SELF-DIAGNOSIS WITH

ADVANCEDHOSPITAL MANAGEMENT
 Abstract

 The main objective of this Self-diagnosis with advanced hospital management system is to provide a self test to the patient, if hospitals are not available in near places. This application is developed by using one of the heuristic search techniques in artificial intelligence i.e. greedy local search. This system provides an additional facility, that is patient can interact with an appropriate doctor through online chatting .patient can get appropriate suggestions to his/her problem. Actually, in the self-diagnosis this application generates a report regarding patient’s health condition. That report may contain patient disease name, his symptoms intensity level and the suggestion provided by system. This suggestion may be in the two forms. First suggestion may be an appropriate medicine based on symptom Intensity level; second suggestion may be a specialized doctor meeting that means his disease may be in a critical state.

We can provide suggestions to some resistible diseases that mean rectifiable problems by some tablets. This may be useful to the patients who are in far distance from hospital and to the doctors also to interact with patients in or out of the hospital. Administrator can update medicines in database frequently. We can facilitate a suggestion box to the patients to improve my application .This application can be implemented by J2EE, ORACLE8i or higher database.
PROBLEM ANALYSIS:

 The system aimed to the Self-diagnosis with advanced hospital management system is to provide a self test to the patient, if hospitals are not available in near places. This application is developed by using one of the heuristic search techniques in artificial intelligence i.e. greedy local search. This system provides an additional facility, that is patient can interact with an appropriate doctor through online chatting .patient can get appropriate suggestions to his problem.

 Actually, in the self-diagnosis this application generates a report regarding patient’s health condition. That report may contain patient disease name, his symptoms intensity level and the suggestion provided by system. This suggestion may be in the two forms. First suggestion may be an appropriate medicine based on symptom Intensity level; second suggestion may be a specialized doctor meeting that means his disease may be in a critical state.
 This system can be helpful to the hospital management, because it consists of patient billing system from the time of admission in the hospital. Patient billing means the payment for the doctor, rooms, dispensaries, servants.
 For an example suppose the patient will be suffered from fewer, first he has to enter his disease. Then the application will have to pose some symptoms regarding that disease, those symptoms are answered by the patient.
The symptoms may be in the form of following queries:

a) Do you have head-ache?

b) Do you have body pains?

c) What is the level of your body temperature?

d) Are you feeling nausea?

e) Form how many days you are suffering from this problem?

 Like these type of queries user may have to answer. The application itself have an intensity levels for each query, based on the intensity levels it can suggest medicines.
 To provide suggestion we have to calculate intensity level. This Intensity level calculated by using symptoms result provided by patient. For each symptom we can maintain some intensity levels by the doctor suggestion, based on that intensity level calculate total intensity level, based on the total intensity level the appropriate suggestion from database provided. In the database Local search performed to reach appropriate medicine.

We can provide suggestions to some resistible diseases that mean rectifiable problems by some medicines. This may be useful to the patients who are in far distance from hospital and to the doctors also to interact with patients in or out of the hospital. Administrator can update medicines in database frequently. We can facilitate a suggestion box to the patients to improve my application.

 All the medicines information is stored in the database tables for each disease, as well as symptoms also maintained in the tables.
Requirement Analysis:
 SCOPE:

 This application useful to the people who are far away from the hospitals and the patients can get treatment when the doctor not available in hospital also. This system will be helpful to the people who are busy with their professional work. Because, they can get doctor suggestions through online and can share their problems with doctor. The self-diagnosis feature helps the patient for taking medicine with out consulting doctor. But, it can provide treatment up to some diseases that means rectifiable diseases with out doctor suggestion with some dosage of tablets.
Objective:

 The main objective of this application is helping the people who are not aware of medicines for simple problems. This can be achieved by self-diagnosis. It may critical in now a days to consult doctor, but this application can make it easy by providing online interaction with doctor. This application can save the people‘s valuable time and cost.

