PAGE

CONTENTS

· Acknowledgment

· Profile Of The Organization
· Introduction
· System Study

· System Requirements

· Software Environment
· System Design
· System Analysis

· System Testing

· Flow Diagrams

· Sample Source Code

· Output Screens

· Conclusion

· Future Expansion

· Bibliography
INTRODUCTION
Introduction
We study the effect of the noise distribution on the error probability of the detection test when a class of randomly rotated spherical fingerprints is used. The detection test is performed by a focused correlation detector, and the spherical codes studied here form a randomized orthogonal constellation. The colluders create a noise-free forgery by uniform averaging of their individual copies, and then add a noise sequence to form the actual forgery. We derive the noise distribution that maximizes the error probability of the detector under average and almost-sure distortion constraints. Moreover, we characterize the noise distribution that minimizes the decoder’s error exponent under a large-deviations distortion constraint.
Algorithm / Technique used:

Noise distribution Technique
Algorithm Description:

Noise distribution that maximizes the error probability of the detector.

SYSTEM STUDY
System Study
FEASIBILITY STUDY

 The feasibility of the project is analyzed in this phase and business proposal is put forth with a very general plan for the project and some cost estimates. During system analysis the feasibility study of the proposed system is to be carried out. This is to ensure that the proposed system is not a burden to the company. For feasibility analysis, some understanding of the major requirements for the system is essential.

Three key considerations involved in the feasibility analysis are

· ECONOMICAL FEASIBILITY
· TECHNICAL FEASIBILITY
· SOCIAL FEASIBILITY
ECONOMICAL FEASIBILITY
 This study is carried out to check the economic impact that the system will have on the organization. The amount of fund that the company can pour into the research and development of the system is limited. The expenditures must be justified. Thus the developed system as well within the budget and this was achieved because most of the technologies used are freely available. Only the customized products had to be purchased.

TECHNICAL FEASIBILITY
 This study is carried out to check the technical feasibility, that is, the technical requirements of the system. Any system developed must not have a high demand on the available technical resources. This will lead to high demands on the available technical resources. This will lead to high demands being placed on the client. The developed system must have a modest requirement, as only minimal or null changes are required for implementing this system.
SOCIAL FEASIBILITY

 The aspect of study is to check the level of acceptance of the system by the user. This includes the process of training the user to use the system efficiently. The user must not feel threatened by the system, instead must accept it as a necessity. The level of acceptance by the users solely depends on the methods that are employed to educate the user about the system and to make him familiar with it. His level of confidence must be raised so that he is also able to make some constructive criticism, which is welcomed, as he is the final user of the system.

System Requirements
System Requirements

Hardware Requirements

System

: Pentium IV 2.4 GHz.

Hard Disk

: 40 GB.

Floppy Drive

: 1.44 Mb.

Monitor

: 15 VGA Colour.

Mouse

: Logitech.

Ram

: 256 Mb.
Software Requirements
 Operating system

: Windows XP Professional.

 Front End

: Visual Studio 2005.

 Coding Language

: Visual C# .Net.

 Back End

: Sql 2000.
Software Environment
Software Environment
Features OF. Net

Microsoft .NET is a set of Microsoft software technologies for rapidly building and integrating XML Web services, Microsoft Windows-based applications, and Web solutions. The .NET Framework is a language-neutral platform for writing programs that can easily and securely interoperate. There’s no language barrier with .NET: there are numerous languages available to the developer including Managed C++, C#, Visual Basic and Java Script. The .NET framework provides the foundation for components to interact seamlessly, whether locally or remotely on different platforms. It standardizes common data types and communications protocols so that components created in different languages can easily interoperate.

 “.NET” is also the collective name given to various software components built upon the .NET platform. These will be both products (Visual Studio.NET and Windows.NET Server, for instance) and services (like Passport, .NET My Services, and so on).

