[image: image1.jpg]
 [image: image2.jpg]
AUTOMATIC FUZZY ONTOLOGY GENERATION FOR SEMANTIC WEB

A PROJECT REPORT
Submitted by

 ADALF M

(REG NO:81605710001)

in partial fulfillment for the award of the degree

Of

MASTER OF SCIENCE

 IN

SOFTWARE ENGINEERING

PERIYAR MANIAMMAI COLLEGE OF TECHNOLOGY FOR

WOMEN

ANNA UNIVERSITY : CHENNAI 600 025

JULY 2010

BONAFIDE CERTIFICATE

Certified that this project report “AUTOMATIC FUZZY ONTOLOGY GENERATION FOR SEMANTIC WEB” is the bonafide work of “ADALF.M” who carried out the project work under my supervision.
SIGNATURE SIGNATURE

Mr. E.Ben George M.E.,(Ph.D)., Mrs.M.Sharmila Begum BE.,
HEAD OF THE DEPARTMENT SUPERVISOR

Department of Software Engineering,
 Department Of Software Engineering

Periyar Maniammai College Of

 Periyar Maniammai College Of

 Technology For Women,

 Technology For Women,

Vallam,

 Vallam,

Thanjavur.

 Thanjavur.

INTERNAL EXAMINER

EXTERNAL EXAMINER

ABSTRACT

The Semantic Web is a project that intends to create a universal medium for information exchange by putting documents with computer-processable meaning (semantics) on World Wide Web in a standardized way.

Semantic Web is capable of integrating the day-to-day mechanisms of trade, bureaucracy and our daily lives so that they will be handled by machines talking to machines, making them intelligent agents.

Ontology is a conceptualization of a domain into a human understandable, machine-readable format consisting of entities, attributes, relationships, and axioms. It is used as a standard knowledge representation for the Semantic Web.

Ontology is an effective conceptualism commonly used for the Semantic Web. Fuzzy logic can be incorporated to ontology to represent uncertainty information. Typically, fuzzy ontology is generated from a predefined concept hierarchy. However, to construct a concept hierarchy for a certain domain can be a difficult and tedious task. To tackle this problem, this paper proposes the FOGA (Fuzzy Ontology Generation framework) for automatic generation of fuzzy ontology on uncertainty information. The FOGA framework comprises the following components: Fuzzy Formal Concept Analysis, Concept Hierarchy Generation, and Fuzzy Ontology Generation. We also discuss approximating reasoning for incremental enrichment of the ontology with new upcoming data. Finally, a fuzzy-based technique for integrating other attributes of database to the ontology is proposed.

CONTENTS

 Title

Page No.

1. Introduction

1

 Overview of the System

2

2. Abstract

4

3. Description of the Problem

6

 Existing System

6

 Proposed System

7

 System Environment

7

 System Requirement

9

4. System Analysis

10

 System Description

10

 Proposed System Description

10

 Data Base Construction

 Location Registration and Call Delivery Procedure

5. System Design

16

 Form Design

16

 Input Design

17

 Code Design

17

6. Output Design

19

 System Flow Chart

19

 Forms and Reports

20

7. Testing and Implementation

26

 7.1 System Testing

26

 7.2 Implementation

29

8. Conclusion

30

 Bibliography

31

 Appendix

CHAPTER 1
INTRODUCTION

Currently there is much data on our computers which we cannot browse, or process by, including personal data like calendars, playlists, GPS coordinates, bank statements; enterprise product and workflow and resources; and public data such as weather, events and the properties of materials.ONTOLOGY is a conceptualization of a domain into ahuman understandable, machine-readable format consisting of entities, attributes, relationships, and axioms. It is used as a standard knowledge representation for the Semantic Web. However, the conceptual formalism supported by typical ontology may not be sufficient to represent uncertainty information commonly found in many application domains due to the lack of clear-cut boundaries between concepts of the domains. For example, a document can be very relevant, relevant, or irrelevant to a research area. In addition, keywords extracted from scientific publications can be used to infer the corresponding research areas. However, it is inappropriate to treat all keywords equally as some keywords may be more significant than others. To tackle this type of problems, one possible solution is to incorporate fuzzy logic into ontology to handle uncertainty data. Traditionally, fuzzy ontology is generated and used in text retrieval and search engines , in which membership values are used to evaluate the similarities between the concepts in a concept hierarchy.

However, manual generation of fuzzy ontology from a predefined concept hierarchy is a difficult and tedious task that often requires expert interpretation. So, automatic generation of concept hierarchy and fuzzy ontology from uncertainty data of a domain is highly desirable.

1.2 OUR OBJECTIVE OF PROJECT
In this project, we propose a framework known as FOGA (Fuzzy Ontology Generation framework) that can automatically generate a fuzzy ontology from uncertainty data based on Formal Concept Analysis (FCA) theory. The generated fuzzy ontology is mapped to a semantic representation in OWL (Web Ontology Language) For analyzing these data we need to pull all of them into a spreadsheet, graphing it or joining it with other data. This is potentially impossible.
1.1 Overview of the System

The conceptual formalism supported by typical ontology is not sufficient to represent uncertainty information commonly found in many application domains.There would be lack of or no clear-cut boundaries between concepts of various domains.

Keywords extracted from documents can be used to infer the corresponding information, but it is inappropriate to treat all keywords equally in terms of significance and situations.

Fuzzy Logic is a problem-solving methodology that provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy or missing-input information. It uses an imprecise but very descriptive language to deal with input data more like a human operator. Incorporating Fuzzy Logic in ontology generation in unsupervised fashion is more appropriate and desirable.

Although editing tools have been developed to help users to create and edit ontology, it is a troublesome task to manually derive ontology from data. typically, ontology can be generated from various data types such as textual data, knowledge-based ,semi-structured schemata , and relational schemata. Compared to other types of data, ontology generation from textual data has attracted the most attention. Among techniques used for processing textual data, clustering is one of the most effective techniques for ontology learning. Conceptual clustering techniques such as COBWEB and CLASS IT are powerful clustering techniques that can conceptualize clusters for ontology generation. Formal Concept Analysis FCA is a formal technique for data analysis and knowledge presentation. It defines formal contexts to represent relationships between objects and attributes in a domain.

From the formal contexts, FCA can then generate formal concepts and interpret the corresponding concept lattice, so that information can be browsed or retrieved effectively. FCA is widely used for various applications, such as, text processing ontology merging e-mail manager, e-learning, Web navigation, and expert system. However, as most concept lattices are quite complicated in terms of the number of concepts generated, it is necessary to simplify the lattice generated. In the Iceberg concept lattice, association rules are typically used for clustering concepts on the lattice. Conceptual scaling or lattice theory is then used to generate the concept hierarchy in the TOSCANA and GALOIS systems, respectively. In order to prune the lattices generated for text mining, clustering is first performed on the data set to generate clusters of documents. Then, feature selection is used to extract frequent keywords (or terms) from documents in each cluster as attributes for the cluster. Traditional FCA-based conceptual clustering approaches are hardly able to represent such vague information. To tackle this problem, fuzzy logic can be incorporated into FCA to handle uncertainty information for conceptual clustering and concept hierarchy generation.

