
1. INTRODUCTION
1.1 About Project:
 The system aimed to the Self-diagnosis with advanced hospital management system is to provide a self test to the patient, if hospitals are not available in near places. This application is developed by using one of the heuristic search techniques in artificial intelligence i.e. greedy local search. This system provides an additional facility, that is patient can interact with an appropriate doctor through online chatting or Discussion forum. patient can get appropriate suggestions to his problem.

 Actually, in the self-diagnosis this application generates a report regarding patient’s health condition. That report may contain patient disease name, his symptoms intensity level and the suggestion provided by system. This suggestion may be in the two forms. First suggestion may be an appropriate medicine based on symptom Intensity level; second suggestion may be a specialized doctor meeting that means his disease may be in a critical state.

 This system can be helpful to the hospital management, because it consists of patient billing system from the time of admission in the hospital. Patient billing means the payment for the doctor, rooms, dispensaries, servants.

2. PROJECT ANALYSIS
2.1 Purpose of the project:
The system aimed to the Self-diagnosis with advanced hospital management system is to provide a self test to the patient, if hospitals are not available in near places.
 For an example suppose the patient will be suffered from fewer, first he has to enter his disease. Then the application will have to pose some symptoms regarding that disease, those symptoms are answered by the patient.
The symptoms may be in the form of following queries:

Do you have head-ache?

Do you have body pains?

What is the level of your body temperature?

 Are you feeling nausea?

e) Form how many days you are suffering from this problem?

 Like these type of queries user may have to answer. The application itself have an intensity levels for each query, based on the intensity levels it can suggest medicines.
To provide suggestion we have to calculate intensity level. This Intensity level calculated by using symptoms result provided by patient. For each symptom we can maintain some intensity levels by the doctor suggestion, based on that intensity level calculate total intensity level, based on the total intensity level the appropriate suggestion from database provided. In the database Local search performed to reach appropriate medicine.

We can provide suggestions to some resistible diseases that mean rectifiable problems by some medicines. This may be useful to the patients who are in far distance from hospital and to the doctors also to interact with patients in or out of the hospital. Administrator can update medicines in database frequently. We can facilitate a suggestion box to the patients to improve my application.

All the medicines information is stored in the database tables for each disease, as well as symptoms also maintained in the tables.
2.2 Existing Vs Actual System:

Generally Self-Diagnosis with Advanced hospital management system is used at Homeopathy Hospitals. Our system helps for general people for suggesting the required medicine. In a modern era, less people are going to use homeopathic medicines, because it takes much time to recover from problem. So, that this system would be helpful to develop that type of self-diagnosis system for pharmaceutical medicines.
2.2.1.Problem with existed System:

Hospital management system created the computerized hospital environment by eliminating the manual work by the staff. This system helpful to the hospital management.

 The existed system only helpful the hospital management but not useful to the patient out of the hospital or remote areas. So, the existed system doesn’t useful to the normal people. To provide hospital facilities to the remote areas people the self diagnosis with Advanced Hospital Management System proposed.

2.3.Proposed System:

 Self-Diagnosis with Advanced Hospital Management System will be helpful to the people who are far away from the hospitals. This system mostly useful in the homeopathy and the patients can get suggestions from the doctors by using discussion form, patients can put their queries and doctor replies to the patient problem.

3. REQUIREMENT ANALYSIS
3.1 Purpose and Scope:

 This application useful to the people who are far away from the hospitals and the patients can get treatment when the doctor not available in hospital also. This system will be helpful to the people who are busy with their professional work. Because, they can get doctor suggestions through online and can share their problems with doctor. The self-diagnosis feature helps the patient for taking medicine with out consulting doctor. But, it can provide treatment up to some diseases that means rectifiable diseases with out doctor suggestion with some dosage of tablets.
3.2 Users of the System:

a) Doctor

b) Patient

c) Hospital Management
4. SPECIFIC REQUIREMENTS
4.1 Functional and Non-Functional Requirements:
 1. Patients condition will be checked by self diagnosis. Based on the generated report we can decide it as adverse or normal condition.
 2. If patient condition is normal it suggests the appropriate medicine by using heuristic search technique. It will take symptoms as input for suggesting medicine. The local search algorithm searches for nearer intensity value in the database.

 3. If patient condition is critical it suggests the appropriate specialists. The generated result report will forward to the specialized doctor.

4. Collection of different symptoms for normal disease. normal disease means rectifiable with some dose of tablets.

5. Maintaining the symptoms database from the patients. The maximum occurred symptoms will gather from patients.

6. Calculate the percentage of sickness based on the symptoms. This will be calculated based on the user option choosing.

 7. Find out the intensity level based on percentage of sickness. This will be calculated by summing the all symptoms intensities.

 8. Based on intensity level it suggests the appropriate medicine/physician by searching in database.

 9. Collection appropriate medicines for each disease with dosage .

10.Maintaining database for the hospital details.

11. It settle patient bill before discharging from hospital by considering doctor fee, room charges, medical charges.

12. Verification of the database by senior doctor.

13. Patient bill will taken in the form of printout.
Non-functional Requirements:
A. Secure access of confidential data (user’s details). SSL can be used.

B. 24 X 7 availability

C. Better component design to get better performance at peak time

D. Flexible service based architecture will be highly desirable for future extension

System Requirements:

 Software requirements: Rational Rose software,

 Oracle10g,J2EE
 Windows XP professional/Linux,

 Eclipse 3.3 IDE
 Tomcat web server.

 Hardware Requirements: Pentium4 or core2duo processor,

 1 GB RAM
4.2 User Interface Requirements:

Professional look and feel

Browser testing and support for IE, NN, Mozilla, and Fire fox.

Reports exportable in .XLS, or any other desirable format.

4.3 Proposed System Architecture:

[image: image62.emf]
Fig(1):System Architecture
5. SYSTEM REQUIREMENTS
5.1. Technologies Used:

UML

J2EE

JavaScript

5.2. Tools Used:

Eclipse 3.3

Oracle 10g
Edraw Max

Rational rose
Tomcat 5.0

6. SYSTEM DESIGN
6.1 Data Flow Diagrams:
6.1.1 E-R diagram:

[image: image2]
 Fig(2) E-R Diagram
6.2. Behavioral diagrams:

 6.2.1.Use Case Diagram:
 Use case diagrams are central to modeling the behavior of the system, subsystem .These are important for visualizing, specifying, and documenting the behavior of an element. It shows the set of use cases and actors and their relationships.

Use case diagram for Overall System:

 Use case diagrams are central to modeling the behavior of the system, subsystem .These are important for visualizing, specifying, and documenting the behavior of an element. It shows the set of use cases and actors and their relationships.

This organizer consists of an actor called user and use cases.
[image: image3.emf]specify symptoms

specify disease

observe result

suggest appropriate medicine

diagnosis the patient

update

patient

doctor

logout

administrator

 Fig(3) UseCase Diagram for SelfDiagnosis
Use case Diagram for Advanced Hospitality Management:

[image: image4.emf]medicines

medicine bills

modify

delete

view staff

staff information

lab information

department information

ward information

present details

patient

issues

maintain system

store information

lab technician

pharmasist

admin

view

generate prescription for patient

patient records

lab reports

lab prescription

doctor fees

medical fees

room charges

store patient

calculate

serves patient

nurse

doctor

receptionist

login

Fig(4) UseCase Diagram Advanced Hospital Management
This application consists of an actor called user and use cases.
USERS:
 We have two users. Those are: a) Patient b) Doctor c) Administrator
Patient :

The user can login to the System with his own id and password. After logon to the system Patient can mention his problem and the system posses some questions like symptoms based on that patient may get suggestions.