THE .NET FRAMEWORK

The .NET Framework has two main parts:

1. The Common Language Runtime (CLR).

2. A hierarchical set of class libraries.

The CLR is described as the “execution engine” of .NET. It provides the environment within which programs run. The most important features are
· Conversion from a low-level assembler-style language, called Intermediate Language (IL), into code native to the platform being executed on.

· Memory management, notably including garbage collection.

· Checking and enforcing security restrictions on the running code.

· Loading and executing programs, with version control and other such features.

· The following features of the .NET framework are also worth description:

Managed Code
The code that targets .NET, and which contains certain extra

Information - “metadata” - to describe itself. Whilst both managed and unmanaged code can run in the runtime, only managed code contains the information that allows the CLR to guarantee, for instance, safe execution and interoperability.

Managed Data

 With Managed Code comes Managed Data. CLR provides memory allocation and Deal location facilities, and garbage collection. Some .NET languages use Managed Data by default, such as C#, Visual Basic.NET and JScript.NET, whereas others, namely C++, do not. Targeting CLR can, depending on the language you’re using, impose certain constraints on the features available. As with managed and unmanaged code, one can have both managed and unmanaged data in .NET applications - data that doesn’t get garbage collected but instead is looked after by unmanaged code.

Common Type System

 The CLR uses something called the Common Type System (CTS) to strictly enforce type-safety. This ensures that all classes are compatible with each other, by describing types in a common way. CTS define how types work within the runtime, which enables types in one language to interoperate with types in another language, including cross-language exception handling. As well as ensuring that types are only used in appropriate ways, the runtime also ensures that code doesn’t attempt to access memory that hasn’t been allocated to it.

Common Language Specification

 The CLR provides built-in support for language interoperability. To ensure that you can develop managed code that can be fully used by developers using any programming language, a set of language features and rules for using them called the Common Language Specification (CLS) has been defined. Components that follow these rules and expose only CLS features are considered CLS-compliant.

THE CLASS LIBRARY

.NET provides a single-rooted hierarchy of classes, containing over 7000 types. The root of the namespace is called System; this contains basic types like Byte, Double, Boolean, and String, as well as Object. All objects derive from System. Object. As well as objects, there are value types. Value types can be allocated on the stack, which can provide useful flexibility. There are also efficient means of converting value types to object types if and when necessary.

The set of classes is pretty comprehensive, providing collections, file, screen, and network I/O, threading, and so on, as well as XML and database connectivity.

The class library is subdivided into a number of sets (or namespaces), each providing distinct areas of functionality, with dependencies between the namespaces kept to a minimum.

LANGUAGES SUPPORTED BY .NET

The multi-language capability of the .NET Framework and Visual Studio .NET enables developers to use their existing programming skills to build all types of applications and XML Web services. The .NET framework supports new versions of Microsoft’s old favorites Visual Basic and C++ (as VB.NET and Managed C++), but there are also a number of new additions to the family.

Visual Basic .NET has been updated to include many new and improved language features that make it a powerful object-oriented programming language. These features include inheritance, interfaces, and overloading, among others. Visual Basic also now supports structured exception handling, custom attributes and also supports multi-threading.
Visual Basic .NET is also CLS compliant, which means that any CLS-compliant language can use the classes, objects, and components you create in Visual Basic .NET.

Managed Extensions for C++ and attributed programming are just some of the enhancements made to the C++ language. Managed Extensions simplify the task of migrating existing C++ applications to the new .NET Framework.
C# is Microsoft’s new language. It’s a C-style language that is essentially “C++ for Rapid Application Development”. Unlike other languages, its specification is just the grammar of the language. It has no standard library of its own, and instead has been designed with the intention of using the .NET libraries as its own.

Microsoft Visual J# .NET provides the easiest transition for Java-language developers into the world of XML Web Services and dramatically improves the interoperability of Java-language programs with existing software written in a variety of other programming languages.

