Device Driver Development in Linux

CHAPTER 1

INTRODUCTION

1.1 Abstract

1.2 Brief Description of Project

1.1 ABSTRACT
[image: image17.png]
INPUT : (

PROCESSING : (

OUTPUT : (
1.2 Brief Description of Project

Is the removal of serial port in new PC’s for your existing serial based embedded applications and instruments “causing you headache “?
 Then USB to Serial Converter is just the medicine you must use.

The USB to RS-232 Serial Adapter provides an external plug & play RS-232 serial connection with your computer, letting you free up your existing serial port. Users have the capability to utilize the adapter with serial port interface in an easy-to-use environment.

The Device Driver software causes the PC to treat the USB to RS232 converter as if it were an actual RS232 serial port installed on the motherboard of the computer. Although USB stands for "Universal Serial Bus", the USB interface does not work anything at all like a standard RS232 serial port. Like RS232 serial ports, the USB ports on a PC are designed for interfacing external devices, however any device that is designed to connect to a USB port must come with " Device Driver " that essentially informs the operating system when the device is connected or disconnected to the PC and also provides a software interface to the device. A Device Driver is basically a small software program that provides a standard software interface to a particular hardware device. What this means is that practically any device could be designed to connect to a USB port as long as the device is supplied with a driver. The only problem with the USB interface design is that there is no way to simply open up a USB port and communicate with any device the same way that you can with a RS232 serial port. Any software that communicates with a particular USB device must communicate with the device through the driver that is supplied with the USB device. Fortunately, in the case of USB to RS232 converters, the drivers that come with them all emulate a standard RS232 communications port so you can use the USB to RS232 converters to communicate with any RS232 serial device using any standard serial communications
[image: image1]
OUR PROJECT IS TO DEVELOP Device Driver
CHAPTER 2

ANALYSIS AND DESIGN

2.1 Overview of USB

2.2 Conceptual Study of Device Driver
2.3 Linux Kernel Study

2.4 Building Modules in Linux

2.5 Writing a Device Driver in Linux

2.6 Driver Integration in Linux kernel

2.7 Function prototype for FTDI serial converter

2.8 Virtual COM port

2.1 Overview of USB
[image: image2.emf]HostHost ControllerDeviceDeviceHub DeviceDeviceDevice

· Host Machine

· The host communicates with all USB devices by issuing requests to the Host Controller

· Host Controller

· Provides an interface to the host named the Host Controller Device (HCD) interface.

· Contains a root hub where devices are attached in a tree-like fashion.

· Receives requests from the host, directs the requests to the corresponding USB devices in the device tree, polls the USB devices for responses, and reports devices responses back to the host.

· Devices

· Receive requests and polled for responses.
· Hubs

· Hubs are special purpose devices that allow more connections to the Host Controller
Overview of the USB – Software/Hardware Allocation
· Software

· Client Software

· USB Device Driver Software

· Host Controller Driver Software

· Hardware

· Host Controller Hardware

· USB Device Hardware

[image: image3.emf]USB DriverHost Controller Driver

Software

USB DeviceHost Controller HardwareClient Software

Overview of the USB – Protocol Concepts

· Endpoint

· Unidirectional byte streams

· Control Transfers

· Isochronous Transfers

· Interrupt Transfers

· Bulk Transfers
· Interface

· Functional unit

· Each interface has one driver

· Configuration

· Device Classes

[image: image4.emf]
Linux USB Overview – Software Components

Modular Event Driven Programming - The Device Driver registers with the USB Subsystem Core and the USB Input Subsystem core.

[image: image5.emf]Input CoreUSB CoreUSB Host Controller

Driver

USB Device DriverEvent Handlerconsumes dataconsumes dataproduces data produces data consumes dataproduces data From Hardware

2.2 Conceptual Study Of Device Driver
What is a Driver?

[image: image6.png]
Figure 1. Software/Hardware Scheme

Figure 1 shows the relation between user programs, the OS and the devices. Differences between software and hardware are clearly specified in this scheme. At the left side, user programs may interact with the devices (for example, a hard disk) through a set of high-level library functions. For example, we can open and write to a file of the hard disk calling the C library functions fopen, fprintf and close:

FILE *fid=fopen("filename", "w");

fprintf(fid, "Hello, world!");

fclose(fid);
The user can also write to a file (or to another device such as a printer) from the OS shell, using commands such as:

echo "Hello, world!" >

echo "Hello, world!" > /dev/lp

To execute this command, both the shell and the library functions perform a call to a low level function of the OS, e.g., open(), write() or close():

fid = open("/dev/lp", O_WRONLY);

write(fid, "Hello, world!");

close(fid);

Each device can be referred to as a special file named /dev/*. Internally, the OS is composed of a set of drivers, which are pieces of software that perform the low-level communication with each device. At this execute level, the kernel calls driver functions such as lp_open() or lp_write().

On the right side of Figure 1, the hardware is composed of the device (a video display or an Ethernet link) plus an interface (a VGA card or a network card). Finally, the Device Driver is the physical interface between the software and the hardware. The driver reads from and writes to the hardware through ports (memory addresses where the hardware links physically), using the internal functions out_p and in_p:

Features of a Driver

The main features of a driver are:

· It performs input/output (I/O) management.

· It provides transparent device management, avoiding low-level programming (ports).

· It increases I/O speed, because usually it has been optimized.

· It includes software and hardware error management.

· It allows concurrent access to the hardware by several processes.

There are four types of drivers: character drivers, block drivers, terminal drivers and streams. Character drivers transmit information from the user to the device (or vice versa) byte per byte (see Figure 2). Two examples are the printer, /dev/lp, and the memory (yes, the memory is also a device), /dev/mem.

[image: image7.png]
Figure 2. Character Drivers

Block drivers (see Figure 3) transmit information block per block. This means that the incoming data (from the user or from the device) are stored in a buffer until the buffer is full. When this occurs, the buffer content is physically sent to the device or to the user. This is the reason why all the printed messages do not appear in the screen when a user program crashes (the messages in the buffer were lost), or the floppy drive light does not always turn on when the user writes to a file. The clearest examples of this type of driver are disks: floppy disks (/dev/fd0), IDE hard disks (/dev/hda) and SCSI hard disks (/dev/sd1).

[image: image8.png]
Figure 3. Block Drivers

Terminal drivers (see Figure 4) constitute a special set of character drivers for user communication. For example, command tools in an open windows environment, an X terminal or a console, are devices which require special functions, e.g., the up and down arrows for a command buffer manager or tabbing in the bash shell. Examples of block drivers are /dev/tty0 or /dev/ttya (a serial port). In both cases the kernel includes special routines, and the driver special procedures, to cope with all particular features.

[image: image9.png]
Figure 4. Terminal Drivers

Streams are the youngest drivers (see Figure 5) and are designed for very high speed data flows. Both the kernel and the driver include several protocol layers. The best example of this type is a network driver.

[image: image10.png]
Figure 5. Stream Drivers

As we have said, a driver is a piece of a program. It is composed of a set of C functions, some of which are mandatory. For example, for a printer device, some typical functions only called by the kernel, may be:

· lp_init(): Initializes the driver and is called only at boot time.

· lp_open(): Opens a connection with the device.

· lp_read(): Reads from the device.

· lp_write(): Writes to the device.

· lp_ioctl(): Performs device configuration operations.

· lp_release(): Interrupts connection with device.

· lp_irqhandler(): Specific functions called by the device to handle interrupts.

Some additional functions are available for particular applications, like *_lseek(), *_readdir(), *_select() and *_mmap().

2.3 Study of Linux Kernel
Why Linux is chosen as OS for writing Device Driver?

Consequently, Windows, MacOS, DEC Ultrics, Solaris, OS/2 and other similar platforms are commercial operating system. Linux (including red hat official Linux, though that is borderline case) and FreeBSD are free operating systems. They are often available for the cost of media, the source code is available, often included with the main distribution; and there are few limits to redistribution the system.

Technical merits of Linux

“Everyone’s a critic”. Too true. So, you may ask, what do we suggest to improve the computing situation? If you have read this far, you probably think we are going to say “Linux!”. And you would be right. Linux provides an excellent base to work from for several reasons, and although it is not perfect, we believe that the best place to start.