Specific Requirements:

 Functional Requirements:

 1. Patient have to login to the system with his account, otherwise he has to create new account by using registration form
 2. Patients condition will be checked by self diagnosis. Based on the generated report we can decide it as adverse or normal condition.

 3. If patient condition is normal it suggests the appropriate medicine by using heuristic search technique. It will take symptoms as input for suggesting medicine. The local search algorithm searches for nearer intensity value in the database.
 4. If patient condition is critical it suggests the appropriate specialists. The generated result report will forward to the specialized doctor.
 5. Collection of different symptoms for normal disease. Normal disease means rectifiable with some dose of tablets.
 6. Maintaining the symptoms database from the patients. The maximum occurred symptoms will gather from patients.
 7. Collection of list of specialized doctors for each disease. This List will be maintained in database.
 8. Calculate the percentage of sickness based on the symptoms. This will be calculated based on the user option choosing.
 9. Find out the intensity level based on percentage of sickness. This will be calculated by summing the all symptoms intensities.
 10. Based on intensity level it suggests the appropriate medicine/physician by searching in database.
 11. Collection appropriate medicines for each disease with dosage with doctor suggestion.
 12. Based on patient condition receptionist allot appointment timings to the patients.

 13. It settle patient bill before discharging from hospital by considering doctor fee, room charges, medical charges.

 14. Verification of the database by senior doctor.

Non-functional Requirements:
A. Secure access of confidential data (user’s details). SSL can be used.

B. 24 X 7 availability

C. Better component design to get better performance at peak time

D. Flexible service based architecture will be highly desirable for future extension

System Requirements:

 Software requirements: Rational Rose software,

 Oracle8i or higher,

 Windows XP professional/Linux,

 Eclipse 3.3 IDE
 Tomcat web server.

 Hardware Requirements: Pentium4 or core2duo processor,

 1 GB RAM
USECASE DIAGRAM:
 Use case diagrams are central to modeling the behavior of the system, subsystem .These are important for visualizing, specifying, and documenting the behavior of an element. It shows the set of use cases and actors and their relationships.

This application consists of an actor called user and use cases.
USERS:
 We have two users. Those are: a) Patient b) Doctor c) Administrator
a) Patient :

The user can login to the System with his own id and password. After logon to the system Patient can mention his problem and the system posses some questions like symptoms based on that patient may get suggestions.

 If the patient is new to this application he has to create his own Account by signup option in login form.

 THE FOLLOWIING USECASES INVOKED BY PATIENT:

· Specifying Problem
· Specifying option
· Observing Result
· Logout

Specifying option:
This use case specified to specify the answer for the queries to the patient.
Functional Requirements:

· The Patient must have to answer the queries posed by the system.

· The patient won’t get any medicine without selecting options for the corresponding queries.

Flow of Events:
· After selecting the category, patient has to select the disease with which he is suffering.
· If the category selected is general, it will show some general diseases. Again, patient have to choose disease and then answer the queries.
 Specifying Problem:

 This use case specified to enter the problem to the application by the user.
Functional Requirements:
· First the patient will choose the Category of disease
· The Patient has to choose the Problem with which he/she suffering.
Flow of events:
· The patient has to choose the different categories of diseases. That may be general, curable or non-curable diseases.

· After choosing the category, he/she will choose the problem.

Observing Result:

 This use case specified to observe the suggestions provided by the application.
Functional Requirements:

· The patient must have to answer the queries, then only the application will suggest the medicine accurately.

· She/he has to follow the dosage and instructions provided by the application, and then only the problem will be rectified soon.

Flow of events:
· After the options selected,it will suggest the medicine based on the intensity level of answers.
Logout:
 This use case specified to logout from the user account after his work completed.
Functional Requirements:
· The patient has to select the logout option to come out from the application.
Flow of events:
· After the patient got the medicines, he/she has to choose the logout option to come out from the system.
 b) Doctor:
 The Doctor will have a direct interaction through his account. no need to create an account in this application., but he has to provide his appropriate mail id.