Active State has created Visual Perl and Visual Python, which enable .NET-aware applications to be built in either Perl or Python. Both products can be integrated into the Visual Studio .NET environment. Visual Perl includes support for Active State’s Perl Dev Kit.
Other languages for which .NET compilers are available include

· FORTRAN

· COBOL

· Eiffel

Fig1 .Net Framework

	 ASP.NET

 XML WEB SERVICES
	 Windows Forms

	 Base Class Libraries

	 Common Language Runtime

	 Operating System

C#.NET is also compliant with CLS (Common Language Specification) and supports structured exception handling. CLS is set of rules and constructs that are supported by the CLR (Common Language Runtime). CLR is the runtime environment provided by the .NET Framework; it manages the execution of the code and also makes the development process easier by providing services.

C#.NET is a CLS-compliant language. Any objects, classes, or components that created in C#.NET can be used in any other CLS-compliant language. In addition, we can use objects, classes, and components created in other CLS-compliant languages in C#.NET .The use of CLS ensures complete interoperability among applications, regardless of the languages used to create the application.

CONSTRUCTORS AND DESTRUCTORS:

 Constructors are used to initialize objects, whereas destructors are used to destroy them. In other words, destructors are used to release the resources allocated to the object. In C#.NET the sub finalize procedure is available. The sub finalize procedure is used to complete the tasks that must be performed when an object is destroyed. The sub finalize procedure is called automatically when an object is destroyed. In addition, the sub finalize procedure can be called only from the class it belongs to or from derived classes.
GARBAGE COLLECTION
 Garbage Collection is another new feature in C#.NET. The .NET Framework monitors allocated resources, such as objects and variables. In addition, the .NET Framework automatically releases memory for reuse by destroying objects that are no longer in use.

In C#.NET, the garbage collector checks for the objects that are not currently in use by applications. When the garbage collector comes across an object that is marked for garbage collection, it releases the memory occupied by the object.
OVERLOADING
Overloading is another feature in C#. Overloading enables us to define multiple procedures with the same name, where each procedure has a different set of arguments. Besides using overloading for procedures, we can use it for constructors and properties in a class.
MULTITHREADING
C#.NET also supports multithreading. An application that supports multithreading can handle multiple tasks simultaneously, we can use multithreading to decrease the time taken by an application to respond to user interaction.
STRUCTURED EXCEPTION HANDLING

C#.NET supports structured handling, which enables us to detect and remove errors at runtime. In C#.NET, we need to use Try…Catch…Finally statements to create exception handlers. Using Try…Catch…Finally statements, we can create robust and effective exception handlers to improve the performance of our application.
THE .NET FRAMEWORK
 The .NET Framework is a new computing platform that simplifies application development in the highly distributed environment of the Internet.

OBJECTIVES OF .NET FRAMEWORK
1. To provide a consistent object-oriented programming environment whether object codes is stored and executed locally on Internet-distributed, or executed remotely.

2. To provide a code-execution environment to minimizes software deployment and guarantees safe execution of code.

3. Eliminates the performance problems.

There are different types of application, such as Windows-based applications and Web-based applications.

Features of SQL-SERVER

The OLAP Services feature available in SQL Server version 7.0 is now called SQL Server 2000 Analysis Services. The term OLAP Services has been replaced with the term Analysis Services. Analysis Services also includes a new data mining component. The Repository component available in SQL Server version 7.0 is now called Microsoft SQL Server 2000 Meta Data Services. References to the component now use the term Meta Data Services. The term repository is used only in reference to the repository engine within Meta Data Services
SQL-SERVER database consist of six type of objects,

They are,

1. TABLE

2. QUERY

3. FORM

4. REPORT

5. MACRO

TABLE
 A database is a collection of data about a specific topic.

VIEWS OF TABLE
 We can work with a table in two types,

1. Design View

2. Datasheet View

Design View

 To build or modify the structure of a table we work in the table design view. We can specify what kind of data will be hold.

Datasheet View

 To add, edit or analyses the data itself we work in tables datasheet view mode.