· Linux is open

Linux is open that means that for the entire base system, which includes the kernel, the GNU tools, and all the basic utilities, we as programmers and users have access to the source code as well as the right to modify it.

Although huge advantage of an open system is a large number of software authors and beta testers.This makes the software testing and refinement process faster and better. Because there is not a lot of commercial software for Linux, most software written for Linux is written because the authors want to do this

· Linux is network friendly

Although not a huge movement yet, there will be more networks set up in homes as costs for basic computer hardware and networking equipment continue to plummet. The small office network can now be realized for about half the price it would have cost a year ago.

Thus, one of the major litmus test of the quality and utility of the modern operating system is how well it networks. Since the Linux was developed by the team of programmers over the internet, its networking features give the higher priority. Linux is capable of acting as client and/or server to any of the popular operating system used today, and it is quite capable of being used to Internet Services Providers.

Linux supports most of the major protocols, and quite a few of the minor ones. Support for internet, Novell, Windows and Appletalk networking have been part of the Linux kernel for sometime now. With support of the simple network protocol and other service, Linux is also well suited to serving large networks.

Finally, all these networking options will run quite acceptably on minimal hardware configurations. Depends on what services are needed and in what quantity.

· Linux is multi-user

Linux is an implementation of the UNIX design philosophy, which means it is a multi-user system from the word to “go”. This has numerous advantageous, even for the system where only one or two people using it. Security, which is necessary for protection of sensitive information is built into Linux is selectable levels. The system is design to multitask. Whether one user can run several program or several user can run one program, Linux is capable of managing the traffic.

· Linux is reliable

Linux is one of the more stable operating systems available today. This is due in large part of fact that Linux was written by the programmers who were writing for other programmers and not for the corporate system. The only people who made the decisions on what went into the system were programmers. Also, the deadline pressure is not as strong when one is developing as a hobby.
· Linux is backward compatible
Linux has superb support for the hardware. In fact, it is often easier to find hardware support for 486-era hardware than the latest. This is because the driver authors need time to write and test the drivers, and some of the vendors are not exactly forthcoming with the information required to write a driver.

Building and Installing the Linux Kernel
· Getting the kernel source

· The kernel is freely available at www.kernel.org
· Unpack the tar file: bzip2 –dc linux-2.6.14.1.tar.bz2 | tar xvf –

· Create new directory (linux_root): linux-2.6.14.1

· Configuring the kernel

· Change directory to linux_root

· make menuconfig – text-based colors menu, radio button lists, and dialogs

· Compiling the kernel

· Change directory to linux_root

· make clean – cleans out previous build object files

· make bzImage – compiles the kernel

· make modules – compiles the modules selected in configuration

make modules_install - this command creates the directory in /lib/modules/(name of the version of the kernel)

· Installing the new kernel

· Save the old kernel, vmlinuz and System.map files

· Required root to install kernel – use su command

· cp linux_root/arch/i386/boot/bzImage /boot/vmlinuz

· cp linux_root/System.map /boot/System.map

· make modules_install

· Run lilo to load the new kernel and make system bootable: /sbin/lilo – the system will not boot if skip this step

· Reboot the system

Overview of Kernel Module Programming
· Module is a piece of code that can be loaded/unloaded into the kernel upon demand

· Example of modules are Device Driver
· Modules vs. Application

· Begin with init_module function

· End with exit_module function

· Module is linked to the kernel, and the only functions it can call are the ones that exported by the kernel; there are no libraries to link to

· A kernel fault kills the current process, may be the whole system

· Module runs in the kernel space

· Kernel has small stack, 4096-byte page

· Kernel code cannot do floating arithmetic

Loading and Unloading Module
· Loading module

· As root, change directory where the module is located

· Execute the command insmod module_name – this command loads the module code the data into the kernel

· Unloading module

· As root, execute the command rmmod module_name – this command removes the module from the kernel

· Listing the current module

· Execute the command lsmod – produces a list of the modules currently loaded in the kernel

Kernel Module Debugging
· printk() function behaves almost identically to the C library printf()

· Example, printk(KERN_DEBUG "==> Right button pressed <==\n");

· printk – log messages according to their severity by associating different log levels with the messages

· Eight (8) log levels

· KERN_EMERG

· KERN_ALERT

· KERN_CRIT

· KERN_ERR

· KERN_WARNING

· KERN_NOTICE

· KERN_INFO

· KERN_DEBUG

· Each level represents an integer range from 0-7 with smaller values representing higher priority. KERN_EMERG = 0

· Kernel messages are appended to a log files based on the log levels

· Examples

· Using printk with KERN_DEBUG will append kernel messages to /var/log/debug

· Using printk with KERN_INFO will append kernel messages to /var/log/messages
2.4 Building Modules in Linux

Device Driver in Linux are known as modules and can be loaded dynamically
into the kernel using the insmod command.