THE FOLLOWIING USECASES INVOKED BY DOCTOR:

· Diagnoses the patient
· Suggests appropriate medicines
Diagnoses the patient:

 This use case specified to diagnose patient that means allowing the patient to expose problems.
Functional Requirements:
· Patient has to share his/her problem with the doctor without hiding any one.

· As the patients answer is accurate, the medicine is also working that much of accurately.
Flow of Events:

· The patient will communicate with the doctor by using the chatting application. Through this option, he/she will get an appropriate suggestion or medicine based the disease.
Suggests appropriate medicines:
 This use case specified to get the suggestions provided by the doctor.
Functional Requirements:
· The doctor has to suggest the medicines based on the patient answers.

· He/she may suggest some tests also based on the patient health status.

Flow of events:
· If the doctor is available to the patient then he/she will communicate with the doctor to get the treatment.

· After communicated with doctor, he/she will get a medicines
Use-case diagram for Doctor:
[image: image1.png]Suggesting medicines

Interaction Diagrams for Self-diagnosis:

 A sequence diagram and collaboration diagrams are a type of interaction diagram. An interaction is a behavior that comprises a set of messages exchanged among a set of objects with in a context to accomplish a purpose. A message is specification to communication between objects.

 In this the patient will select the disease and request the symptoms for database regarding disease. It will store in database and it will display the medicines. After displaying the patient will request the doctor and he will give some suggestions.

Specify option & Symptom and Observing Result and Observing Report and Suggest medicine:
[image: image2.emf]:doctor :patient :GUI :database

selecting disease

request for symptom regarding disease

response as query

select option

store option in database

medicine result

request

suggestion

[image: image3.emf]:doctor

:patient

:GUI

:database

1: selecting disease

2: request for symptom regarding disease

3: response as query

4: select option

5: store option in database

6: medicine result

7: request

8: suggestion

Logout:
 This use case specified to logout from the user account after his work completed.
Functional Requirements:
· The patient has to select the logout option to come out from the application.
Flow of events:
· After the patient got the medicines, he/she has to choose the logout option to come out from the system.
Interaction diagram for Logout:
[image: image4.emf]:user :GUI :Logout

request

send request

acknowledge

response

Activity Diagram for Diagnoses the patient & suggesting Medicines:[image: image5.emf]enter username

& password

authenticated

you have to

register

enter disease

fill registration

form

answer query

check intensity

level

suggest

medicine

we can't suggest with out

doctor checkup

if all details

entered

registered

successfully

not registered

yes

no

yes

no

ok

no

c) ADMINSTRATOR:
 Administrator is the user and who is the most responsible person to maintain the system. He maintains the details of this Application .he can perform updating the database.
THE FOLLOWIING USECASES INVOKED BY ADMINISTRATOR:

· Update
· Logout
Use-case Diagram for Administrator:
[image: image6.png]—

Adninistrator

Update:

 This use case specified to provide any additional features to the application, the administrator will be allowed.
Functional Requirements:
· The administrator will update the medicines day by day.

· The administrator will maintain the total medicines details.
Flow of events:
· The administrator has to change the medicines data in the database tables.

· Commit the database day by day with new manipulations.
Logout:
 This use case specified to logout from the user account after his work completed.
Functional Requirements:
· The patient has to select the logout option to come out from the application.
Flow of events:
· After the patient got the medicines, he/she has to choose the logout option to come out from the system.
Interaction diagram for Logout:
[image: image7.emf]:user :GUI :Logout

request

send request

acknowledge

response

Use case diagram for Overall System:

 Use case diagrams are central to modeling the behavior of the system, subsystem .These are important for visualizing, specifying, and documenting the behavior of an element. It shows the set of use cases and actors and their relationships.