QUERY
 A query is a question that has to be asked the data. Access gathers data that answers the question from one or more table. The data that make up the answer is either dynaset (if you edit it) or a snapshot (it cannot be edited).Each time we run query, we get latest information in the dynaset. Access either displays the dynaset or snapshot for us to view or perform an action on it, such as deleting or updating.

 SYSTEM DESIGN
System Design
PROJECT DESCRIPTION
This project has four main modules namely
· Registration module

· Finger print embedding module

· Collision attack module

· Authentication module

· Verification module

Module Description
· Registration module

In this module user have enter his personal details . In this module it will collect the user login details. The details will used for his future authentication process Our fingerprints form a randomized orthogonal code, where the randomization parameter is a rotation. The noiseless forgery is obtained by uniform linear averaging of the colluders’ copies. The detector has access to the host signal and performs a binary hypothesis test to verify whether a user of interest is colluding. The cost function in this problem is the detector’s error probability.

· Finger print embedding module

In this module the user will act according to the attackers actions. In this projects the user during registration time he will used to embedded his fingerprint information according to his value and store it into the databse specific field. But the original fingerprint will be stored at the back of dupilicate fingerprint with embedding . so this makes the the user data to be in safer side.

· Collision attack module

In this module the attacker will try to attack the details of other users and the attacker will create some damages to the users database account. This is by the way of adding the noise over the user authentication this will be evaluated in this project and been going to be recovered from these actions

· Authentication module

Authentication is any process by which you verify that someone is who they claim they are. This usually involves a username and a password, but can include any other method of demonstrating identity. In this project the fingerprint authentication will be done in different style. During the authentication the user have to enter the embedded value with his original fingerprint . this will check the authentication by interacting with the verification module.

· Verification module

In this verification module , the original fingerprint will be verifying the embedded fingerprint with the value match and also with the axact fingerprint match by reading data at the back part of the field from database , if the the database verify it original it will proceed the process otherwise stop the process.

SYSTEM ANALYSIS
SYSTEM ANALYSIS
Existing System

Problem of great theoretical and practical interest is to know what is the worst collusion attack, subject to a maximum distortion constraint on the illegal copy. This question has been addressed in capacity and error-exponent analysis for fingerprints defined over finite alphabets. Depending on the problem setup, the worst collusion channel is either a memoryless or a “nearly memoryless” multiple-access channel that can be identified as the solution to a communication game. For fingerprints and signals defined over Euclidean spaces, the worst collusion channel subject to mean-squared distortion constraints was identified in the capacity analysis.

Proposed System

We derive the noise distribution that maximizes the error probability of the detector under average and almost-sure distortion constraints. Moreover, we characterize the noise distribution that minimizes the decoder’s error exponent under a large-deviations distortion constraint.
SYSTEM TESTING
System Testing

 The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the

Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

TYPES OF TESTS

Unit testing
 Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program inputs produce valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing

 Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

Functional test

 Functional tests provide systematic demonstrations that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals.

Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output
 : identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

 Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test

 System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

White Box Testing

 White Box Testing is a testing in which in which the software tester has knowledge of the inner workings, structure and language of the software, or at least its purpose. It is purpose. It is used to test areas that cannot be reached from a black box level.

Black Box Testing
 Black Box Testing is testing the software without any knowledge of the inner workings, structure or language of the module being tested. Black box tests, as most other kinds of tests, must be written from a definitive source document, such as specification or requirements document, such as specification or requirements document. It is a testing in which the software under test is treated, as a black box .you cannot “see” into it. The test provides inputs and responds to outputs without considering how the software works.
Unit Testing

Unit testing is usually conducted as part of a combined code and unit test phase of the software lifecycle, although it is not uncommon for coding and unit testing to be conducted as two distinct phases.

Test strategy and approach

Field testing will be performed manually and functional tests will be written in detail.
Test objectives

· All field entries must work properly.
· Pages must be activated from the identified link.
· The entry screen, messages and responses must not be delayed.
Features to be tested
· Verify that the entries are of the correct format
· No duplicate entries should be allowed
· All links should take the user to the correct page.
Integration Testing

Software integration testing is the incremental integration testing of two or more integrated software components on a single platform to produce failures caused by interface defects.

