function fgetc(FILE *stream) and saves it in the integer variable ch after converting it into an integer type. It returns EOF indicating the end of file and also checks for some errors in reading the input stream using the c library function ferror(FILE *stream).
3. int process_comp(void)
This function gets called when at least three bytes of data from the input stream are same because only then the encoding procedure would result in a stream of smaller size (explained with the algorithm). Every time it is called it starts off by first initializing an integer variable len in the CPU register to indicate the number of the data bytes to be encoded. It then flushes out any previous unenclosed data in the outbuf[128].


This function then gets the fourth byte from the input stream and checks it with the first byte in the tmpbuf[4]. There can be two cases. Either it is also same as the previous three bytes or it is not. If it is same, then the above procedure of getting another byte from the input stream and checking it for equality and incrementing the variable len is repeated until either of this is encountered then the data along with 128+ count(no. of times the redundant data appears) is written on the output stream fout.

4. void process_uncomp(unsigned char)
This adds one non-repeating byte to outbuf[128]. If the buffer becomes full with 128 bytes, it flushes this buffer. This function is called by the function encode() if the three bytes read in are not same.

5. void flush_outbuf(void)
This flushes any non-compressed data not yet sent. On exit, outbuf_cnt will be made equal to 0.

DECOMPRESS :: FUNCTIONS USED

1. void decomp(void)
This is the only function used to decode the compressed file (stream). It reads in one byte at a time and checks its value. If the value is greater than 127, then it means that the succeeding byte containing the actual data to be repeated has to be repeated ch-127 times. If , on the other hand, its value is less than or equal to 127, then the following ch+1 bytes to be read from the compressed stream are to be put in the output stream as it.

THE FUTURE AHEAD

The future of data compression is certain, and the success is always near. New compression tasks will appear 50 and 100 years after these words are written, and new algorithms will be developed to better solve those tasks. First, 8-bit elements will soon become as rare as 16-bit ten or twenty years ago. Second, we are now limited with one dimensional, and not content-addressable memory. Though some processors can treat memory as two-dimensional, they are relatively rare and novel.


Finally, if we look at definition of compression, there’s no further restriction of what a description should be. It can certainly reference everything that destination can always access. But when that referenced data is inaccessible, description is undecipherable. Thus, if we only assume that all references used in description will be accessible, but don’t know exactly we do “potentially lossy” compression.

[image: image2.emf]  

1 

 


Chcount=0;

RepCount=0;



Start



GetChar Ch;





Ch=EOF





Stop



ChCount++;





ChCount==1



ChTemp=Ch;





Ch=ChTemp;



RepCount++;





Ch=ChTemp;



Insert Compression code word



No



Yes



No



Yes



1



No



Yes



Yes



No



7



8



6



3



4



5



2





_1151864350