 Pollandt, Burusco and Fuentes-Gonzalez , and Huynh and Nakamori have proposed the L-Fuzzy context as an attempt to combine fuzzy logic with FCA. The L-Fuzzy context uses linguistic variables, which are linguistic terms associated with fuzzy sets, to represent uncertainty in the context. However, human interpretation is required to define the linguistic variables. Moreover, the fuzzy concept lattice generated from the L-fuzzy context usually causes a combinatorial explosion of concepts as compared to the traditional concept lattice.

We propose a new technique that combines fuzzy logic and FCA as Fuzzy Formal Concept Analysis (FFCA), in which the uncertainty information is directly represented by a real number of membership value in the range of [0,1]. As such, linguistic variables are no longer needed. Compared to the fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept lattice generated using FFCA will be simpler in terms of the number of formal concepts. It also supports a formal mechanism for calculating concept similarities.

1.1Problem Definition

The conceptual formalism supported by typical ontology is not sufficient to represent uncertainty information commonly found in many application domains.There would be lack of or no clear-cut boundaries between concepts of various domains.

Keywords extracted from documents can be used to infer the corresponding information, but it is inappropriate to treat all keywords equally in terms of significance and situations.

Fuzzy Logic is a problem-solving methodology that provides a simple way to arrive at a definite conclusion based upon vague, ambiguous, imprecise, noisy or missing-input information.

It uses an imprecise but very descriptive language to deal with input data more like a human operator.

Incorporating Fuzzy Logic in ontology generation in unsupervised fashion is more appropriate and desirable.

System Environment

Front End :

The front end is designed and executed with the J2SDK1.4.0 handling the core java part with User interface Swing component. Java is robust , object oriented , multi-threaded , distributed , secure and platform independent language. It has wide variety of package to implement our requirement and number of classes and methods can be utilized for programming purpose. These features make the programmer’s to implement to require concept and algorithm very easier way in Java.

The features of Java as follows:

Core java contains the concepts like Exception handling, Multithreading , Streams can be well utilized in the project environment.The Exception handling can be done with predefined exception and has provision for writing custom exception for our application.Garbage collection is done automatically, so that it is very secure in memory management.

The user interface can be done with the Abstract Window tool Kit and also Swing class. This has variety of classes for components and containers. We can make instance of these classes and this instances denotes particular object that can be utilized in our program.

Event handling can be performed with Delegate Event model. The objects are assigned to the Listener that observe for event, when the event takes place the corresponding methods to handle that event will be called by Listener which is in the form of interfaces and executed.

This application make use of ActionListener interface and the event click event gets handled by this. The separate method actionPerformed() method contains details about the response of event.

Java also contains concepts like Remote method invocation, Networking can be useful in distributed environment.
System Requirement
Hardware specifications:

 Processor

: Intel Processor IV

 RAM

 : 128 MB

 Hard disk

: 20 GB

 CD drive

: 40 x Samsung

 Floppy drive

 : 1.44 MB

 Monitor

: 15’ Samtron color

 Keyboard

: 108 mercury keyboard

 Mouse

 : Logitech mouse

 Software Specification

Operating System – Windows XP/2000

Language used – J2sdk1.4.0.
2. System Analysis

System analysis can be defined, as a method that is determined to use the resources, machine in the best manner and perform tasks to meet the information needs of an organization.

2.1 System Description

It is also a management technique that helps us in designing a new systems or improving an existing system. The four basic elements in the system analysis are

· Output

· Input

· Files

· Process

The above-mentioned are mentioned are the four basis of the System Analysis.

Chapter 3
Detailed Design

Introduction
Data Collection and Management

Initially, we perform database specific operations like data collection, table design and storing the organized into the database. First, we perform the algorithms over sample text files and hence file IO operations are used. Later, we apply the proposed work into online data collected in the form of web-pages.

Fuzzy FCA

FCA is a formal technique for data analysis and knowledge presentation. It defines formal contexts to represent relationships between objects and attributes in a domain. From the formal contexts, FCA can then generate formal concepts and interpret the corresponding concept lattice, so that information can be browsed or retrieved effectively. We apply the fuzzy logic to represent vague information and build a concept lattice.

In Fuzzy Formal Concept Analysis (FFCA), the uncertainty information is directly represented by a real number of membership value in the range of [0, 1]. As such, linguistic variables are no longer needed. Compared to the fuzzy concept lattice generated from the L-fuzzy context, the fuzzy concept lattice generated using FFCA will be simpler in terms of the number of formal concepts. It also supports a formal mechanism for calculating concept similarities.

Fuzzy Conceptual Clustering

As in traditional concept lattice, the fuzzy concept lattice generated using FFCA is sometimes quite complicated due to the large number of fuzzy formal concepts generated. Since the formal concepts are generated mathematically, objects that have small differences in terms of attribute values are classified into distinct formal concepts. Such objects should belong to the same concept when they are interpreted by human. Thus, we cluster formal concepts into conceptual clusters using fuzzy conceptual clustering. Compared to traditional clusters, the conceptual clusters generated have the following properties:

· Each conceptual cluster is considered as a human interpretable concept in the domain of the fuzzy concept lattice.

· Each conceptual cluster is a sublattice extracted from the fuzzy concept lattice.

· A formal concept must belong to at least one conceptual cluster. For example, a scientific document can belong to more than one research area.

Conceptual clusters are generated based on the premise that if a formal concept A belongs to a conceptual cluster R, then its subconcept B also belongs to R if B is similar to A. We can use a similarity confidence threshold Ts to determine whether two concepts are similar or not.

Fuzzy Ontology Generation
Here, we construct fuzzy ontology from a fuzzy context using concept hierarchy created by clustering. This is done based on the characteristic that both FCA and ontology support formal definitions of concepts. However, a concept defined in FCA has both extensional and intensional information in a balanced manner, whereas a concept in ontology emphasizes on its intensional aspect.

To construct the fuzzy ontology, we need to convert both intensional and extensional information of FCA concepts into the corresponding classes and relations of the ontology. Thus, we define the fuzzy ontology as follows:

A fuzzy ontology FO consists of four elements (C;AC;R;X), where C represents a set of concepts, AC represents a collection of attributes sets, one for each concept, and R=(RT;RN) represents a set of relationships, which consists of two elements: RN is a set of non taxonomy relationships and RT is a set of

taxonomy relationships. Each concept ci in C represents a set of objects, or instances, of the same kind. Each object oij of a concept ci can be described by a set of attributes values denoted by AC(ci). Each relationship ri(cp;cq) in R represents a binary association between concepts cp and cq, and the instances of such a relationship are pairs of (cp; cq) concept objects. Each attribute value of an object or relationship instance is associated with a fuzzy membership value between [0,1] implying the uncertainty degree of this attribute value or relationship. X is a set of axioms. Each axiom in X is a constraint on the concept’s and relationship’s attribute values or a constraint on the relationships between concept objects. The constraints can be described using the SWRL format.