 If the patient is new to this application he has to create his own Account by signup option in login form.

 THE FOLLOWIING USECASES INVOKED BY PATIENT:

· Specifying Problem
· Specifying option
· Observing Result
· Logout

Specifying option:
This use case specified to specify the answer for the queries to the patient.

Functional Requirements:

· The Patient must have to answer the queries posed by the system.

· The patient won’t get any medicine without selecting options for the corresponding queries.

Flow of Events:

· After selecting the category, patient has to select the disease with which he is suffering.
· If the category selected is general, it will show some general diseases. Again, patient have to choose disease and then answer the queries.

 Specifying Problem:

 This use case specified to enter the problem to the application by the user.
Functional Requirements:

· First the patient will choose the Category of disease

· The Patient has to choose the Problem with which he/she suffering.

Flow of events:
· The patient has to choose the different categories of diseases. That may be general, curable or non-curable diseases.

· After choosing the category, he/she will choose the problem.

Observing Result:

 This use case specified to observe the suggestions provided by the application.
Functional Requirements:

· The patient must have to answer the queries, then only the application will suggest the medicine accurately.

· She/he has to follow the dosage and instructions provided by the application, and then only the problem will be rectified soon.

Flow of events:

· After the options selected, it will suggest the medicine based on the intensity level of answers.
Logout:
 This use case specified to logout from the user account after his work completed.

Functional Requirements:

· The patient has to select the logout option to come out from the application.
Flow of events:

· After the patient got the medicines, he/she has to choose the logout option to come out from the system.
 b) Doctor:
 The Doctor will have a direct interaction through his account. no need to create an account in this application., but he has to provide his appropriate mail id.

THE FOLLOWIING USECASES INVOKED BY DOCTOR:

· Diagnoses the patient

· Suggests appropriate medicines
Diagnoses the patient:

 This use case specified to diagnose patient that means allowing the patient to expose problems.

Functional Requirements:

· Patient has to share his/her problem with the doctor without hiding any one.

· As the patients answer is accurate, the medicine is also working that much of accurately.

Flow of Events:

· The patient will communicate with the doctor by using the chatting application. Through this option, he/she will get an appropriate suggestion or medicine based the disease.
Suggests appropriate medicines:
 This use case specified to get the suggestions provided by the doctor.

Functional Requirements:

· The doctor has to suggest the medicines based on the patient answers.

· He/she may suggest some tests also based on the patient health status.

Flow of events:

· If the doctor is available to the patient then he/she will communicate with the doctor to get the treatment.

· After communicated with doctor, he/she will get a medicines.

c) ADMINSTRATOR:
 Administrator is the user and who is the most responsible person to maintain the system. He maintains the details of this Application .he can perform updating the database.

THE FOLLOWIING USECASES INVOKED BY ADMINISTRATOR:

· Update

· Logout

Update:

 This use case specified to provide any additional features to the application, the administrator will be allowed.

Functional Requirements:
· The administrator will update the medicines day by day.

· The administrator will maintain the total medicines details.

Flow of events:

· The administrator has to change the medicines data in the database tables.

· Commit the database day by day with new manipulations.

6.2.2 Class Diagrams:

A class diagram is an illustration of the relationships and source code dependencies among classes in the unified modeling language. In this context, a class defines the methods and variables in an object, which is a specific entity in a program or the unit of code representing that entity.

[image: image5.emf]pharmacy

name

number

block number

ward number

phone number

pharmasist

name

phone number

mail id

qualification

experience

disignation

address

view()

lab

name

number

block number

phone number

ward number

lab technician

name

phone number

alternate

mail id

qualification

experience

description

address

view lab prescription()

generate lab reports()

patient

name

number

gender

problem

phone number

address

doctor

name

email

check operator()

generate prescription()

verify patient records()

<<checks>>

Administrator

name

password

update()

hospital

name

number

phone number

e-mail

address

<<contains>>

<<joins>>

<<have>>

<<checks>>

 Fig(5) Class Diagram

 6.2.3 Sequence Diagram for Self-diagnosis:

 A sequence diagram and collaboration diagrams are a type of interaction diagram. An interaction is a behavior that comprises a set of messages exchanged among a set of objects with in a context to accomplish a purpose. A message is specification to communication between objects.

 In this the patient will select the disease and request the symptoms for database regarding disease. It will store in database and it will display the medicines. After displaying the patient will request the doctor and he will give some suggestions.

Specify option & Symptom and Observing Result and Observing Report and Suggest medicine:
[image: image6.emf]:doctor:patient:GUI:database

selecting disease

request for symptom regarding disease

response as query

select option

store option in database

medicine result

request

suggestion

Fig(6)Sequence Diagram for SelfDiagnosis

Login:

This will allow the user to logon to the system.

Functional Requirements:

· The authenticated people only have eligibility to enter into the system.

· Each authenticated person has their own username, password. If it is valid only he/she can enter into the application.
Flow of events:

· The user has to enter into the application with his/her username & password.

· If the username &password is valid then only he/she will enter into the application.

[image: image7.emf]:user:GUI:Login

request

send request

acknowledge

response

Fig(7) Sequence Diagram for Login
Logout:

 This use case specified to logout from the user account after his work completed.

Functional Requirements:

· The patient has to select the logout option to come out from the application.
Flow of events:

· After the patient got the medicines, he/she has to choose the logout option to come out from the system.
[image: image8.emf]:user:GUI:Logout

request

send request

acknowledge

response

Fig(8)Sequence Diagram forLogout
Patient admit:

 The patient will enter into the hospital. After entering the details of the patient will be stored into database and allocate room for patient.

[image: image9.emf]:patient:receptionist:database

patient enters

store details of patients

allocate room

Fig(9) Sequence Diagram for PatientAdmin

Visit doctor:

Functional Requirements:
· If the patient condition is critical then he/she will ro to the hospital to visits doctor.
· The doctor view the patient details through database and after getting the patient details the doctor prescribes the medicines to patient and update the database.
Flow of events:

· After communicating with the doctor through chatting, he/she will know his health condition.
· If the patient condition is critical then he/she will ro to the hospital to visits doctor.
· The doctor view the patient details through database and after getting the patient details the doctor prescribes the medicines to patient and update the database.
[image: image10.emf]:patient:doctor:database

patient visit doctor

view patient details

get patient details

prescribes medicines

update database

Fig(10) Sequence Diagram for visit Doctor

Visit lab:

Functional Requirements:

· When the patient visits the lab, then lab technicians will check the details of the patient and perform tests to the patient.

· After Performing tests, they will update the database.

[image: image11.emf]:patient:labdatabase

visit lab

view patient details

get patient details

perform tests

update database

Fig(11) Sequence Diagram for visit lab

Visit pharmacy by patient:

Functional Requirements:

· The patient visits the pharmacy with the prescription provided by the doctor.

· After the Prescribed medicines hand over to the patient, the pharmacist updates the database for the medicines bill.

Flow of events:

· The patient visits the pharmacy with the prescription provided by the doctor.

· After the Prescribed medicines hand over to the patient, the pharmacist updates the database for the medicines bill.

[image: image12.emf]:patient:pharmacy:database

visit patient

visit prescription

get prescription

give medicines

update database

Fig(12) Sequence Diagram for visit pharmacy by patient

Update by manager:

Functional Requirements:
· The manager can add the details of staff, lab, ward and department.