The task of the integration test is to check that components or software applications, e.g. components in a software system or – one step up – software applications at the company level – interact without error.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.
Acceptance Testing

User Acceptance Testing is a critical phase of any project and requires significant participation by the end user. It also ensures that the system meets the functional requirements.

Test Results: All the test cases mentioned above passed successfully. No defects encountered.
FLOW DIAGRAMS

Flow Diagrams

Data Flow Diagram / Use Case Diagram

The DFD is also called as bubble chart. It is a simple graphical formalism that can be used to represent a system in terms of the input data to the system, various processing carried out on these data, and the output data is generated by the system.
User Case Diagram

[image: image7.emf]CLIENT

FINGERPRINT WITH NOISE

AUTHENTICATION

DB

LOG IN

EMBEDDING FINGERPRINT

STORE INFO

VERIFICATION

NAME

AGE

SEX

ADDRESS

SERVER

CONTACT

Data Flow Diagram

LEVEL 0:

[image: image1.emf]REGISTRATION MODULESMODULESFINGER PRINT EMBEDDCOLLISION ATTACKVERIFYAUTHENTICATION

LEVEL 1

[image: image2.emf]NAMEREG AGESEXADDRESSFINGER PRINTSECRET CODECONTACT

LEVEL 2

[image: image3.emf]ORIGINALFINGERDBSPLITTER SECRET KEYID NUMBER

LEVEL 3

[image: image4.emf]COLLISION

ATTACK

ATTACKERS

DUPLICATE

FINGERPRINT

SPLITTER

VALUE

LOGIN ID

NUMBER

LEVEL 4

[image: image5.emf]CHECK USER

AUTHENTICATI

ON

OWNER

FINGERPRINT

SPLITTER

VALUE

LOGIN ID

NUMBER

LEVEL 5

[image: image6.emf]DATABASE

ACCESS

CHECK TABLE

ID

CHECK TABLE

FINGERPRINT

CHECK TABLE

SPLITTER

VERIFICATION

BIBLIOGRAPHY

BIBLIOGRAPHY

Good Teachers are worth more than thousand books, we have them in Our Department

References Made From:

1. User Interfaces in C#: Windows Forms and Custom Controls by Matthew MacDonald.

2. Applied Microsoft® .NET Framework Programming (Pro-Developer) by Jeffrey Richter.

3. Practical .Net2 and C#2: Harness the Platform, the Language, and the Framework by Patrick Smacchia.

4. Data Communications and Networking, by Behrouz A Forouzan.
5. Computer Networking: A Top-Down Approach, by James F. Kurose.
6. Operating System Concepts, by Abraham Silberschatz.
Sites Referred:

http://www.sourcefordgde.com
http://www.networkcomputing.com/
SAMPLE SOURCE CODE

Sample Coding
Code for Registration module
namespace FpClient

{

 public partial class newregistration : Form

 {

 DBClass db = new DBClass();

 public newregistration()

 {

 InitializeComponent();

 }

 string FPPath, Opath, Npath, split;

 private void label3_Click(object sender, EventArgs e)

 {

 }

 private void newregistration_Load(object sender, EventArgs e)

 {

 cbage.SelectedIndex = 0;

 }

 private void btnBrowse_Click(object sender, EventArgs e)

 {

 openFileDialog1.FileName = "";

 openFileDialog1.ShowDialog();

 FPPath = openFileDialog1.FileName;

 picorigional.ImageLocation = FPPath;

 Opath = FPPath;

 }

 private void btnSubmit_Click(object sender, EventArgs e)

 {

 btnSubmit.Enabled = false;

 if (txtName.Text == "" || cbage.SelectedIndex == 0 || txtloginid.Text == "" || txtAddress.Text == "" || txtcontactno.Text == "" || txtspliter.Text == "" || Opath == null || Npath == null || Opath == "" || Npath == "" || split == null)