This organizer consists of an actor called user and use cases.
[image: image8.png]Administrator

Use case Diagram for Advanced Hospitality Management:
[image: image9.emf]medicines

medicine bills

modify

delete

view staff

staff information

lab information

department information

ward information

present details

patient

issues

maintain system

store information

lab technician

pharmasist

admin

view

generate prescription for patient

patient records

lab reports

lab prescription

doctor fees

medical fees

room charges

store patient

calculate

serves patient

nurse

doctor

receptionist

login

Interaction and Activity Diagrams for Advanced Hospitality Management:
Login:
This will allow the user to logon to the system.

Functional Requirements:
· The authenticated people only have eligibility to enter into the system.
· Each authenticated person has their own username, password. If it is valid only he/she can enter into the application.
Flow of events:
· The user has to enter into the application with his/her username & password.

· If the username &password is valid then only he/she will enter into the application.

[image: image10.emf]:user :GUI :Login

request

send request

acknowledge

response

[image: image11.emf]:user

:GUI

:Login

1: request

4: response

2: send request

3: acknowledge

[image: image12.emf]login

valid user

sorry

no

user login page

yes

Patient admit:
 The patient will enter into the hospital. After entering the details of the patient will be stored into database and allocate room for patient.
[image: image13.emf]:patient :receptionist :database

patient enters

store details of patients

allocate room

[image: image14.emf]:patient

:receptionist

:database

1: patient enters

2: store details of patients

3: allocate room

[image: image15.emf]enter patient

details

store patient

details

inpatient

allocate appointment

to visit doctor

allocate room

no

yes

Visit doctor:
Functional Requirements:
· If the patient condition is critical then he/she will ro to the hospital to visits doctor.
· The doctor view the patient details through database and after getting the patient details the doctor prescribes the medicines to patient and update the database.
Flow of events:

· After communicating with the doctor through chatting, he/she will know his health condition.
· If the patient condition is critical then he/she will ro to the hospital to visits doctor.
· The doctor view the patient details through database and after getting the patient details the doctor prescribes the medicines to patient and update the database.
[image: image16.emf]:patient :doctor :database

patient visit doctor

view patient details

get patient details

prescribes medicines

update database

[image: image17.emf]:patient :doctor

:database

1: patient visit doctor

2: view patient details

3: get patient details

4: prescribes medicines

5: update database

[image: image18.emf]patient visited

by doctor

view patient

details

prescribe

medicine

Visit lab:
Functional Requirements:

· When the patient visits the lab, then lab technicians will check the details of the patient and perform tests to the patient.

· After Performing tests, they will update the database.

[image: image19.emf]:patient :lab database

visit lab

view patient details

get patient details

perform tests

update database

[image: image20.emf]:patient

:lab

database

1: visit lab

2: view patient details

3: get patient details

4: perform tests

5: update database

[image: image21.emf]patient visits lab

view details

perform tests

update details

in database

Visit pharmacy by patient:
Functional Requirements:

· The patient visits the pharmacy with the prescription provided by the doctor.

· After the Prescribed medicines hand over to the patient, the pharmacist updates the database for the medicines bill.
Flow of events:

· The patient visits the pharmacy with the prescription provided by the doctor.

· After the Prescribed medicines hand over to the patient, the pharmacist updates the database for the medicines bill.
[image: image22.emf]:patient :pharmacy :database

visit patient

visit prescription

get prescription

give medicines

update database

[image: image23.emf]:patient :pharmacy

:database

1: visit patient

2: visit prescription

3: get prescription

4: give medicines

5: update database

[image: image24.emf]patient visit

pharmacy

view prescription by

pharmacist

give medicines

update

database

Update by manager:
Functional Requirements:
· The manager can add the details of staff, lab, ward and department.

· The manager can modify the details of staff, lab, ward and department.

Flow of events:

· If any new patients joined into the organization or old patients discharging from the organization he is the responsible person to modify the database.

· The manager can add the details of staff, lab, ward and department.

· The manager can modify the details of staff, lab, ward and department.