· The manager can modify the details of staff, lab, ward and department.

Flow of events:

· If any new patients joined into the organization or old patients discharging from the organization he is the responsible person to modify the database.

· The manager can add the details of staff, lab, ward and department.

· The manager can modify the details of staff, lab, ward and department.

[image: image13.emf]:manager:database

add staff/lab/ward/department details

database update

Fig(13) Sequence Diagram forupdate by manager

Delete staff:

Functional Requirements:

· The manager will enter the staff details if any unnecessary details that he found he will delete the details of the staff in database.

· The out dated staff details also removed from the database.

Flow of events:

· The manager will enter the staff details if any unnecessary details that he found he will delete the details of the staff in database.

· The out dated staff details also removed from the database
[image: image14.emf]:manager:database

view database

get details

delete staff details

update

Fig(14) Sequence Diagram for delete staff

View by manager:

 The manager views the details of staff and department in the database when ever he wants.

[image: image15.emf]:manager:datebase

required details of staff/department

get details

Fig(15) Sequence Diagram for View By Manager
Generate bills:

Functional Requirements:
· The receptionist will get the patient details from database and he/she will generate the bills

· Receptionist update the database with Patient bill.

Flow of events:

· The receptionist will get the patient details from database and he/she will generate the bills

· Receptionists update the database with Patient bill.
[image: image16.emf]:patient:receptionist:database

visit by patient

get details

details

generate bills

update database

Fig(16) Sequence Diagram for generate Bills

6.2.4 Collabration Diagram:

Self-Diagnosis:

[image: image17.emf]:doctor

:patient

:GUI

:database

1: selecting disease

2: request for symptom regarding disease

3: response as query

4: select option

5: store option in database

6: medicine result

7: request

8: suggestion

Fig(17) collabration Diagram for Self Diagnosis

Login:
[image: image18.emf]:user

:GUI

:Login

1: request

4: response

2: send request

3: acknowledge

Fig(18) collabration Diagram for login

Patient Admit:

[image: image19.emf]:patient

:receptionist

:database

1: patient enters

2: store details of patients

3: allocate room

Fig(19) collabration Diagram for Patient admit
Visit doctor:

[image: image20.emf]:patient :doctor

:database

1: patient visit doctor

2: view patient details

3: get patient details

4: prescribes medicines

5: update database

Fig(20) collabration Diagram for visit doctor

Visit Lab:

[image: image21.emf]:patient

:lab

database

1: visit lab

2: view patient details

3: get patient details

4: perform tests

5: update database

Fig(21) collabration Diagram for visit lab
Visit Pharmacy:

[image: image22.emf]:patient:pharmacy

:database

1: visit patient

2: visit prescription

3: get prescription

4: give medicines

5: update database

Fig(22) collabration Diagram for visit pharmacy

Update By Manager:
[image: image23.emf]:manager

:database

1: add staff/lab/ward/department details

2: database update

Fig(23) collabration Diagram for update manager

Delete Staff:
[image: image24.emf]:manager :database

1: view database

2: get details

3: delete staff details

4: update

Fig(24) collabration Diagram for Delete Staff

View By Manager:

[image: image25.emf]:manager :datebase

1: required details of staff/department

2: get details

 Fig(25) collabration Diagram for View By Manager
Generate Bills:

[image: image26.emf]:patient:receptionist

:database

1: visit by patient

4: generate bills

2: get details

5: update database

3: details

Fig(26) collabration Diagram for genarate Bills
6.2.5 Activity Diagrams for Advanced Hospitality Management:
Diagnoses the patient & suggesting Medicine:
[image: image27.emf]enter username

& password

authenticated

you have to

register

enter disease

fill registration

form

answer query

check intensity

level

suggest

medicine

we can't suggest with out

doctor checkup

if all details

entered

registered

successfully

not registered

yes

no

yes

no

ok

no

Fig(27) Activity Diagram for Self Diagnosis

Login:

[image: image28.emf]login

valid user

sorry

no

user login page

yes

Fig(28):Activity Diagram for Login
Patient Admit:
[image: image29.emf]enter patient

details

store patient

details

inpatient

allocate appointment

to visit doctor

allocate room

no

yes

Fig(29):Activity Diagram for Patient Admit
Visit Doctor:

[image: image30.emf]patient visited

by doctor

view patient

details

prescribe

medicine

Fig(30):Activity Diagram for Visit doctor
Visit Lab:
[image: image31.emf]patient visits lab

view details

perform tests

update details

in database

Fig(31):Activity Diagram for Visitlab
Visit Pharmacy:

[image: image32.emf]patient visit

pharmacy

view prescription by

pharmacist

give medicines

update

database

Fig(32):Activity Diagram for Visit Pharmacy
[image: image33.emf]login by

manager

view database

add/modify

details

Fig(33):Activity Diagram for Update By Manager
Delete Staff:
[image: image34.emf]login by

manager

view database

delete staff

details

Fig(34):Activity Diagram for Delete Staff
View Manager:
[image: image35.emf]login by

manager

view database

Fig(35):Activity Diagram for View Manager
Generate Bill:
[image: image36.emf]login by

receptionist

view patients

details

generate gills

update

databases

Fig(36):Activity Diagram for Generate Bill
6.2.6 Component Diagram:

[image: image37.emf]GUI

Self

Diagnosis

Advanceddatabase

Fig(37):Component diagram

6.2.7 Deployment Diagram:

[image: image38.emf]database

<<server>>

software system

application server

<<server>>

browser

<<client>>

browser

<<client>>

Fig(38):Deployment Diagram
6.3. System specific Modules:

There are 3 main modules. They are:
Self-Diagnosis:
There are 3 sub modules present in this module. General diseases, curable diseases,& non curable diseases. User must select the any of these three. In general diseases there are different diseases. Different queries will posed by the system. user must answer the queries. Based on answers specified by users Self Diagnosis system will display related medicines/suggestions to the user.

Similarly for curable and non curable diseases also Self Diagnosis system suggest different symptoms.

Administrator will update the database if any queries or medicines related to different diseases are changed. Administrator will have their own user name, password to make updation into database.
The system aimed to the Self-diagnosis with advanced hospital management system is to provide a self test to the patient, if hospitals are not available in near places. This application is developed by using one of the heuristic search techniques in artificial intelligence i.e. greedy local search. This system provides an additional facility, that is patient can interact with an appropriate doctor through online chatting or Discussion forum. patient can get appropriate suggestions to his problem.

 Actually, in the self-diagnosis this application generates a report regarding patient’s health condition. That report may contain patient disease name, his symptoms intensity level and the suggestion provided by system. This suggestion may be in the two forms. First suggestion may be an appropriate medicine based on symptom Intensity level; second suggestion may be a specialized doctor meeting that means his disease may be in a critical state.
Advanced Hospital Management:
This system can be helpful to the hospital management, because it consists of patient billing system from the time of admission in the hospital. Patient billing means the payment for the doctor, rooms, dispensaries, servants.