Ontology Enrichment and Integration of Extra-Attributes

Besides the keywords, a document may have some other important attributes, or extra attributes, such as its authors, publisher, publication dates, etc. To make the generated fuzzy ontology more effective, it is necessary to integrate these extra attributes to the ontology. Thus, we propose a mathematical model to incorporate extra attributes into the fuzzy ontology generated using FOGA. The cross relation represents an intercontext relation that probably occurs between the fuzzy formal contexts when the set of objects of a context is regarded as the set of attributes of another contexts. To find relations between extra attributes and a concept hierarchy mathematically, we represent the concept hierarchy as a particular fuzzy formal context, or concept context. As discussed above, the concept hierarchy generated from a fuzzy formal context can be represented as a concept context that has the same object set as the original context.

5. System Design

Design is concerned with identifying software components specifying relationships among components. Specifying software structure and providing blue print for the document phase.

Modularity is one of the desirable properties of large systems. It implies that the system is divided into several parts. In such a manner, the interaction between parts is minimal clearly specified.

Design will explain software components in detail. This will help the implementation of the system. Moreover, this will guide the further changes in the system to satisfy the future requirements.

[image: image3.emf]
Fig.1.Fuzzy ontology generation process.

5.1 Form design

First, we perform the algorithms over sample text files and hence file IO operations are used. Later, we apply the proposed work into online data collected in the form of web-pages.

[image: image4.png]
 FIG.2.

This forms shows Conceptual clusters are generated based on the premise that if a formal concept A belongs to a conceptual cluster R, then its subconcept B also belongs to R if B is similar to A. We can use a similarity confidence threshold Ts to determine whether two concepts are similar or not.

[image: image5.png]
FIG.3.

This form shows To find relations between extra attributes and a concept hierarchy mathematically, we represent the concept hierarchy as a particular fuzzy formal context, or concept context. As discussed above, the concept hierarchy generated from a fuzzy formal context can be represented as a concept context that has the same object set as the original context.

[image: image6.png]
FIG.4

This forms show the result of the concept hierarchy generated from a fuzzy formal context can be represented as a concept context that has the same object set as the original context.

[image: image7.png]
FIG.5.

7.2 Implementation

Implementation includes all those activities that take place to convert from the old system to the new. The new system may be totally new, replacing an existing system or it may be major modification to the system currently put into use.

Fuzzy Ontology Generation

This step constructs fuzzy ontology from a fuzzy contextusing the concept hierarchy created by fuzzy conceptual clustering. This is done based on the characteristic that both FCA and ontology support formal definitions of concepts.

However, a concept defined in FCA has both extensional and intensional information in a balanced manner, whereas a concept in ontology emphasizes on its intensional aspect. To construct the fuzzy ontology, we need to convert both intensional and extensional information of FCA concepts into the corresponding classes and relations of the ontology.

The Scholarly Ontology has two concepts (classes):Document and Research Area. The attributes of class Document are major properties of a scientific publication such as author, title, etc. A Research Area is indicated by a set of appropriate keywords. Nontaxonomy relation set RN consists of relations between Document and Research Area implying that a document can belong to some research areas and a research area may consist of various scientific documents. Taxonomy relations set RT define hierarchical relations between research area, in which a research area may be a superarea or subarea of the others. The axiom sets X contains of some basic rules that imply the inversed relations of defined relations.

The attributes and relations of instances of the Scholarly Ontology are associated with membership values that indicate their degree of uncertainty.For example, a document and a research area can be represented as objects D and R of concepts Document and Research Area, respectively. Every value of the Keyword attribute of the object R is associated with a membership value. Similarly, the relation belong-to between the object R and D also has a membership value. Those membership values are necessary to reflect the attribute value and relation reasonably and accurately since it is difficult to conclude if a keyword or a document fully belongs to a research area. Besides, the membership value of objects’ attributes and relations that do not contain uncertainty information are implicitly assigned the default value of 1, as the attribute ID of D and R in the above example. Therefore, the defined fuzzy ontology can also be applied for a domain without uncertainty information.

Semantic Representation Conversion

The generated fuzzy ontology provides a conceptual modelof knowledge in the corresponding domain. However, to make such knowledge accessible and sharable on the Web environment, we must convert it into a semantic representation that can be embedded into the contents of Web pages. In Semantic Web, ontology description language such as OWL can be used to annotate ontology. Therefore, the generated fuzzy ontology can be automatically converted into the corresponding semantic representation in OWL, in which each class and instance is annotated.

APPROXIMATING REASONING FOR ONTOLOGY ENRICHMENT

A common problem with ontology generation is how to incrementally deal with new data. As discussed earlier, apart from the fuzzy formal context, the fuzzy ontology is also generated from the concept hierarchy acquired using conceptual clustering. To perform conceptual clustering again to incorporate the new data into the ontology would be time-consuming. To avoid this, we propose to use the fuzzy-based approximating reasoning technique to assign new data into appropriate conceptual clusters, which consists of the two following steps.

Proposition Extraction

A proposition can be represented as a statement “x is A,” where x is a variable and A is a value. In fuzzy logic, a proposition can be represented as a fuzzy set U, which implies “x is U.” For reasoning, the proposition that has widely been used in fuzzy logic is the “IF-THEN” proposition, which can be represented as follows: IF <proposition> THEN <proposition>. Assume that we have a conceptual cluster Ci that contains a set of objects fO1;O2; . . .;Ong. Logically, we can construct an “IF-THEN” proposition as follows: “IF x is O1 or x is O2 or . . . or x is On THEN x belongs to Ci.” However, since conceptual clusters can share some formal concepts, they can share some objects.

7.

INTEGRATING OF EXTRA ATTRIBUTES FROM

DATABASE TO ONTOLOGY

We presented a technique for constructing fuzzy ontology from a fuzzy formal context. Such fuzzy formal context can be generated automatically from database schemata. However, apart from the attributes that are used in the fuzzy formal context, there are probably some other significant attributes available in the database. For example, besides the keywords, a document may have some other important attributes, or extra attributes, such as its authors, publisher, publication dates, etc. To make the generated fuzzy ontology more effective, it is necessary to integrate these extra attributes to the ontology. Thus, we propose a mathematical model to incorporate extra attributes into the fuzzy ontology generated using FOGA.

[image: image8.emf]
FIG.6.Concept hierarchy generated.

Performance Evaluation of Ontology Generation

Performance of the ontology generation is evaluated basedon the generated Research Area Hierarchy. First, we measure the typical recall, precision, and F-measure to evaluate the clustering results. Second, we use the relaxation error and the corresponding cluster goodness measure to evaluate the goodness of the conceptual clusters generated. We also show whether the use of fuzzy membership instead of crisp value can help improve cluster goodness.