[image: image25.emf]:manager :database

add staff/lab/ward/department details

database update

[image: image26.emf]:manager

:database

1: add staff/lab/ward/department details

2: database update

[image: image27.emf]login by

manager

view database

add/modify

details

Delete staff:
Functional Requirements:

· The manager will enter the staff details if any unnecessary details that he found he will delete the details of the staff in database.

· The out dated staff details also removed from the database.

Flow of events:
· The manager will enter the staff details if any unnecessary details that he found he will delete the details of the staff in database.

· The out dated staff details also removed from the database.

[image: image28.emf]:manager :database

view database

get details

delete staff details

update

[image: image29.emf]:manager :database

1: view database

2: get details

3: delete staff details

4: update

[image: image30.emf]login by

manager

view database

delete staff

details

View by manager:
 The manager views the details of staff and department in the database when ever he wants.
[image: image31.emf]:manager :datebase

required details of staff/department

get details

[image: image32.emf]:manager :datebase

1: required details of staff/department

2: get details

[image: image33.emf]login by

manager

view database

Generate bills:
Functional Requirements:
· The receptionist will get the patient details from database and he/she will generate the bills

· Receptionist update the database with Patient bill.

Flow of events:
· The receptionist will get the patient details from database and he/she will generate the bills

· Receptionists update the database with Patient bill.
[image: image34.emf]:patient :receptionist :database

visit by patient

get details

details

generate bills

update database

[image: image35.emf]:patient :receptionist

:database

1: visit by patient

4: generate bills

2: get details

5: update database

3: details

[image: image36.emf]login by

receptionist

view patients

details

generate gills

update

databases

ER Diagram for Advanced Hospitality Management:

[image: image37.emf]Doctor

Lab Technician

Lab Reports

Pharmacy

Pharmacist

Hospital

Receptionist

Staff

Technical Staff Non Technical

Staff

Nurse

Visits

Patient

generates

Report

serves

joins

have

Lab generates

contains

includes

Component Diagram:

[image: image38.emf]Databa

se

Datebase server

web servers

Application server

JSP view

Client

Deployment Diagram:[image: image39.emf]Database

servlet

java server pages

http request

http response

fill with requested data

connect to getdata/setdata

getdata

display

Tables Design
The table in this system is as follows with their data types and sizes:

Table Name: Staff

Data in the Table:

	Name
	Data Type
	Size
	Special Features

	Staff Name
	String
	30
	-Not NULL-

	Staff Number
	String
	15
	Primary Key

	Designation
	String
	20
	-Not NULL-

	Qualification
	String
	 20
	-Not NULL-

	Experience (Years)
	Number
	4
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	e-mail
	String
	30
	-Not NULL-

	Address
	String
	50
	-Not NULL-

Table Name: Department

Data in the Table:

	Name
	Data Type
	Size
	Special Features

	Dept Name
	String
	30
	-Not NULL-

	Dept Number
	String
	15
	Primary Key

	Number of Staff
	Number
	5
	-Not NULL-

	Number of Doctors
	Number
	 5
	-Not NULL-

	Ward Number
	String
	15
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	Staff number
	Number
	15
	Foreign key

Table Name: Laboratory

Data in the Table:

	Name
	Data Type
	Size
	Special Features

	Lab Name
	String
	30
	-Not NULL-

	Lab Number
	String
	15
	Primary Key

	Number of Staff
	Number
	5
	-Not NULL-

	Block Number
	String
	15
	-Not NULL-

	Ward Number
	String
	15
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

	Staff number
	Number
	15
	Foreign key

Table Name: Ward

Data in the Table:
	
Name
	Data Type
	Size
	Special Features

	Ward Name
	String
	30
	-Not NULL-

	Ward Number
	String
	15
	Primary Key

	Block Number
	String
	5
	-Not NULL-

	Number of Rooms
	Number
	15
	-Not NULL-

	Staff Number
	Number
	15
	Foreign key

	Phone
	Number
	15
	-Not NULL-

	Alternative Phone
	Number
	15
	-Not NULL-

Table Name: Prescription

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Patient Name
	String
	30
	-Not NULL-