 {

 MessageBox.Show("You Must Fill all the Fields. ", "Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning);

 return;

 }

 else if (split == null)

 {

 MessageBox.Show("Please Press the Splitte Button");

 }

 else

 {

 string gender="";

 if (rbmale.Checked == true)

 {

 gender = "Male";

 }

 else

 {

 gender = "Female";

 }

 try

 {

 db.insertcommand("insert into FPRegister values(" + txtloginid.Text + ",'" + txtName.Text + "'," + cbage.SelectedItem.ToString() + ",'" + gender + "','" + txtAddress.Text + "','" + txtcontactno.Text + "','" + Opath + "','" + Npath + "')");

 db.con.Close();

 string[] fileEntries = Directory.GetFiles("C:/FPRtemp");

 byte[] FPData;

 foreach (string fileName in fileEntries)

 {

 string filePath = "";

 string filesourse = fileName;

 filesourse = filesourse.Replace("\\", "/");

 while (filesourse.IndexOf("/") > -1)

 {

 filePath += filesourse.Substring(0, filesourse.IndexOf("/") + 1);

 filesourse = filesourse.Substring(filesourse.IndexOf("/") + 1);

 }

 byte[] fileNameByte = Encoding.ASCII.GetBytes(filesourse);

 byte[] reg = Encoding.ASCII.GetBytes("R");

 byte[] fileData = File.ReadAllBytes(filePath + filesourse);

 FPData = new byte[4 + fileNameByte.Length + fileData.Length+1];

 byte[] fileNameLen = BitConverter.GetBytes(fileNameByte.Length);

 reg.CopyTo(FPData, 0);

 fileNameLen.CopyTo(FPData, 1);

 fileNameByte.CopyTo(FPData, 5);

 fileData.CopyTo(FPData, 5 + fileNameByte.Length);

 send(FPData);

 System.Threading.Thread.Sleep(2000);

 }

 MessageBox.Show("Successfully Save Your Given Details.", "Success", MessageBoxButtons.OK, MessageBoxIcon.Information);

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message.ToString());

 }

 }

 //btnSubmit.Enabled = true ;

 }

 public void send(byte[] cdata)

 {

 string isp = home.Serverip;

 try

 {

 IPAddress[] ipAddress = Dns.GetHostAddresses(isp);

 IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], 102);

 Socket clientSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 clientSock.Connect(ipEnd);

 System.Threading.Thread.Sleep(1000);

 clientSock.Send(cdata);

 clientSock.Close();

 }

 catch (Exception ex)

 {

 if (ex.Message == "A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond")

 {

 // lblError.Text = "";

 //lblError.Text = "No Such System Available Try other IP";

 }

 else

 {

 if (ex.Message == "No connection could be made because the target machine actively refused it")

 {

 // lblError.Text = "";

 //lblError.Text = "File Sending fail. Because server not running.";

 }

 else

 {

;

 }

 }

 }

 }

 private void btnAdd_Click(object sender, EventArgs e)

 {

 openFileDialog1.FileName = "";

 openFileDialog1.ShowDialog();

 FPPath = openFileDialog1.FileName;

 picnoice.ImageLocation = FPPath;

 Npath = FPPath;

 }

 private void btnCancel_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 private void btnSplitter_Click(object sender, EventArgs e)

 {

 btnSplitter.Enabled = false;

 if (txtspliter.Text != "")

 {

 if (System.IO.Directory.Exists("C:/FPRtemp") == false)

 {

 System.IO.Directory.CreateDirectory("C:/FPRtemp");

 }

 string[] fileEntries = Directory.GetFiles("C:/FPRtemp");

 foreach (string fileName in fileEntries)

 {

 File.Delete(fileName);

 }

 try

 {

 string filePath = "";

 int sliceLen = 1024 * 1024;

 int counter = 0;

 string fileDes = Opath;

 string curFileName;