A single module can be compiled alone, and also can be linked to the
kernel (here, care has to be taken on the type of driver).

eg: A simple module

#define MODULE
#include <linux/module.h>

int init_module (void) /* Loads a module in the kernel */
{
printk("Hello kernel n");
return 0;
}

void cleanup_module(void) /* Removes module from kernel */
{
printk("GoodBye Kerneln");
}

Compiling the module

gcc -c hello.c
insmod hello.o

The output is

Hello kernel

rmmod hello.o

GoodBye Kernel

How init_module works?

init_module loads the relocated module image into kernel space and runs
the module's init function.

The module image begins with a module structure and is followed by code
and data as appropriate.

The module structure is defined as follows:

struct module
{
unsigned long size_of_struct;
struct module *next;
const char *name;
unsigned long size;
long usecount;
unsigned long flags;
unsigned int nsyms;
unsigned int ndeps;
struct module_symbol *syms;
struct module_ref *deps;
struct module_ref *refs;
int (*init)(void);
void (*cleanup)(void);
const struct exception_table_entry *ex_table_start;
const struct exception_table_entry *ex_table_end;
#ifdef __alpha__
unsigned long gp;
#endif
};

All of the pointer fields, with the exception of next and refs, are
expected to point within the module body and be initialized as appropriate
for kernel space, i.e. relocated with the rest of the module.
Return Values

On success, zero is returned. On error, -1 is returned
and errno is set appropriately.

Errors

EPERM The user is not the superuser.

ENOENT No module by that name exists.

EINVAL Some image slot filled in incorrectly, image->name
does not correspond to the original module name,
some image->deps entry does not correspond to a
loaded module, or some other similar inconsistency.

EBUSY The module's initialization routine failed.

EFAULT name or image is outside the program's accessible
address space.

How cleanup_module works?

cleanup_module attempts to remove an unused loadable module entry. If
name is NULL, all unused modules marked auto clean will be removed.

Return Values

On success, zero is returned. On error, -1 is returned and errno is
set appropriately.

Errors

EPERM The user is not the superuser.

ENOENT No module by that name exists.

EINVAL name was the empty string.

EBUSY The module is in use.

EFAULT name is outside the program's accessible address
space.

This simple module is called skull, short for Simple Kernel Utility For
Loading Localities.

General flags used for compiling any driver are

-D__KERNEL__ _DMODULE -O -Wall -I$(INCLUDEDIR)

Note: The INCLUDEDIR should contain the header files of the kernel source.

Module code has to be recompiled for each version of the kernel that it
will be linked to. Each module defines a symbol called kernel_version
which is defined in <linux/module.h>. In case of a version mismatch, use
the insmod -f (force) option to load the module.
2.5 WRITING Device Driver IN LINUX

In order to write a Device Driver, following functions are used:-

	usb_init
	This function is called when the module is loaded. It registers the usb_driver with the USB core.

	usb_probe
	This function is called when the USB core finds a device that matches the specifications given in the usb_id_table. This function must verify that this device is actually one that it can accept. This function also creates the URB by calling usb_fill_int_urb.

	usb_open
	This is the first function that a user program calls before it expects events to be handled from the mouse device. When this is called, the URB is submitted to the USB core with the usb_submit_urb call.

	usb_irq
	This was submitted with the URB to the host controller driver. The host controller driver will invoke this callback function when a device event occurs.

	usb_close
	The user program calls this to close the device which kills the URB and frees associated kernel resources.

	usb_disconnect
	This is called when the interface is not accessible (e.g., the device is disconnected or the module is unloaded). Kernel resources and data buffers are freed.

	usb_exit
	This is called when the driver module is unloaded and it deregisters the driver from the USB driver list.