	Patient Number
	String
	15
	Foreign key

	Phone
	Number
	5
	-Not NULL-

	Problem
	String
	15
	-Not NULL-

	Attended Doctor
	String
	30
	-Not NULL-

	Prescription
	String
	50
	-Not NULL-

	Suggestions
	String
	50
	-Not NULL-

	Staff number
	Number
	10
	Foreign key

Table Name: Lab Prescription
Data in the Tables:
	Name
	Data Type
	Size
	Special Features

	Patient Name
	String
	30
	-Not NULL-

	Patient Number
	String
	15
	Foreign Key

	Phone
	Number
	5
	-Not NULL-

	Problem
	String
	15
	-Not NULL-

	Attended Doctor
	String
	30
	-Not NULL-

	Prescribed Test
	String
	50
	-Not NULL-

	Specifications
	String
	50
	-Not NULL-

	Doctor Number
	Number
	15
	Foreign Key

Table Name: Patient

Data in the Tables:

	Name
	Data Type
	Size
	Special Features

	Patient Name
	String
	30
	-Not NULL-

	Patient Number
	String
	15
	Primary Key

	Problem
	String
	20
	-Not NULL-

	Age
	Number
	3
	-Not NULL-

	Gender
	String
	5
	-Not NULL-

	Problem
	Number
	35
	-Not NULL-

	Phone
	Number
	15
	-Not NULL-

	Date
	String
	10
	-Not NULL-

	Time
	String
	10
	-Not NULL-

	Address
	String
	30
	-Not NULL-

Table Name: Query
Data in the Tables:
	Name
	Data type
	Size
	Feature

	Sno
	String
	20
	-Not NULL-

	Query
	String
	90
	-Not NULL-

	Option1
	String
	40
	-Not NULL-

	Option2
	String
	40
	-Not NULL-

	Option3
	String
	40
	-Not NULL-

	Disease
	String
	40
	-Not NULL-

Table name: Medicines

Database Tables:

	Nmae
	Datatype
	Size
	Feature

	Flag
	Number
	30
	-Not NULL-

	Medicine
	String
	60
	-Not NULL-

	Dosage
	String
	60
	-Not NULL-

	Instructions
	String
	100
	-Not NULL-

Test Cases:

	Sno
	Test Case Name
	Input
	Expected Output
	Actual Output

	1

	Category
	User have to choose any of the categories
	The Application will able to display two categories
	The application displays any of the categories

	2
	Symptom specification
	User have to choose the disease
	Based on the disease medicine will be suggested.
	The exact medicine will be displayed based on user disease intensity level.

	3
	Medicine display
	User must answer the queries for the symptom they selected.
	Based on the total intensity of disease the system must suggest the medicines.
	Exact medicine will displayed with its dosage.

	4
	Symptoms for curable diseases
	Specifying the curable disease
	For curable diseases it will specify the symptoms.
	Symptom for the specified curable disease will be displayed.

	5.
	Symptoms for non curable diseases
	User must specify the non curable Disease
	For non curable disease it will specify the symptoms.
	Symptom for non curable disease will be displayed.

The above Test-cases are applied to all the diseases in the general category.

Issues Raised:

· We got the Null-Pointer Exception while validating the page (10-2-2010).

· When radio buttons are not selected by the patient, it moves to the error page (4-2-2010).

· Page Not Found Exception if the page available in the project also. This Problem Occurred due to the Server Problem (frequently we faced this exception).
· Internal Error Exception due to some logical mistakes in the code.
· Not enough values error while inserting data into the tables.

· While preparing the user interface, we got error due to the mouse over and mouse out action.

References:
· www.familydoctor.org
· www.avert.org
· www.medicinenet.com
· Amrutha Hospital in Tadepalligudem, for collecting medicines for various diseases.