Doctors Module:- This module is accessed by doctors to see the online reports by executing different services defined in this module. Doctors can instantly know the status of clinical tests, pharmaceutical Prescriptions immediately and they can diagnose, treat the patient as early as possible. Various Services in the module are
Login
View Lab Reports
Clinical Module:- This module is accessed by lab technicians in order to store the details of clinical tests of the patient into database.
Pharmacy Module:- It can be accessed by both doctors and pharmacists. By using this module doctors can send messages to requirements to the patients. Accordingly by accessing the automated system pharmacist know the doctors request and send the requested medicine. The different services of this module are as follows:
Message sending by doctor
Message receiving by pharmacist
Selling of Medicine

This module also generate patient bills of patients bill in the hospital.
Admin Module: - This module is accessed by administrative users of Hospital system for storing Hospital details, details of various departments of the hospital, details of the wards, details of the patients including inpatients and outpatients.
Reports: - This is accessed by front office for billing purpose.In-Patient and Out-Patient can take Report
Open Discussion Forum:
 User is logging into the system and post different queries on discussion form if any doctor is logged into the system the doctor will give suggestions for user problem .User can click on Postquery button for posting the queries. The doctor will click on reply button for giving reply to the user problems.
Along with reply given by doctors the system also displays Id of the doctor who are gives the reply to the problems .
6.4.System Evalution:
[image: image39.png]
Fig:39 System Flow

6.5. Snap shots:

Requirement1:

Specifing the disease:

Step-1:Click on Genaral disease.

[image: image40.png]
Fig:40 Home page
Step2:

Click on the specific disease.

[image: image41.png]
Fig:41 self-Diagnosis
Step-3:

Answer the fallowing questions, and then click on submit button.

[image: image42.png]
Step-4:

Observe the fallowing medicines.

[image: image43.png]
Requirement 2:

Click on the specific curable disease.

[image: image44.png]
step-2:

Observe the symptoms for curable diseases

[image: image45.png]
Requirement-3:

Click on the specific non curable disease.

[image: image46.png]
Step-2:

Observe the fallowing symptoms.

[image: image47.png]
Requirment-4:

Add Patient details

Step-1

1)Enter the user name

2)Enter the password.

3)Click on the submit button.

[image: image48.png]
Fig:42 Login page
Step-2

Click on the add staff details

[image: image49.png]
Fig:43 Admin Home Page
Step-3:

1)Enter the staff details.

2)Click on the store button.

[image: image50.png]
Requirement-4:

View staff details:

Step-1:

Click on the view master details in administrator page.

[image: image51.png]
step-2:

Click on add staff details.

[image: image52.png]
Requirement-5:

Deleting staff details.

[image: image53.png]
Requirement-6:

Step-1:

Click on the discussion form.

[image: image54.png]
Step-2:

Click on post your query

[image: image55.png]
Fig:44 Discusssion Forum

Step-3:

User can enter queries.

[image: image56.png]
step-4:

Doctor can answer the queries.

[image: image57.png]
Reuirement-7:

Step-1:

Administrator can update the queries and medicines in the database.

Click on update link.

[image: image58.png]
Step-2:

Enter login and password and click on submit button.

[image: image59.png]
Step-3:Click on Medicine update or query update.

[image: image60.png]
Fig:45 Update Database

Step-4:

1) Enter the updated medicine value.

2) Click on submit button.

[image: image61.png]
7.SAMPLE CODE
Openpage.jsp:-

<%@ page language="java" contentType="text/html; charset=iso-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

<title>Insert title here</title>

<style>

table.ph{font-size:100%;foreground:orange}

a.ph1{color:blue;text-decoration:blink}

td.menu{background:#CCCCCC}

a:hover{color:#FF6600}

table.menu

{

font-size:100%;

position:absolute;

visibility:hidden;

}

body {

background-image: url(wallpaper1.jpg);

}

</style>

<script type="text/javascript">

function showM(element)

{

document.all(element).style.visibility="visible"

}

function hideM(element)

{

document.all(element).style.visibility="hidden"

}

</script>

<script src="Scripts/AC_RunActiveContent.js" type="text/javascript"></script>

</head>

<body>

 <center>

 Self-diagnosis & Advanced Hospital

 Management

 <hr align=center color="#3399FF" width=80%>

</center>

<center>

<p> </p>

<p> </p>

<p> </p>

<table width="463" class=ph border='0'>

<tr bgcolor="#6699FF">

 <td width="207" height="25" align="center" onMouseOver="showM('Self-Diagnosis')" onMouseOut="hideM('Self-Diagnosis')">

Self-Diagnosis

<table class="menu" id="Self-diagnosis" width="160">

<tr><td class="menu" width="207" height="25">General Disease</td></tr>

<tr><td class="menu">Curable Disease</td></tr>

<tr><td class="menu">Non-Curable Disease</td></tr>

</table>

 </td>

<td width="246" onMouseOver="showM('Advanced Hospital Management')" onMouseOut="hideM('Advanced Hospital Management')">

 Advanced Hospital Management

<td width="246" onMouseOver="showM('Discussion Forum')" onMouseOut="hideM('Discussion Forum')">

 Discussion Forum

 </table>

</center>

</body>

</html>

General Disease:(front.jsp):
<%@ page language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

<style type="text/css">

img

{

position:absolute;

z-index:-1;

}

</style>

</head>

<body bgcolor="black">

<div style="position: absolute; right:50px">Home</div>

<TABLE>

<td align="center">

</td>

<table align="center">

<TR>

<td align="left">

 Self-diagnosis

 <hr align=center color=yellow width=50%>

 </td>

 </tr>

 </TABLE>

 <div align="right">

Update

</div>

 <TABLE ALIGN="CENTER">

 <tr>

 <td align="center">

 SELECT THE DISEASE

 </td>

</tr>

</table>

<table align="center">

<tr >

<td >

<h3>

Abdominal Pain</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Acidity</h3>

</td></tr>

<tr><td>

<h3>

Alergy and Itching</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

AnemicProblem</h3>

</td></tr>

<tr><td>

<h3>

BodyPains</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Bone Development</h3>

</td></tr>

<tr><td>

<h3>

Burning Problem</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Cold</h3>

</td></tr>

<tr><td>

<h3>

Cough</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Dandruf</h3>

</td></tr>

<tr><td>

<h3>

DermatologySoap</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Dental</h3>

</td></tr>

<tr><td>

<h3>

DeHydration</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Digestive Enzymes</h3>

</td></tr>

<tr><td>

<h3>

 Ear</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Fever</h3>

</td></tr>

<tr><td>

<h3>

General Weakness</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

stomatitis</h3>

</tr>

<tr><td>

<h3>

Headache</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

Constipation</h3>

</td>

</tr>

<tr><td>

<h3>

ThroatInfection</h3>

</td>

<td></td>

<td></td>

<td></td>

<td>

<h3>

vomiting</h3>

</td>

</tr>

</table>

</body>

</html>

Fever.jsp:

<%@ page import="java.sql.*" language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

<style type="text/css">

 img

 {

 position:absolute;

 z-index:-3;

 }

</style>

</head>

<body bgcolor="lightblue">

<p align="center">Enter the following questions</p>

<form name="myfrm" action="./Intensity1.jsp">

<%try{

//Providing Database connection

Class.forName("oracle.jdbc.driver.OracleDriver");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","scott","tiger");

Statement st=con.createStatement();

ResultSet rs=st.executeQuery("select * from hms1 where disease='fever'");

int i=1;

while(rs.next())

{

//Getting Queries From Database Regarding

String sno=(String)rs.getString(1);

String query1=(String)rs.getString(2);

String option1=(String)rs.getString(3);

String option2=(String)rs.getString(4);

String option3=(String)rs.getString(5);

//session.setAttribute("serial",sno);

//session.setAttribute("queryses",query1);

//session.setAttribute("option1ses",option1);

//session.setAttribute("option2ses",option2);

//session.setAttribute("option3ses",option3);

String name="a"+i;

//out.println(name);

%>

 <%!int a;%>

<h2><%=sno%>.