 BinaryReader br = new BinaryReader(File.Open(fileDes, FileMode.Open));

 //Check if slice size is grater than file size

 int len = (int)br.BaseStream.Length;

 sliceLen = len / Convert.ToInt32(txtspliter.Text);

 byte[] buffer = new byte[sliceLen];

 if (br.BaseStream.Length < sliceLen)

 sliceLen = (int)br.BaseStream.Length;

 //Slicing work starts here

 while (br.BaseStream.Length > sliceLen * counter)

 {

 if (br.BaseStream.Length > sliceLen * (counter + 1))

 {

 br.BaseStream.Read(buffer, 0, sliceLen);

 curFileName = "C:/FPRtemp/" + txtloginid.Text+txtspliter.Text+".TIF"+ "." + counter.ToString();

 }

 else

 {

 int remainLen = (int)br.BaseStream.Length - sliceLen * counter;

 buffer = new byte[remainLen];

 br.BaseStream.Read(buffer, 0, remainLen);

 curFileName = "C:/FPRtemp/" + txtloginid.Text + txtspliter.Text + ".TIF" + "." + counter.ToString() + ".E";

 }

 if (File.Exists(curFileName))

 File.Delete(curFileName);

 File.WriteAllBytes(curFileName, buffer);

 counter++;

 }

 br.Close();

 split = "ok";

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message.ToString());

 }

 }

 else

 {

 MessageBox.Show("Enter the Secret Key.", "Warning", MessageBoxButtons.OK, MessageBoxIcon.Question);

 }

 }

 private void txtspliter_TextChanged(object sender, EventArgs e)

 {

 btnSplitter.Enabled = true;

 }

 private void checkavil_Click(object sender, EventArgs e)

 {

 try

 {

 db.readercommand("select *from FPRegister where FldLoginId=" + txtloginid.Text + "");

 if (db.sdr.Read())

 {

 checkimg.Image = FpClient.Properties.Resources.redx;

 }

 else

 {

 checkimg.Image = FpClient.Properties.Resources.GreenTick; ;

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message.ToString());

 }

 }

 }

}
Code for Authentication module
namespace FpClient

{

 public partial class login : Form

 {

 DBClass db = new DBClass();

 public login()

 {

 InitializeComponent();

 }

 string FPpath;

 public static string authen;

 byte[] FPData;

 private void login_Load(object sender, EventArgs e)

 {

 backgroundWorker1.RunWorkerAsync();

 authen = "";

 }

 private void btnBrowse_Click(object sender, EventArgs e)

 {

 openFileDialog1.FileName = "";

 openFileDialog1.ShowDialog();

 FPpath = openFileDialog1.FileName;

 if (FPpath == "")

 {

 MessageBox.Show("Select a Finger Print first", "Warning", MessageBoxButtons.OK, MessageBoxIcon.Warning); ;

 }

 else

 {

 picFP.ImageLocation = FPpath;

 }

 }

 private void btnEnter_Click(object sender, EventArgs e)

 {

 // authen = "ok";

 if (txtLoginId.Text == "" || txtSecretKey.Text == "" || FPpath == null)

 {

 return;

 }

 string Fpimgpath;

 db.readercommand("select FldLoginId from FPRegister where FldLoginId='" + txtLoginId.Text + "'");

 if (db.sdr.Read())

 {

 home.LoginId = txtLoginId.Text;

 }

 else

 {

 db.con.Close();

 MessageBox.Show(" Invalied LoginId.\r\nGiven LoginId was not Registerd", "Warning", MessageBoxButtons.OK, MessageBoxIcon.Error);

 return;

 }

 db.readercommand("select FldOrgimg from FPRegister where FldLoginId='" + txtLoginId.Text + "'and FldNicimg='" + FPpath + "'");

 if (db.sdr.Read())

 {

 Fpimgpath = db.sdr.GetValue(0).ToString();