EXISTING SYSTEM
Currently there is much data on our computers which we cannot browse, or process by, including personal data like calendars, playlists, GPS coordinates, bank statements; enterprise product and workflow and resources; and public data such as weather, events and the properties of materials.

For analyzing these data we need to pull all of them into a spreadsheet, graphing it or joining it with other data. This is potentially impossible.
The Semantic Web is a project that intends to create a universal medium for information exchange by putting documents with computer-processable meaning (semantics) on World Wide Web in a standardized way.

Semantic Web is capable of integrating the day-to-day mechanisms of trade, bureaucracy and our daily lives so that they will be handled by machines talking to machines, making them intelligent agents.

Ontology is a conceptualization of a domain into a human understandable, machine-readable format consisting of entities, attributes, relationships, and axioms. It is used as a standard knowledge representation for the Semantic Web.

The conceptual formalism supported by typical ontology is not sufficient to represent uncertainty information commonly found in many application domains.

There would be lack of or no clear-cut boundaries between concepts of various domains.

Keywords extracted from documents can be used to infer the corresponding information, but it is inappropriate to treat all keywords equally in terms of significance and situations.

FCA (Formal Concept Analysis) methods like text processing, ontology merging, e-mail manager, e-learning, expert systems, web-navigation, etc.

L-Fuzzy FCA

Ontology Editing Tools

Drawbacks of Existing Methods
Older FCA methods are hardly able to represent vague information present in the domain documents.

L-Fuzzy approach is not fully automatic as it requires human interpretation to define linguistic variables.

Using Ontology Editing Tools is a troublesome task to manually derive ontology from data.

PROPOSED SYSTEM

The proposed FOGA framework would be useful to construct ontology from uncertainty data as it can represent uncertainty information and construct a concept hierarchy automatically.

FOGA is useful to generate Machine Service Ontology for Semantic Help-desk and Reuters News Topic Themes Ontology.

It is also useful to construct the Scholarly Semantic Web, a Semantic Web-based information retrieval system to support scholarly activities in the Semantic Web environment.

Proposed a technique to integrate extra attributes in a database to the ontology. The proposed FOGA framework would be useful to construct ontology from uncertainty data as it can represent uncertainty information and construct a concept hierarchy from the uncertainty information in automatically. Apart from constructing scholarly ontology from citation database as previously stated, FOGA has also been used to generate Machine Service Ontology for Semantic Help-desk and Reuters News Topic Themes Ontology in our research.

FOGA Framework

· Fuzzy FCA.

· Concept Hierarchy Generation.

· Fuzzy Ontology Generation.

· Semantic Representation Conversion.

Advantages of Proposed Method

· Fully unsupervised ontology generation even from uncertainty information in the context.

· Computers can automatically harness the enormous network of information and services on the Web.

· FOGA framework is able to approximate the reasoning for incremental enrichment of ontology with new upcoming data.

· Can integrate extra attributes in a database to the ontology.

CONCLUSION

In this project we have proposed the FOGA framework for fuzzy ontology generation on uncertainty information. FOGA consists of the following steps: Fuzzy Formal Concept Analysis, Fuzzy Conceptual Clustering, Fuzzy Ontology Generation, and Semantic Representation Conversion. In addition, we have also proposed an approximating reasoning technique that allows the generated fuzzy ontology to be incrementally furnished with new instances. Finally, we have also proposed a technique to integrate extra attributes in a database to the ontology.

The proposed FOGA framework would be useful to construct ontology from uncertainty data as it can represent uncertainty information and construct a concept hierarchy from the uncertainty information in automatically. Apart from constructing scholarly ontology from citation database as previously stated, FOGA has also been used to generate Machine Service Ontology for Semantic Help-desk and Reuters News Topic Themes Ontology in our research.

ANNEXURE I

SAMPLE CODING

package edu.thu.keg.ontoalign.ui;

import edu.thu.keg.ontoalign.control.RiMOMController;

import edu.thu.keg.ontoalign.ontology.Ontology;

import edu.thu.keg.ontoalign.ontology.OntologyFactory;

import edu.thu.keg.ontoalign.process.OWLPreProc;

import edu.thu.keg.ontoalign.process.Util;

import edu.thu.keg.ontoalign.project.OntoAlignFactory;

import edu.thu.keg.ontoalign.project.OntoAlignOntology;

import edu.thu.keg.ontoalign.project.OntoAlignParameter;

import edu.thu.keg.ontoalign.project.OntoAlignProject;

import edu.thu.keg.ontoalign.project.OntoAlignTask;

import edu.thu.keg.ontoalign.ui.ontology.OntologyConverter;

import edu.thu.keg.ontoalign.ui.wizards.ParameterDialog;

import edu.thu.keg.ontoalign.ui.wizards.ProjectWizard;

import edu.thu.keg.ontoalign.ui.wizards.TaskDetailDialog;

import java.awt.BorderLayout;

import java.awt.Component;

import java.awt.Container;

import java.awt.Cursor;

import java.awt.Dimension;

import java.awt.GridBagConstraints;

import java.awt.GridBagLayout;

import java.awt.Insets;

import java.awt.event.ActionEvent;

import java.awt.event.ActionListener;

import java.awt.event.MouseAdapter;

import java.awt.event.MouseEvent;

import java.awt.event.WindowAdapter;

import java.awt.event.WindowEvent;

import java.io.BufferedInputStream;

import java.io.BufferedOutputStream;

import java.io.File;

import java.io.FileInputStream;

import java.io.FileOutputStream;

import java.io.IOException;

import java.io.InputStream;

import java.io.OutputStream;

import java.io.PrintStream;

import java.net.URI;

import java.util.Iterator;

import java.util.Set;

import javax.swing.BorderFactory;

import javax.swing.Box;

import javax.swing.DefaultListModel;

import javax.swing.ImageIcon;

import javax.swing.JButton;

import javax.swing.JFrame;

import javax.swing.JLabel;

import javax.swing.JList;

import javax.swing.JMenu;

import javax.swing.JMenuBar;

import javax.swing.JMenuItem;

import javax.swing.JOptionPane;

import javax.swing.JPanel;

import javax.swing.JScrollPane;

import javax.swing.JSplitPane;

import javax.swing.JTabbedPane;

import javax.swing.JTextField;

import javax.swing.JToolBar;

import javax.swing.KeyStroke;

import javax.swing.UIManager;

import javax.swing.UnsupportedLookAndFeelException;

import javax.swing.border.Border;

import javax.swing.event.ListSelectionEvent;

import javax.swing.event.ListSelectionListener;

public class MainFrame extends JFrame

{

 class AboutBoxPanel extends JPanel

 {

 private static final long serialVersionUID = 0xd6b79ddcb1a616fdL;

 private Border border;

 private GridBagLayout layoutMain;

 private JLabel labelCompany;

 private JLabel labelCopyright;

 private JLabel labelAuthor;

 private JLabel labelTitle;

 final MainFrame this$0;

 private void jbInit()

 throws Exception

 {

 setLayout(layoutMain);

 setBorder(border);