<%=query1%></h2>

<input type="radio" name="<%=name %>" value="<%=option1%>"><%=option1%>

<input type="radio" name="<%=name %>" value="<%=option2%>"><%=option2%>

<input type="radio" name="<%=name %>" value="<%=option3%>"><%=option3%>

<%i++;}%>

<%

}catch(Exception e){

e.printStackTrace();

}

//response.sendRedirect("get.jsp");

%>

<p align="center">

<input type="submit" value="submit" align="center">

<div style="position:relative;left:1100px">

</div>

</form>

</body>

</html>
Intensity.jsp:

<%@ page import="java.sql.*" language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1" %>

<html>

<body bgcolor="lightblue">

<%!

String a1=null;

String a2=null;

String a3=null;

String a4=null;

 int i1=0;

int i2=0;

 int i3=0;

 int i4=0;

int totalint=0;

int temp;

int f;

%><%

try{

 a1=request.getParameter("a1");

if(a1==null)

i1=0;

else if(a1.equals("below100"))

 i1=1;

else if(a1.equals("100"))

 i1=2;

else if(a1.equals("above100"))

 i1=3;

System.out.println("i1"+i1);

 a2=request.getParameter("a2");

 if(a2==null)

i2=0;

 else if(a2.equals("more"))

 i2=3;

else if(a2.equals("less"))

 i2=2;

else if(a2.equals("no"))

 i2=0;

System.out.println("i2"+i2);

 a3=request.getParameter("a3");

 if(a3==null)

i3=0;

else if(a3.equals("more"))

 i3=3;

else if(a3.equals("less"))

 i3=2;

else if(a3.equals("mild"))

 i3=0;

System.out.println("i3"+i3);

 a4=request.getParameter("a4");

 if(a4==null)

i4=0;

else if(a4.equals("1 day"))

 i4=1;

else if(a4.equals("2-3 days"))

 i4=2;

else if(a4.equals("more than three"))

 i4=3;

System.out.println("i4"+i4);

}

catch(Exception e)

{

System.out.print(e);

}

if((i1==0)&&(i2==0)&&(i3==0)&&(i4==0))

{

RequestDispatcher rd=request.getRequestDispatcher("answerquery.jsp");

rd.forward(request,response);

}

else if(i1==3)

{

RequestDispatcher rd=request.getRequestDispatcher("consultgen.jsp");

rd.forward(request,response);

}

else if(i4==3)

{

RequestDispatcher rd=request.getRequestDispatcher("consultgen.jsp");

rd.forward(request,response);

}

else if((i4==3)&&(i1==3))

{

RequestDispatcher rd=request.getRequestDispatcher("consultgen.jsp");

rd.forward(request,response);

}

else
if(((i1==1)&&(i2==3)&&(i3==3)&&(i4==1))||(i2==0))

{

totalint=i1+i2+i3+i4;

f=2;

}

else if(((i1==1)&&(i2==2)&&(i3==2)&&(i4==2))||(i1==0))

{

totalint=i1+i2+i3+i4;

f=1;

//out.println(f);

}

else
if(((i1==1)&&(i2==3)&&(i3==2)&&(i4==2))||(i3==0))

{

totalint=i1+i2+i3+i4;

f=3;

}

else
if((i1==1)&&(i2==2)&&(i3==3)&&(i4==2)||(i4==0))

{

totalint=i1+i2+i3+i4;

f=4;

}

else
if((i1==1)&&(i2==3)&&(i3==3)&&(i4==2))

{

totalint=i1+i2+i3+i4;

f=5;

}

else
if((i1==1)&&(i2==2)&&(i3==3)&&(i4==1))

{

totalint=i1+i2+i3+i4;

f=6;

}

else
if((i1==1)&&(i2==3)&&(i3==2)&&(i4==1))

{

totalint=i1+i2+i3+i4;

f=7;

}

else

if((i1==2)&&(i2==2)&&(i3==2)&&(i4==2))

{

totalint=i1+i2+i3+i4;

f=8;

}

else
if((i1==2)&&(i2==3)&&(i3==3)&&(i4==1))

{

totalint=i1+i2+i3+i4;

f=9;

}

else
if(i1==2&&i2==3&&i3==2&&i4==2)

{

totalint=i1+i2+i3+i4;

f=10;

}

else
if(i1==2&&i2==2&&i3==3&&i4==2)

{

totalint=i1+i2+i3+i4;

f=11;

}

else
if(i1==2&&i2==3&&i3==3&&i4==2)

{

totalint=i1+i2+i3+i4;

f=12;

}

else
if((i1==2)&&(i2==2)&&(i3==3)&&(i4==1))

{

totalint=i1+i2+i3+i4;

f=13;

}

else

if((i1==2)&&(i2==3)&&(i3==2)&&(i4==1))

{

totalint=i1+i2+i3+i4;

f=14;

}

else

if((i1==1)&&(i2==0)&&(i3==0)&&(i4==0))

{

totalint=i1+i2+i3+i4;

f=15;

}

else if((i1==2)&&(i2==0)&&(i3==0)&&(i4==0))

{

out.println("hi");

totalint=i1+i2+i3+i4;

//f=16;

RequestDispatcher rd=request.getRequestDispatcher("display.jsp");

rd.forward(request,response);

}

else

if((i1==0)&&(i2==0)&&(i3==0)&&(i4==3))

{

totalint=i1+i2+i3+i4;

f=17;

}

else

if((i1==3)&&(i2==0)&&(i3==0)&&(i4==3))

{

totalint=i1+i2+i3+i4;

f=18;

}

else

if((i1==3)&&(i2==0)&&(i3==0)&&(i4==0))

{

totalint=i1+i2+i3+i4;

f=19;

}

System.out.println("falg value is:"+f);

System.out.println("intensity is:"+totalint);

//temp=totalint+f;

//if((totalint>=5)&&(totalint<=7))

//{

//temp=5;

//}

//else

//if((totalint>7))

 //{

//temp=10;

//}

try{

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","scott","tiger");

 Statement st=con.createStatement();

 ResultSet rs=st.executeQuery("select * from hms2 where flag="+f+"");

 while(rs.next())

{

//String sno=(String)rs.getString(1);

String medicine=(String)rs.getString(2);

String dosage=(String)rs.getString(3);

String instructions=(String)rs.getString(4);

 %>

<div style="position:absolute;left:10px;top:10px">

 <table>

<tr>

<td></td></tr>

<tr><td></td></tr>

<tr><td></td></tr>

<tr><td></td></tr>

</table>

</div>

<div style="position: absolute;left:400px;top:200px">

<table align="center">

<td><P ALIGN="CENTER">

 <strong ALIGN="CENTER">PLEASE OBSERVE THE FALLOWING MEDICINES</P>

 <h4>

 <table border='2' align="center">

<tr><td>Medices preferable</td> <td><%=medicine%></td></tr>

<tr><td>Dosage</td><td><%=dosage%></td></tr>

<tr><td>Instructions</td><td><%=instructions%></td></tr></table>

<div style="position:relative;left:350px">

</div></h4>

</td>

</table>

</div>

<div style="position:absolute;left:1000px;top:10px">

<table align="right">

<tr>

<td></td></tr>

<tr><td></td></tr>

<tr><td></td></tr>

<tr><td></td></tr>

</table>

</div>

<% }

}

catch(Exception e){

e.printStackTrace();}

%>

</body>

</html>

Inbill.html:

<html>

 <head>

 <title>IN PATIENT BILL</title>

<style type="text/css">

 img

 {

 position:absolute;

 z-index:-3;

 }

table.ph{font-size:120%;foreground:blue}

a.ph1{color:black;text-decoration:none}

a:hover{color:#ffffff}

td.menu{background:#e1C4C4}

table.menu

{

font-size:100%;

position:absolute;

visibility:hidden;

}

</style>

<script type="text/javascript">

function showM(element)

{

document.all(element).style.visibility="visible"

}

function hideM(element)

{

document.all(element).style.visibility="hidden"

}

function total1()

{

var docfees=document.getElementById("doctfees").value;

document.getElementById("total").value=docfees;

}

function total2()

{

var docfees=document.getElementById("doctfees").value;

var labcharges=document.getElementById("labcharges").value;

var tot=parseInt(docfees)+parseInt(labcharges);

document.getElementById("total").value=tot;

}

function total3()

{

var docfees=document.getElementById("doctfees").value;

var labcharges=document.getElementById("labcharges").value;

var pharmacharges=document.getElementById("pharmacharges").value;

var tot=parseInt(docfees)+parseInt(labcharges)+parseInt(pharmacharges);

document.getElementById("total").value=tot;

}

function total4()

{

var docfees=document.getElementById("doctfees").value;

var labcharges=document.getElementById("labcharges").value;

var pharmacharges=document.getElementById("pharmacharges").value;

var roomcharges=document.getElementById("roomcharges").value;

var tot=parseInt(docfees)+parseInt(labcharges)+parseInt(pharmacharges)+parseInt(roomcharges);

document.getElementById("total").value=tot;

}

function total5()

{

var docfees=document.getElementById("doctfees").value;

var labcharges=document.getElementById("labcharges").value;

var pharmacharges=document.getElementById("pharmacharges").value;

var roomcharges=document.getElementById("roomcharges").value;

var nursecharges=document.getElementById("nursecharges").value;

var tot=parseInt(docfees)+parseInt(labcharges)+parseInt(pharmacharges)+parseInt(roomcharges)+parseInt(nursecharges)

document.getElementById("total").value=tot;

}

</script>

 </head>

 <body bgcolor="lightblue">

 <table width="1180"><tr><td align="left">Home</td>

 <td align="right"> Sign Out</td> </tr></table>

<center>

 <u>In Patient Details</u>

 </center>

<form action="./InBill" method="GET">

<table align=center>

 <tr>

 <td>Patient Number</td>

 <td><input type=text name="patno"></td>

 </tr>

 <tr>

 <td>Patient Name</td>

 <td><input type=text name="patname"></td>

 </tr>

<tr>

 <td>Age</td>

 <td><input type=text name="age"></td>

 </tr>

 <tr>

 <td>Date</td>

 <td><input type=text name="dat"></td>

</tr>

<tr>

 <td>Doctor's Fee</td>

 <td><input type=text name="doctfees" id="doctfees" value="0" onblur="total1()"></td>

 </tr>

<tr>

 <td>Lab Charges</td>

 <td><input type=text name="labcharges" id="labcharges" value="0" onblur="total2()"></td>

 </tr>

<tr>

 <td>Pharma Charges</td>

 <td><input type=text name="pharmacharges" id="pharmacharges" value="0" onblur="total3()"></td>

 </tr>

<tr>

 <td>Room Charges</td>

 <td><input type=text name="roomcharges" id="roomcharges" value="0" onblur="total4()"></td>

 </tr>

<tr>

 <td>Nurse Charges</td>

 <td><input type=text name="nursecharges" id="nursecharges" value="0" onblur="total5()"></td>

 </tr>

<tr>

<td>Total</td>

<td><input type=text name="total"></td>

</tr>

<tr>

 <td align=center colspan=2>

 <input type=submit value=STORE>

 <input type=RESET value=CLEAR>

 </td>

</tr>

</table>

</form>

<form action="print.jsp">

<table align="right"><tr><td><input type="submit" value=PRINT></td></tr></table>

</form>

</body>

</html>

Print.jsp:

<%@ page import="java.sql.*;" language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

<form action="printin.jsp">

<TABLE ALIGN=CENTER>

<TR><TD>Select Patient Name<td><select name="sel">

<%

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection con = DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","clinical","clinical");

Statement stmt = con.createStatement();

ResultSet rs = stmt.executeQuery("select patno,patname FROM INBILL");

while(rs.next())

{

String s1 = rs.getString(1);

String s2 = rs.getString(2);

out.println("<option value='"+s1+"'"+">"+s2+"</option>");

}

out.println("</tr>");

%>

</select>

<tr><td><input type=submit value="submit"></tr>

</table>

</form>

</body>

</html>

Discussion forum:

<%@ page import="java.sql.*" language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

<script language="javascript">

function question()

{

var i=document.getElementById("sno").value;

window.navigate("post.jsp?value="+i);

}

function answer(id)

{

var ai=document.getElementById("sno").value;

window.navigate("reply.jsp?value="+id);

}

</script>

</head>

<body bgcolor="lightblue">

<form name="myfrm">

<p align="right">

<input type="button" value="post your question here" align="center" onclick="question()">

<div align="left">

Home

</div>

<%try{

//Providing Database connection

System.out.println("try");

Class.forName("oracle.jdbc.driver.OracleDriver");

System.out.println("class");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","scott","tiger");

System.out.println("connection");

Statement st=con.createStatement();

System.out.println("statement");

ResultSet rs=st.executeQuery("select * from chat");

int i=1;

while(rs.next())

{

//Getting Queries From Database Regarding

String sno=(String)rs.getString(1);

String question=(String)rs.getString(2);

String answer=(String)rs.getString(3);

if(answer==null)

{

answer="";

}

String patname=(String)rs.getString(4);

String doctorid=(String)rs.getString(5);

i=i+1;

System.out.println("i value="+i);

System.out.println("sno="+sno);

//out.println(name);

%>

<fieldset>

<input type="hidden" value="<%=sno%>" name="sno">

 <%!int a;%>

 <table>

 <tr><td>Question</td><th>

<%=sno%>.

<%=question%></th></tr>

<tr><td>Answer</td>

<td><%=answer%></td></tr>

<tr><td>Patient Name</td>

<td><%=patname%></td></tr>

<tr><td>Doctor Id</td>

<td><%=doctorid%></td></tr>

</table>

<input type="button" value="Reply" onclick="answer(this.id)" id="<%=sno%>">

</fieldset>

<%}%>

<%

}catch(Exception e){

e.printStackTrace();

}

//response.sendRedirect("get.jsp");

%>

<p align="center">

<input type="button" value="post your question here" align="center" onclick="question()">

</form>

</body>

</html>
Reply.jsp:

<%@ page import="java.sql.*" language="java" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

<script type="text/javascript">

</script>

</head>

<body bgcolor="lightblue">

<%

try
{

String i1=request.getParameter("value");

System.out.println("value="+i1);

session.setAttribute("i1",i1);

Class.forName("oracle.jdbc.driver.OracleDriver");

//System.out.println("class");

Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","scott","tiger");

//System.out.println(con);

PreparedStatement ps=con.prepareStatement("select * from chat where sno=?");

ps.setString(1,i1);

System.out.println(ps);

ResultSet rs=ps.executeQuery();

rs.next();

System.out.println(rs);

if(i1.equals(rs.getString(1)))