 MessageBox.Show("Successfull Login");

 home.LoginStatus = "In";

 authen = "Ok";

 this.Hide();

 }

 else

 {

 Fpimgpath = FPpath;

 }

 }

 public void send(byte[] cdata)

 {

 string ips = home.Serverip;

 try

 {

 IPAddress[] ipAddress = Dns.GetHostAddresses(ips);

 IPEndPoint ipEnd = new IPEndPoint(ipAddress[0], 102);

 Socket clientSock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 clientSock.Connect(ipEnd);

 System.Threading.Thread.Sleep(1000);

 clientSock.Send(cdata);

 clientSock.Close();

 }

 catch (Exception ex)

 {

 if (ex.Message == "A connection attempt failed because the connected party did not properly respond after a period of time, or established connection failed because connected host has failed to respond")

 {

 //lblError.Text = "";

 //lblError.Text = "No Such System Available Try other IP";

 }

 else

 {

 if (ex.Message == "No connection could be made because the target machine actively refused it")

 {

 //lblError.Text = "";

 //lblError.Text = "File Sending fail. Because server not running.";

 }

 else

 {

 //lblError.Text = "";

 //lblError.Text = "File Sending fail." + ex.Message;

 }

 }

 }

 }

 private void btn1_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "1";

 }

 private void btn2_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "2";

 }

 private void btn3_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "3";

 }

 private void btn4_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "4";

 }

 private void btn5_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "5";

 }

 private void btn6_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "6";

 }

 private void btn7_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "7";

 }

 private void btn8_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "8";

 }

 private void btn9_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "9";

 }

 private void btn0_Click(object sender, EventArgs e)

 {

 txtLoginId.Text += "0";

 }

 private void btnClear_Click(object sender, EventArgs e)

 {

 txtLoginId.Text = "";

 }

 private void btncancel_Click(object sender, EventArgs e)

 {

 this.Close();

 }

 FPClientCode FPR = new FPClientCode();

 private void backgroundWorker1_DoWork(object sender, DoWorkEventArgs e)

 {

 FPR.StartServer();

 }

 private void timer1_Tick(object sender, EventArgs e)

 {

 if (FPClientCode.curMsg == "Received")

 {

 FPClientCode.curMsg = "";

 if (authen == "Ok")

 {

 this.Close();

 }

 else

 {

 MessageBox.Show("Finger Print is Not Valied.", "Result", MessageBoxButtons.OK, MessageBoxIcon.Stop);

 this.Close();

 }

 }

 }

 private void login_FormClosing(object sender, FormClosingEventArgs e)

 {

 FPClientCode.sock.Close();

 }

 }

 class FPClientCode

 {

 IPEndPoint ipEnd;

 public static Socket sock;

 string ser1;

 string fileDes, fileini;

 int len;

 public static string[] path = null;

 public FPClientCode()

 {

 IPHostEntry ipEntry = Dns.GetHostEntry(Environment.MachineName);

 IPAddress IpAddr = ipEntry.AddressList[2];

 ipEnd = new IPEndPoint(IpAddr, 201);

 sock = new Socket(AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.IP);

 sock.Bind(ipEnd);

 }

 public static string receivedPath;

 public static string curMsg = "";

 public static string fileName;

 public void StartServer()

 {

 try

 {

 sock.Listen(100);

 Socket clientSock = sock.Accept();

 byte[] clientData = new byte[10];

 int receivedBytesLen = clientSock.Receive(clientData);

 curMsg = "Received";

 fileName = Encoding.ASCII.GetString(clientData, 0, 2);

 if (fileName == "Ok")

 {

 login.authen = "Ok";

 home.LoginStatus = "In";

 // login.ActiveForm.Close();

 }

 else

 {

 login.authen = "NotOk";

 home.LoginStatus = "Out";

 }

 clientSock.Close();

 sock.Close();

 // StartServer();

 }

 catch (Exception ex)

 {

 curMsg = "File Receving error.";

 }

 }

 }

}

PAGE