 ImageIcon ig = new ImageIcon("pic/striker1.gif");

 JButton btn = new JButton(ig);

 add(btn);

 add(labelTitle, new GridBagConstraints(0, 0, 1, 1, 0.0D, 0.0D, 17, 0, new Insets(5, 15, 0, 15), 0, 0));

 add(labelAuthor, new GridBagConstraints(0, 1, 1, 1, 0.0D, 0.0D, 17, 0, new Insets(0, 15, 0, 15), 0, 0));

 add(labelCopyright, new GridBagConstraints(0, 2, 1, 1, 0.0D, 0.0D, 17, 0, new Insets(0, 15, 0, 15), 0, 0));

 add(labelCompany, new GridBagConstraints(0, 3, 1, 1, 0.0D, 0.0D, 17, 0, new Insets(0, 15, 5, 15), 0, 0));

 }

 public AboutBoxPanel()

 {

 this$0 = MainFrame.this;

 super();

 border = BorderFactory.createEtchedBorder();

 layoutMain = new GridBagLayout();

 labelTitle = new JLabel("Title: RiMOM (Risk Minimization based Ontology Mapping)");

 try

 {

 jbInit();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 class ActionHandler

 implements ActionListener

 {

 final MainFrame this$0;

 public void actionPerformed(ActionEvent arg0)

 {

 Object source = arg0.getSource();

 if(source == newMenuItem || source == newButton)

 {

 newProject();

 } else

 if(source == openMenuItem || source == openButton)

 {

 openProject();

 } else

 if(source == saveMenuItem || source == saveButton)

 {

 saveProject();

 } else

 if(source == closeMenuItem || source == closeButton)

 {

 closeProject();

 } else

 if(source == quitMenuItem || source == exitButton)

 {

 exit();

 } else

 if(source == paramMenuItem || source == configButton)

 {

 configProject();

 } else

 if(source == aboutMenuItem || source == aboutButton)

 {

 about();

 } else

 if(source == addTaskButton)

 {

 addTask();

 } else

 if(source == modifyTaskButton)

 {

 modifyTask();

 } else

 if(source == removeTaskButton)

 {

 removeTask();

 } else

 if(source == startMenuItem)

 {

 startAllTask();

 } else

 if(source == projectWizardMenuItem)

 {

 showProjectWizardDialog();

 }

 }

 ActionHandler()

 {

 this$0 = MainFrame.this;

 super();

 }

 }

 class WindowHandler extends WindowAdapter

 {

 final MainFrame this$0;

 public void windowClosing(WindowEvent e)

 {

 if(e.getSource() == MainFrame.this)

 {

 exit();

 }

 }

 WindowHandler()

 {

 this$0 = MainFrame.this;

 super();

 }

 }

 class TaskListMouseHandler extends MouseAdapter

 {

 final MainFrame this$0;

 public void mouseClicked(MouseEvent e)

 {

 if(e.getClickCount() == 2 && taskList.getSelectedIndex() != -1)

 {

 showMappingPanel();

 }

 }

 TaskListMouseHandler()

 {

 this$0 = MainFrame.this;

 super();

 }

 }

 class TaskListSelectionHandler

 implements ListSelectionListener

 {

 final MainFrame this$0;

 public void valueChanged(ListSelectionEvent e)

 {

 if(e.getValueIsAdjusting())

 {

 return;

 } else

 {

 updateTaskInfo();

 return;

 }

 }

 TaskListSelectionHandler()

 {

 this$0 = MainFrame.this;

 super();

 }

 }

 private static final long serialVersionUID = 0x207657f57a9da1cdL;

 RiMOMController controller;

 JMenuBar menuBar;

 JToolBar toolBar;

 JMenu projectMenu;

 JMenu taskMenu;

 JMenu configMenu;

 JMenu helpMenu;

 JMenu wizardMenu;

 JMenuItem newMenuItem;

 JMenuItem openMenuItem;

 JMenuItem saveMenuItem;

 JMenuItem closeMenuItem;

 JMenuItem quitMenuItem;

 JMenuItem startMenuItem;

 JMenuItem paramMenuItem;

 JMenuItem aboutMenuItem;

 JMenuItem projectWizardMenuItem;

 JButton newButton;

 JButton openButton;

 JButton saveButton;

 JButton configButton;

 JButton aboutButton;

 JButton closeButton;

 JButton exitButton;

 ActionHandler actionHandler;

 JList taskList;

 DefaultListModel taskListModel;

 JScrollPane taskListScrollPane;

 JPanel taskPanel;

 JButton addTaskButton;

 JButton modifyTaskButton;

 JButton removeTaskButton;

 JLabel taskInfoLabel;

 JTextField sourceField;

 JTextField targetField;

 JTextField resultField;

 JTextField paramNameField;

 JTabbedPane alignmentPane;

 WindowHandler windowHandler;

 JSplitPane splitPane;

 public ProjectWizard projectWizard;

 private OntoAlignProject project;

 boolean waitingForShow;

 public MainFrame()

 {

 menuBar = new JMenuBar();

 toolBar = new JToolBar();

 projectMenu = new JMenu("Project");

 taskMenu = new JMenu("Task");

 configMenu = new JMenu("Config");

 helpMenu = new JMenu("Help");

 wizardMenu = new JMenu("Wizard");

 newMenuItem = new JMenuItem("New");

 openMenuItem = new JMenuItem("Open");

 saveMenuItem = new JMenuItem("Save");

 closeMenuItem = new JMenuItem("Close");

 quitMenuItem = new JMenuItem("Exit");

 startMenuItem = new JMenuItem("Start All");

 paramMenuItem = new JMenuItem("Parameter");

 aboutMenuItem = new JMenuItem("About RiMOM");

 projectWizardMenuItem = new JMenuItem("Project");

 newButton = new JButton();

 openButton = new JButton();

 saveButton = new JButton();

 configButton = new JButton();

 aboutButton = new JButton();

 closeButton = new JButton();

 exitButton = new JButton();

 actionHandler = new ActionHandler();

 taskList = new JList();

 taskListModel = new DefaultListModel();

 taskListScrollPane = new JScrollPane();

 taskPanel = new JPanel();

 addTaskButton = new JButton("A");

 modifyTaskButton = new JButton("M");

 removeTaskButton = new JButton("R");

 taskInfoLabel = new JLabel("Task info:");

 sourceField = new JTextField("");

 targetField = new JTextField("");

 resultField = new JTextField("");

 paramNameField = new JTextField("");

 alignmentPane = new JTabbedPane();

 windowHandler = new WindowHandler();

 splitPane = new JSplitPane(1);

 projectWizard = new ProjectWizard(this);

 project = null;

 waitingForShow = false;

 commonInit();