{

String sno=(String)rs.getString(1);

String question=(String)rs.getString(2);

%>

<form action=".\insert.jsp">

<table>

 <tr><td>Question</td> <th><%=sno%>.<%=question%></th></tr>

 <tr><th>Doctor id</th><td><input type="text" name="doc" oblur="check()"></tr>

<tr><th>Answer</th><td><textarea name="tarea" width="500"></textarea></td></tr>

<tr><td></td><td><input type="submit" value="submit"></td></tr>

</table>

<%

}

}

catch(Exception e){

e.printStackTrace();

}

%>

</body>

</html>

Update table:

<%@ page language="java" import="java.sql.*;" contentType="text/html; charset=ISO-8859-1"

 pageEncoding="ISO-8859-1"%>

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-1">

<title>Insert title here</title>

</head>

<body>

<%

String sno=request.getParameter("sno");

String query=request.getParameter("query");

String option1=request.getParameter("option1");

String option2=request.getParameter("option2");

String option3=request.getParameter("option3");

String disease=request.getParameter("disease");

//out.println(oflag);

//out.println(nflag);

//out.println(medicine);

//out.println(dosage);

//out.println(instruction);

try{

 Class.forName("oracle.jdbc.driver.OracleDriver");

 Connection con=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:XE","scott","tiger");

 con.setAutoCommit(true);

 //Statement st=con.createStatement();

 PreparedStatement ps=con.prepareStatement("update hms1 set query=?,option1=?,option2=?,option3=?,disease=? where sno=?");

 // ps.setString(1,nflag);

 ps.setString(1,query);

 ps.setString(2,option1);

 ps.setString(3,option2);

 ps.setString(4,option3);

 ps.setString(5,disease);

 ps.setString(6,sno);

 ps.executeUpdate();

 con.commit();

%>

<% }

catch(Exception e)

{

System.out.print(e);

}

%>

</body>

</html>

8.TESTING
1. Unit Testing

 Unit Testing is done on individual modules as they are completed and become executable. It is confined only to the designer's requirements.

Each module can be tested using the following two strategies:

i. Black Box Testing:

 In this strategy some test cases are generated as input conditions that fully execute all functional requirements for the program. This testing has been uses to find errors in the following categories:

Incorrect or missing functions

Interface errors

Errors in data structure or external database access

Performance errors

Initialization and termination errors.

In this testing only the output is checked for correctness. The logical flow of the data is not checked.

ii. White Box testing

 In this the test cases are generated on the logic of each module by drawing flow graphs of that module and logical decisions are tested on all the cases.

 It has been uses to generate the test cases in the following cases:

Guarantee that all independent paths have been executed.

Execute all logical decisions on their true and false sides.

Execute all loops at their boundaries and within their operational bounds.

Execute internal data structures to ensure their validity.

2. Integrating Testing

 Integration testing ensures that software and subsystems work together as a whole. It tests the interface of all the modules to make sure that the modules behave properly when integrated together.

3. System Testing

 Involves in-house testing of the entire system before delivery to the user. Its aim is to satisfy the user the system meets all requirements of the client's specifications.

4. Acceptance Testing

 It is a pre-delivery testing in which entire system is tested at client's site on real world data to find errors.

 Validation:

 The system has been tested and implemented successfully and thus ensured that all the requirements as listed in the software requirement specification are completely fulfilled. In case of erroneous input corresponding error messages are displayed.

i) Compiling Test:

 It was a good idea to do our stress testing early on, because it gave us time to fix some of the unexpected deadlocks and stability problems that only occurred when components were exposed to very high transaction volumes.

ii)Execution Test:

 This program was successfully loaded and executed. Because of good programming there were no execution errors.

iii)Output Test:

 The successful output screens are placed in the output screens section above.

8.1 System Test-Cases:

	S.No
	Test Case Name
	Input
	Expected Output
	Actual Output

	
	Category
	User have to choose any of the categories
	The Application will able to display two categories
	The application displays any of the categories

	
	Symptom specification
	User have to choose the disease
	Based on the disease medicine will be suggested.
	The exact medicine will be displayed based on user disease intensity level.

	
	Medicine display
	User must answer the queries for the symptom they selected.
	Based on the total intensity of disease the system must suggest the medicines.
	Exact medicine will displayed with its dosage.

	
	Symptom for the specified curable disease will be displayed.
	Symptoms for curable diseases
	Specifying the curable disease
	For curable diseases it will specify the symptoms.

	
	Symptoms for non curable diseases
	User must specify the non curable Disease
	For non curable disease it will specify the symptoms.
	Symptom for non curable disease will be displayed.

Functional Test Cases:

	TESTCASEID
	DESCRIPTION
	TESTSTEPS
	EXPECTED

RESULT

	Adv_login
	Verify that customer should be able to login to the system
	1)Execute the login.jsp
2)Enter username and password in login page
3)click login button
4) Enter username and null password.
5) Enter invalid username and password.
	1)Advanced hospital login page should be displayed with the following details

a)username-textbox

b)password –text box

c)login-button
2) The related user page would be displayed in login page.
3) For the valid user the home page of Advanced hospital management should be displayed to the user
4) An alert message should be displayed to user that the user name & password wrong.
5) Error page should be displayed and prompts user to re-login.

	Add employee
	Employee details added to the hospital management database.
	1)Enter the employee number,name, designation, qualification.
	1)It displays the following

Textboxes

a)emp_no

b)emp_name

c)designation

d)qualification

e)address

f)phone number

	Delete user
	Delete user to delete the out dated staff details from the management database.
	1) Select the staff name to delete the staff details from the database.
	1) Displays one select box with staff names.

	Post Question
	To post the questions
	1) Enter the Queries to get the suggestions from doctors.
	1) Displays two text boxes

a)patient name

b)question

C)Post button

	Reply
	Doctor provides suggestion to the patient.
	1)Enter the suggestion in the area provides to the doctor
	1)Displays two textboxes

a)doctor id

b)suggestion

c)submit

	Print
	To provide bill in the form printout
	1)select the print option and then select the patient name to which user we have to take print.
	1)Displays one select box to select the patient name.

9.CONCLUSION
 The system is used by the people who in remote areas.and also this system also used by the people who are far away from hospitals.The system also provides computarized self test to the users and suggesting the appropriate medicines / suggestions ton their problems.

10.REFERENCES
Text Books:

Artificial Intillegence - Stuart Russell(2nd Edition)
Doctor References:

Amrutha Hospital in Tadepalligudem, for collecting medicines for various diseases.

Web References:

www.familydoctor.org
www.avert.org
www.medicinenet.com
11.APPENDICES
11.1Appendix A - Hardware and Software Configurations

Software requirements: Rational Rose software,

 Oracle10g , J2EE,

 Windows XP professional/Linux,

 Eclipse 3.3 IDE

 Tomcat web server.

