Mobile AD-HOC Networks Testing

6. TESTING
6.1. TYPES OF TESTING
System Development

This software is developed to overcome the drawbacks in the existing broadcast protocols like probabilistic approach does not leads to accurate result, not update neighbor set information, and others stated in section 3 in existing system. The system is developed in the simulated model to overcome drawbacks in the existing with implementing the mobility management and Logical Network broadcast state.

The proposed system based on mobility management and, in particular, neighbor set management in a mobile environment. The broadcast protocols in MANETs based on self-pruning. The major task is of Mobility Management where, the capacity of MANETs is constrained by the mutual interference of concurrent transmissions between nodes. The mobility of nodes adds another dimension of complexity in the mutual interference.

Broadcast Protocols Based on Self-Pruning, which helps in a MANETS.
Software Testing
Once source code has been generated, software must be tested to uncover (and correct) as many errors as possible before delivery to your customer. Your goal is to design a series of test cases that have a high likelihood of finding errors. To do so we have techniques provide systematic guidance for designing tests that: (1) exercise the internal logic of software components, and (2) exercise the input and output domains of the program to uncover errors in program function, behavior, and performance. Resource presented in this section address the following topic categories.
Software Testing is the process of confirming the functionality and correctness of software by running it. Software testing is usually performed for one of two reasons:

1. Defect detection

2. Reliability estimation.

The problem of applying software testing to defect detection is that software can only suggest the presence of flaws, not their absence (unless the testing is exhaustive). The problem of applying software testing to reliability estimation is that the input distribution used for selecting test cases may be flawed. In both of these cases, the mechanism used to determine whether program output is correct is often impossible to develop. Obviously the benefit of the entire software testing process is highly dependent on many different pieces. If any of these parts is faulty, the entire process is compromised.

Software is now unique unlike other physical processes where inputs are received and outputs are produced. Where software differs is in the manner in which it fails. Most physical systems fail in a fixed (and reasonably small) set of ways. By contrast, software can fail in many bizarre ways. Detecting all of the different failure modes for software is generally infeasible.

`The key to software testing is trying to find the myriad of failure modes – something that requires exhaustively testing the code on all possible inputs. For most programs, this is computationally infeasible. It is commonplace to attempt to test as many of the syntactic features of the code as possible (within some set of resource constraints) are called white box software testing technique. Techniques that do not consider the code’s structure when test cases are selected are called black box technique.

Functional testing is a testing process that is black box in nature. It is aimed at examine the overall functionality of the product. It usually includes testing of all the interfaces and should therefore involve the clients in the process.

Final stage of the testing process should be System Testing. This type of test involves examination of the whole computer system, all the software components, all the hard ware components and any interfaces.

The whole computer based system is checked not only for validity but also to meet the objectives.

6.2. TEST CASES
· Defect detection

· Reliability estimation

Vivekananda institute of engineering and technology
27