 }

 public void showProjectWizardDialog()

 {

 projectWizard.setVisible(true);

 if(projectWizard.resultValue == 0)

 {

 setProject(projectWizard.getProject());

 enableMenu();

 showTaskRelatedComponents();

 }

 }

 public void startAllTask()

 {

 }

 public void updateTaskInfo()

 {

 if(taskList.getSelectedIndex() != -1)

 {

 String taskName = (String)taskList.getSelectedValue();

 OntoAlignTask task = project.getTask(taskName);

 sourceField.setText(task.getSourceDescription());

 targetField.setText(task.getTargetDescription());

 resultField.setText(task.getResultDescription());

 paramNameField.setText(task.getParameter().name);

 } else

 {

 sourceField.setText("");

 targetField.setText("");

 resultField.setText("");

 paramNameField.setText("");

 }

 }

 public static void main(String args[])

 {

 try

 {

 UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());

 }

 catch(ClassNotFoundException e)

 {

 e.printStackTrace();

 }

 catch(InstantiationException e)

 {

 e.printStackTrace();

 }

 catch(IllegalAccessException e)

 {

 e.printStackTrace();

 }

 catch(UnsupportedLookAndFeelException e)

 {

 e.printStackTrace();

 }

 ScreenSplash ss = new ScreenSplash();

 ss.run();

 MainFrame myFrame = new MainFrame();

 myFrame.setTitle("RiMOM-Risk Minimization based Ontology Mapping");

 myFrame.setIconImage(Resources.ICON_SKULL.getImage());

 Resources.maxFrame(myFrame);

 myFrame.setVisible(true);

 ss.setInvisible();

 myFrame.showProjectWizardDialog();

 }

 void commonInit()

 {

 addWindowListener(windowHandler);

 initMenu();

 initToolBar();

 initTaskPanel();

 getContentPane().add(toolBar, "North");

 setJMenuBar(menuBar);

 getContentPane().add(splitPane, "Center");

 splitPane.setOneTouchExpandable(true);

 splitPane.setContinuousLayout(true);

 splitPane.add(taskPanel);

 splitPane.add(alignmentPane);

 alignmentPane.setPreferredSize(new Dimension(100, 600));

 disableMenu();

 hideTaskRelatedComponents();

 }

 void initTaskPanel()

 {

 addTaskButton.addActionListener(actionHandler);

 modifyTaskButton.addActionListener(actionHandler);

 removeTaskButton.addActionListener(actionHandler);

 Box buttonBox = Box.createHorizontalBox();

 buttonBox.add(addTaskButton);

 buttonBox.add(modifyTaskButton);

 buttonBox.add(removeTaskButton);

 Box taskInfoBox = Box.createVerticalBox();

 taskInfoBox.add(buttonBox);

 taskInfoBox.add(Box.createVerticalStrut(10));

 taskInfoBox.add(taskInfoLabel);

 taskInfoBox.add(sourceField);

 taskInfoBox.add(targetField);

 taskInfoBox.add(resultField);

 taskInfoBox.add(paramNameField);

 taskInfoBox.add(Box.createVerticalStrut(10));

 taskInfoLabel.setAlignmentX(1.0F);

 sourceField.setEditable(false);

 targetField.setEditable(false);

 resultField.setEditable(false);

 paramNameField.setEditable(false);

 taskPanel.setLayout(new BorderLayout());

 taskPanel.add(taskListScrollPane, "Center");

 taskPanel.add(taskInfoBox, "North");

 taskListScrollPane.setViewportView(taskList);

 taskListScrollPane.setPreferredSize(new Dimension(200, 10));

 taskList.setSelectionMode(0);

 taskList.addMouseListener(new TaskListMouseHandler());

 taskList.addListSelectionListener(new TaskListSelectionHandler());

 taskList.setModel(taskListModel);

 }

 void initToolBar()

 {

 newButton.setIcon(new ImageIcon("pic/images/new.gif", "New"));

 newButton.setToolTipText("New Project");

 openButton.setIcon(new ImageIcon("pic/images/open.gif", "Open"));

 openButton.setToolTipText("Open Project");

 saveButton.setIcon(new ImageIcon("pic/images/save.gif", "Save"));

 saveButton.setToolTipText("Save Project");

 configButton.setIcon(new ImageIcon("pic/images/config.gif", "Config"));

 configButton.setToolTipText("Config Project");

 aboutButton.setIcon(new ImageIcon("pic/images/about.gif", "About"));

 aboutButton.setToolTipText("About");

 closeButton.setIcon(new ImageIcon("pic/open.gif", "Close"));

 closeButton.setToolTipText("Close Project");

 exitButton.setIcon(new ImageIcon("pic/root.gif", "Exit"));

 exitButton.setToolTipText("EXIT!");

 newButton.addActionListener(actionHandler);

 openButton.addActionListener(actionHandler);

 saveButton.addActionListener(actionHandler);

 configButton.addActionListener(actionHandler);

 aboutButton.addActionListener(actionHandler);

 closeButton.addActionListener(actionHandler);

 exitButton.addActionListener(actionHandler);

 toolBar.add(newButton);

 toolBar.add(openButton);

 toolBar.add(saveButton);

 toolBar.add(closeButton);

 toolBar.addSeparator(new Dimension(5, 30));

 toolBar.add(configButton);

 toolBar.add(aboutButton);

 toolBar.addSeparator(new Dimension(5, 30));

 toolBar.add(exitButton);

 toolBar.setBorderPainted(false);

 toolBar.setFloatable(false);

 }

 void initMenu()

 {

 newMenuItem.addActionListener(actionHandler);

 newMenuItem.setMnemonic('N');

 newMenuItem.setAccelerator(KeyStroke.getKeyStroke(78, 2));

 openMenuItem.addActionListener(actionHandler);

 openMenuItem.setMnemonic('O');

 openMenuItem.setAccelerator(KeyStroke.getKeyStroke(79, 2));

 saveMenuItem.addActionListener(actionHandler);

 saveMenuItem.setMnemonic('S');

 saveMenuItem.setAccelerator(KeyStroke.getKeyStroke(83, 2));

 closeMenuItem.addActionListener(actionHandler);

 closeMenuItem.setMnemonic('C');

 closeMenuItem.setAccelerator(KeyStroke.getKeyStroke(87, 2));

 quitMenuItem.addActionListener(actionHandler);

 quitMenuItem.setMnemonic('Q');

 projectMenu.add(newMenuItem);

 projectMenu.add(openMenuItem);

 projectMenu.add(saveMenuItem);

 projectMenu.add(closeMenuItem);

 projectMenu.addSeparator();

 projectMenu.add(quitMenuItem);

 projectMenu.setMnemonic('P');

 startMenuItem.addActionListener(actionHandler);

 startMenuItem.setMnemonic('S');

 taskMenu.add(startMenuItem);

 taskMenu.setMnemonic('T');

 paramMenuItem.addActionListener(actionHandler);

 paramMenuItem.setMnemonic('P');

 configMenu.add(paramMenuItem);

 configMenu.setMnemonic('C');

 projectWizardMenuItem.setAccelerator(KeyStroke.getKeyStroke(80, 2));

 projectWizardMenuItem.addActionListener(actionHandler);

 projectWizardMenuItem.setMnemonic('p');

 wizardMenu.add(projectWizardMenuItem);

 aboutMenuItem.addActionListener(actionHandler);

 aboutMenuItem.setMnemonic('A');

 helpMenu.add(aboutMenuItem);

 helpMenu.setMnemonic('H');

 menuBar.add(projectMenu);

 menuBar.add(taskMenu);

 menuBar.add(configMenu);

 menuBar.add(helpMenu);

 menuBar.add(wizardMenu);