 Hardware Requirements: Pentium4 or core2duo processor,

 1 GB RAM
11.2. Appendix B – Data Base Tables

The table in this system is as follows with their data types and sizes:

Table Name: Staff

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Staff Name
	String
	30
	-Not NULL-

	Staff Number
	String
	15
	Primary Key

	Designation
	String
	20
	-Not NULL-

	Qualification
	String
	 20
	-Not NULL-

	Experience (Years)
	Number
	4
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	e-mail
	String
	30
	-Not NULL-

	Address
	String
	50
	-Not NULL-

Table Name: Department

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Dept Name
	String
	30
	-Not NULL-

	Dept Number
	String
	15
	Primary Key

	Number of Staff
	Number
	5
	-Not NULL-

	Number of Doctors
	Number
	 5
	-Not NULL-

	Ward Number
	String
	15
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	Staff number
	Number
	15
	Foreign key

Table Name: Laboratory

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Lab Name
	String
	30
	-Not NULL-

	Lab Number
	String
	15
	Primary Key

	Number of Staff
	Number
	5
	-Not NULL-

	Block Number
	String
	15
	-Not NULL-

	Ward Number
	String
	15
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	Staff number
	number
	15
	Foreign key

Table Name: Ward

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Ward Name
	String
	30
	-Not NULL-

	Ward Number
	String
	15
	Primary Key

	Block Number
	String
	5
	-Not NULL-

	Number of Rooms
	Number
	15
	-Not NULL-

	Staff Number
	Number
	15
	Foreign key

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

Table Name: Prescription

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Patient Name
	String
	30
	-Not NULL-

	Patient Number
	String
	15
	Foreign key

	Phone
	Number
	5
	-Not NULL-

	Problem
	String
	15
	-Not NULL-

	Attended Doctor
	String
	30
	-Not NULL-

	Prescription
	String
	50
	-Not NULL-

	Suggestions
	String
	50
	-Not NULL-

	Staff number
	Number
	10
	Foreign key

Table Name: Patient

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Patient Name
	String
	30
	-Not NULL-

	Patient Number
	String
	15
	Primary Key

	Problem
	String
	20
	-Not NULL-

	Age
	Number
	3
	-Not NULL-

	Gender
	String
	5
	-Not NULL-

	Problem
	Number
	35
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Date
	String
	10
	-Not NULL-

	Time
	String
	10
	-Not NULL-

	Address
	String
	30
	-Not NULL-

Table Name: Query
Data in the Tables:
	Name
	Data type
	Size
	Feature

	Sno
	String
	20
	-Not NULL-

	Query
	String
	90
	-Not NULL-

	Option1
	String
	40
	-Not NULL-

	Option2
	String
	40
	-Not NULL-

	Option3
	String
	40
	-Not NULL-

	Disease
	String
	40
	-Not NULL-

Table name: Medicines

Database Tables:

	Name
	Datatype
	Size
	Feature

	Flag
	Number
	30
	-Not NULL-

	Medicine
	String
	60
	-Not NULL-

	Dosage
	String
	60
	-Not NULL-

	Instructions
	String
	100
	-Not NULL-

Table name: Chat

Database Tables:

	Name
	Datatype
	Size
	Feature

	Sno
	Number
	5
	-Not NULL-

	Question
	String
	100
	-Not NULL-

	Answer
	String
	100
	-Not NULL-

	Patient Name
	String
	100
	-Not NULL-

	Doctor ID
	String
	100
	-Not NULL-

Table name: Inbill

Database Tables:

	Name
	Datatype
	Size
	Feature

	Patno
	String
	20
	-Not NULL-

	PatName
	String
	20
	-Not NULL-

	Age
	Number
	5
	-Not NULL-

	Date
	String
	20
	-Not NULL-

	Doc Fees
	Number
	5
	-Not NULL-

	Lab Charges
	Number
	5
	-Not NULL-

	Pharm Charges
	Number
	5
	-Not NULL-

	Room Charges
	Number
	5
	-Not NULL-

	Nurse Charges
	Number
	5
	-Not NULL-

	Total
	String
	10
	-Not NULL-

Table name:Outbill
Data Base Table:

	Name
	Datatype
	Size
	Feature

	Patno
	String
	20
	-Not NULL-

	PatName
	String
	20
	-Not NULL-

	Age
	Number
	5
	-Not NULL-

	Gender
	String
	20
	-Not NULL-

	Date
	String
	20
	-Not NULL-

	Lab Charges
	Number
	5
	-Not NULL-

	Pharm Charges
	Number
	5
	-Not NULL-

	Doctor Fees
	Number
	5
	-Not NULL-

	Total
	String
	5
	-Not NULL-

Table name:Blood Report
Data Base Table:
	Name
	Datatype
	Size
	Feature

	Patno
	String
	20
	-Not NULL-

	HB
	String
	20
	-Not NULL-

	TRBC
	String
	5
	-Not NULL-

	TWBC
	String
	20
	-Not NULL-

	POLY
	String
	20
	-Not NULL-

	LYMP
	String
	20
	-Not NULL-

	ESNO
	String
	20
	-Not NULL-

	MONO
	String
	20
	-Not NULL-

	BASO
	String
	20
	-Not NULL-

	ESR
	String
	20
	-Not NULL-

	AEC
	String
	20
	-Not NULL-

	MT
	String
	20
	-Not NULL-

	RET
	String
	20
	-Not NULL-

	MVC
	String
	20
	-Not NULL-

	MCH
	String
	20
	-Not NULL-

	MCHC
	String
	20
	-Not NULL-

	PC
	String
	20
	-Not NULL-

	PCV
	String
	20
	-Not NULL-

	BT
	String
	20
	-Not NULL-

	CT
	String
	20
	-Not NULL-

	SMP
	String
	20
	-Not NULL-

	BMF
	String
	20
	-Not NULL-

	BG
	String
	20
	-Not NULL-

	RHT
	String
	20
	-Not NULL-

Table name:URINEEX

Data Base Table:

	Name
	Datatype
	Size
	Feature

	SG
	String
	20
	-Not NULL-

	KB
	String
	20
	-Not NULL-

	SU
	String
	20
	-Not NULL-

	AL
	String
	20
	-Not NULL-

	PHO
	String
	20
	-Not NULL-

	BS
	String
	20
	-Not NULL-

	BP
	String
	20
	-Not NULL-

	URBL
	String
	20
	-Not NULL-

	CH
	String
	20
	-Not NULL-

	MIC
	String
	20
	-Not NULL-

	EPC
	String
	20
	-Not NULL-

	PRT
	String
	20
	-Not NULL-

	PATNO
	String
	20
	-Not NULL-

11.3. Appendix C-Limitations and Enhancements

Limitations:

· Use of Self-diagnosis may cause certain problems such as dangerous in some cases.
· Security is another limitation in case of discussion forum.
· Advanced Hospital Management doesn’t provide categories for each designation.
Enhancements:
· Voice call can be implemented.
· Online chatting can be implemented.

· Patient history can be implemented.

12. Issues Raised:

· We got the Null-Pointer Exception while validating the page (10-2-2010).
· When radio buttons are not selected by the patient, it moves to the error page (4-2-2010).
· Page Not Found Exception if the page available in the project also. This Problem Occurred due to the Server Problem (frequently we faced this exception).

· Internal Error Exception due to some logical mistakes in the code.

· Not enough values error while inserting data into the tables.

· While preparing the user interface, we got error due to the mouse over and mouse out action.

experience

qualification

address

designation

number

name

e-mail

technical

non-technical

staff

phone

nurse

receptionist

doctor

name

phone

number

designation

patient

lab

lab technician

lab reports

queries

queries

options

diseases

medicines

instructions

medicine

name

dosage

phone

name

ward

number

number of

staff

number

block

number

staff

number

time

date

phone

age

gender

problem

patient

number

patient

name

pharmasist

pharmacy

hospital

issue

medicines

generate

reports

includes

contains

serves

visits

generates

joins

have

server

db

selfdiagnosis

Advanced hospital

management

Self diagnosis with hospital

management

GUI

Application

Open Discussion

3

[image: image1]