 }

 void enableMenu()

 {

 saveButton.setEnabled(true);

 closeButton.setEnabled(true);

 configButton.setEnabled(true);

 startMenuItem.setEnabled(true);

 paramMenuItem.setEnabled(true);

 closeMenuItem.setEnabled(true);

 saveMenuItem.setEnabled(true);

 }

 void disableMenu()

 {

 saveButton.setEnabled(false);

 closeButton.setEnabled(false);

 configButton.setEnabled(false);

 saveMenuItem.setEnabled(false);

 startMenuItem.setEnabled(false);

 paramMenuItem.setEnabled(false);

 closeMenuItem.setEnabled(false);

 }

 protected void newProject()

 {

 File etcFiles[];

 String projectEtcPath;

 int i;

 NewProjectDialog newProjectDialog = new NewProjectDialog(this, "New Project");

 newProjectDialog.setVisible(true);

 if(!newProjectDialog.valid)

 {

 break MISSING_BLOCK_LABEL_334;

 }

 project = OntoAlignProject.newProject(newProjectDialog.projectPathField.getText(), newProjectDialog.projectNameField.getText());

 (new File(Util.getCombinedPath(project.path, "/etc"))).mkdir();

 (new File(Util.getCombinedPath(project.path, "/ontologies"))).mkdir();

 (new File(Util.getCombinedPath(project.path, "/ontologies/imported"))).mkdir();

 (new File(Util.getCombinedPath(project.path, "/mappings"))).mkdir();

 etcFiles = (new File("etc")).listFiles();

 projectEtcPath = Util.getCombinedPath(project.path, "etc");

 i = 0;

 goto _L1

_L3:

 File etc = new File(Util.getCombinedPath(projectEtcPath, Util.getFileName(etcFiles[i].toURI().toString())));

 if(!etcFiles[i].isDirectory())

 {

 try

 {

 etc.createNewFile();

 InputStream in = new BufferedInputStream(new FileInputStream(etcFiles[i]));

 OutputStream out = new BufferedOutputStream(new FileOutputStream(etc));

 int c;

 while((c = in.read()) != -1)

 {

 out.write(c);

 }

 in.close();

 out.flush();

 out.close();

 }

 catch(IOException e1)

 {

 e1.printStackTrace();

 }

 }

 i++;

_L1:

 if(i < etcFiles.length) goto _L3; else goto _L2

_L2:

 taskList.setModel(taskListModel);

 enableMenu();

 showTaskRelatedComponents();

 }

 protected void openProject()

 {

 OpenProjectDialog openProjectDialog = new OpenProjectDialog(this, "Open Project", true);

 openProjectDialog.setVisible(true);

 if(openProjectDialog.isApproved())

 {

 if(project != null)

 {

 closeProject();

 }

 String projectpath = openProjectDialog.projectPath;

 project = OntoAlignProject.openProject(projectpath);

 if(project == null)

 {

 return;

 }

 taskList.setModel(taskListModel);

 enableMenu();

 showTaskRelatedComponents();

 }

 }

 protected void saveProject()

 {

 OntoAlignFactory.saveProject(project);

 }

 protected void closeProject()

 {

 saveProject();

 project = null;

 updateTaskList();

 disableMenu();

 hideTaskRelatedComponents();

 }

 protected void configProject()

 {

 System.out.println("config");

 ParameterDialog pu = new ParameterDialog(this);

 pu.setVisible(true);

 }

 protected void exit()

 {

 if(project != null)

 {

 saveProject();

 }

 dispose();

 System.exit(0);

 }

 protected void about()

 {

 JOptionPane.showMessageDialog(this, new AboutBoxPanel(), "About", -1);

 }

 protected void commit()

 {

 alignmentPane.getSelectedComponent().repaint();

 }

 void addTask()

 {

 if(project == null)

 {

 JOptionPane.showMessageDialog(this, "Please create or open a project first", "No project", 0);

 return;

 }

 OntoAlignTask task = OntoAlignFactory.newOntoAlignTask(project);

 TaskDetailDialog taskDetailDialog = new TaskDetailDialog(null);

 taskDetailDialog.setProject(project);

 taskDetailDialog.setTask(task);

 taskDetailDialog.setVisible(true);

 if(taskDetailDialog.result == 0)

 {

 project.addTask(task);

 updateTaskList();

 }

 }

 void removeTask()

 {

 if(project == null)

 {

 JOptionPane.showMessageDialog(this, "Please create or open a project first", "No project", 0);

 return;

 }

 if(taskList.getSelectedIndex() == -1)

 {

 JOptionPane.showMessageDialog(this, "Please select a task first", "No task", 2);

 return;

 }

 OntoAlignTask task = (OntoAlignTask)taskList.getSelectedValue();

 int option = JOptionPane.showConfirmDialog(this, "Do you want to delete this task's directory too?", "Remove task", 1, 3);

 switch(option)

 {

 case 2: // '\002'

 default:

 break;

 if(alignmentPane.indexOfTab(task.name) != -1)

 {

 alignmentPane.removeTabAt(alignmentPane.indexOfTab(task.name));

 }

 project.removeTask((String)taskList.getSelectedValue());

 Util.deleteFileDirectory(new File(task.getTaskDirPath()));

 break;

 if(alignmentPane.indexOfTab(task.name) != -1)

 {

 alignmentPane.removeTabAt(alignmentPane.indexOfTab(task.name));

 }

 project.removeTask((String)taskList.getSelectedValue());

 break;

 }

 updateTaskInfo();

 }

 void modifyTask()

 {

 if(project == null)

 {

 JOptionPane.showMessageDialog(this, "Please create or open a project first", "No project", 0);

 return;

 }

 if(taskList.getSelectedIndex() == -1)

 {

 JOptionPane.showMessageDialog(this, "Please select a task first", "No task", 2);

 return;

 }

 String selectedTaskName = (String)taskList.getSelectedValue();

 OntoAlignTask selectedTask = project.getTask(selectedTaskName);

 TaskDetailDialog taskDetailDialog = new TaskDetailDialog(null);

 taskDetailDialog.setProject(project);

 taskDetailDialog.setTask(selectedTask);

 taskDetailDialog.setType(1);

 taskDetailDialog.setVisible(true);

 if(taskDetailDialog.result == 0)

 {

 reopenViewer(selectedTask);

 updateTaskInfo();

 }

 }

 public void ShowOntoRepositoryManager()

 {

 OntoRepositoryManager orm = new OntoRepositoryManager(this);

 orm.setVisible(true);

 }

 public void showMappingPanel()

 {

 String taskName = (String)taskList.getSelectedValue();

 OntoAlignTask task = project.getTask(taskName);

 if(waitingForShow)

 {

 return;

 }

 if(alignmentPane.indexOfTab(task.name) != -1)

 {

 alignmentPane.setSelectedIndex(alignmentPane.indexOfTab(task.name));

 return;

 }

 waitingForShow = true;

 setCursor(new Cursor(3));

 try

 {

 switch(task.getSourceType())

 {

 case 2: // '\002'

 default:

 break;

 OntoAlignOntology ontoAlignOntology = project.getOntoAlignOntology(task.getSourceOntologyName());

 if(ontoAlignOntology.ontology == null)

 {

 OntologyFactory.createOntology(ontoAlignOntology);

 }

 task.setTestOnto(ontoAlignOntology.ontology);

 break;

 case 0: // '\0'

 task.setTestOnto((new OWLPreProc()).execute(URI.create(Util.normalizePathWithScheme(task.getSourceFilePathName()[0]))));

 break;

 case -1:

 System.out.println("Undefined Source Type.");

 break;

 }

 Ontology ocsrc = task.getTestOnto();

 task.rootNodeSrc = OntologyConverter.convertOntology(ocsrc, 3);

 switch(task.getTargetType())

 {

 case 2: // '\002'

 default:

 break;

 case 1: // '\001'

 OntoAlignOntology ontoAlignOntology = project.getOntoAlignOntology(task.getTargetOntologyName());

 if(ontoAlignOntology.ontology == null)

 {

 OntologyFactory.createOntology(ontoAlignOntology);

 }

 task.setTrainOnto(ontoAlignOntology.ontology);

 break;

 case 0: // '\0'

 task.setTrainOnto((new OWLPreProc()).execute(URI.create(Util.normalizePathWithScheme(task.getTargetFilePathName()[0]))));

 break;

 case -1:

 System.out.println("Undefined Source Type.");

 break;

 }

 Ontology octar = task.getTrainOnto();

 task.rootNodeTar = OntologyConverter.convertOntology(octar, 3);

 AlignmentViewer viewer = new AlignmentViewer(task, this);

 alignmentPane.addTab(task.name, null, viewer, (new StringBuilder(String.valueOf(task.getSourceFilename()))).append("-->").append(task.getTargetFilename()).toString());

 alignmentPane.setSelectedComponent(viewer);

 alignmentPane.revalidate();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 waitingForShow = false;

 setCursor(new Cursor(0));

 }

 protected void projectChanged(OntoAlignProject newValue, OntoAlignProject oldValue)

 {

 if(oldValue == null && newValue != null)

 {

 enableMenu();

 showTaskRelatedComponents();

 }

 }

 public void closeViewer(OntoAlignTask task)

 {

 int index = alignmentPane.indexOfTab(task.name);

 if(index != -1)

 {

 alignmentPane.remove(index);

 }

 }

 public void reopenViewer(OntoAlignTask task)

 {

 int index = alignmentPane.indexOfTab(task.name);

 if(index != -1)

 {

 alignmentPane.remove(index);

 try

 {

 task.setTestOnto((new OWLPreProc()).execute(URI.create(Util.normalizePathWithScheme(task.getSourceFilePathName()[0]))));

 Ontology ocsrc = task.getTestOnto();

 task.rootNodeSrc = OntologyConverter.convertOntology(ocsrc, 3);

 task.setTrainOnto((new OWLPreProc()).execute(URI.create(Util.normalizePathWithScheme(task.getTargetFilePathName()[0]))));

 Ontology octar = task.getTrainOnto();

 task.rootNodeTar = OntologyConverter.convertOntology(octar, 3);

 AlignmentViewer viewer = new AlignmentViewer(task, this);

 alignmentPane.insertTab(task.name, null, viewer, (new StringBuilder(String.valueOf(task.getSourceFilename()))).append("-->").append(task.getTargetFilename()).toString(), index);

 alignmentPane.setSelectedComponent(viewer);

 alignmentPane.revalidate();

 }

 catch(Exception e)

 {

 e.printStackTrace();

 }

 }

 }

 protected void showTaskRelatedComponents()

 {

 addTaskButton.setVisible(true);

 modifyTaskButton.setVisible(true);

 removeTaskButton.setVisible(true);

 taskListScrollPane.setVisible(true);

 alignmentPane.setVisible(true);

 splitPane.setVisible(true);

 validate();

 splitPane.setDividerLocation(0.20000000000000001D);

 }

 protected void hideTaskRelatedComponents()

 {

 addTaskButton.setVisible(false);

 modifyTaskButton.setVisible(false);

 removeTaskButton.setVisible(false);

 taskListScrollPane.setVisible(false);

 alignmentPane.setVisible(false);

 splitPane.setVisible(false);

 }

 public void closeViewer(AlignmentViewer viewer)

 {

 alignmentPane.remove(viewer);

 viewer.task.getManyMMs().clear();

 viewer.task.setMm(null);

 }

 public void updateTaskList()

 {

 String selectedItem = (String)taskList.getSelectedValue();

 taskListModel.clear();

 if(project == null)

 {

 alignmentPane.removeAll();

 return;

 }

 for(Iterator iter = project.getTaskNameSet().iterator(); iter.hasNext(); taskListModel.addElement(iter.next())) { }

 taskList.setSelectedValue(selectedItem, true);

 for(int i = 0; i < alignmentPane.getTabCount(); i++)

 {

 AlignmentViewer viewer = (AlignmentViewer)alignmentPane.getTabComponentAt(i);

 if(project.getTask(viewer.getName()) == null)

 {

 alignmentPane.removeTabAt(i);

 i--;

 }

 }

 }

 public OntoAlignProject getProject()

 {

 return project;

 }

 public void setProject(OntoAlignProject project)

 {

 this.project = project;

 updateTaskList();

 }

}

ANNEXURE II

SCREEN SHOTS

ANNEXURE

SCREEN SHOTS

[image: image9.png]
[image: image10.png]
[image: image11.png]
[image: image12.png]
[image: image13.png]
[image: image14.png][image: image15.png]
[image: image16.png]
[image: image17.png]
[image: image18.png]
[image: image19.png]
[image: image20.png]
[image: image21.jpg]
[image: image22.png]
3