2.6 DRIVER INTEGRATION IN LINUX KERNEL

Steps for driver integration in the Linux Kernel:-

1. Open terminal mode and login root user.
2. Under root folder, create a new folder
3. Extract the files from ftdi_sio.tar.gz file to your temporary folder

"gunzip ftdi_sio.tar.gz"

"tar -xvf ftdi_sio.tar"

4. Modify line 5 "KINCLUDES=/usr/src/linux/include".

Example: "KINCLUDES=/usr/src/linux-2.6.9-5/include".

5. Go to the new folder and then type "make" to compile the source code.

This will create two files: "ftdi_sio.o.ko" and "usbserial.ko".

6. Type "make modules_install" that will install the Linux driver into Linux.

7. Plug in your ftdi device

8. Check to see if default driver was loaded

"lsmod" - you will see ftdi_sio if a driver is loaded

9. Remove the default installed driver

"rmmod ftdi_sio.ko"

10. Install the newly built driver

"insmod ftdi_sio.ko"

key-in "dmesg", it will show Prolific USB Serial Adapter converter now attached to ttyUSB0 (orusb/tts/0 for devfs)". This means the cable is now working under Linux.

You will see messages appearing on the screen:

"usbserial.c”Prolific USB Serial Adapter converter now attached to ttyUSB0

(orusb/tts/0 for devfs)".

This means the virtual COM port is in ttyUSB0, so if you want to use this port, you need to use "ln" command to hard link with the device.

For example:

You are using ftdi to connect with modem. So you need to type 'ln -b

/dev/ttyUSB0 /dev/modem' then click enter. If nothing happens and the screen appears as '[root@localhost / xxxxx]#', the link operation is successful. Please make sure that the modem has been properly installed in system.

Now the modem will use the port to do communication
2.7 Function prototypes for a FTDI serial converter
After doing analysis and design of a Device Driver the approach followed is “REVERSE ENGINEERING” in which we have done study of FTDI which is as follows:-
[image: image11.emf]
FTDI chip
[image: image12.emf]
FTDI cable

1. Startup for the SIO chip

static int ftdi_SIO_startup(struct usb_serial *serial);

2. ftdi_shutdown is called from usbserial:usb_serial_disconnect , it is called when the usb device is disconnected, usbserial:usb_serial_disconnect

static void ftdi_shutdown(struct usb_serial *serial);

3. ftdi_open called from usbserial

static int ftdi_open(struct usb_serial_port *port, struct file *filp);

4. usbserial:__serial_close only calls ftdi_close if the point is open, This only gets called when it is the last close

static void ftdi_close(struct usb_serial_port *port, struct file *filp);

5. ftdi_write

static int ftdi_write(struct usb_serial_port *port, int from_user, const unsigned char *buf, int count);

6. This function may get called when the device is closed

static void ftdi_write_bulk_callback(struct urb *urb);

7. Catch all entry point for device specific commands.

 System call: ioctl(fd,command,arg);

static int ftdi_ioctl(struct usb_serial_port *port, struct file * file, int cmd, unsigned long arg);

MAJOR AND MINOR NUMBER FOR THE DEVICES:

 SERIAL_TTY_MAJOR
 188
/* Nice legal number now... */

 SERIAL_TTY_MINORS
255
/* loads of devices... */

NUMBER OF PORTS ONE DEVICE CAN GRAB AT ONCE:
 MAX_NUM_PORTS

8

VENDOR ID NO. AND PRODUCT ID NO.

	FTDI_VID
	0x0403
	Vendor Id

	FTDI_SIO_PID
	0x8372
	Product Id SIO application of 8U100AX

	FTDI_8U232AM_PID
	0x6001
	Similar device to SIO above

	FTDI_8U232AM_ALT_PID
	0x6006
	FTDI's alternate PID for above

	FTDI_8U2232C_PID
	0x6010
	Dual channel device

COMMANDS OF THE FTDI:
	Commands

	Description

	FTDI_SIO_RESET

	Reset the port

	FTDI_SIO_SET_FLOW_CTRL

	Set flow control register

	FTDI_SIO_SET_BAUD_RATE

	Set baud rate

	FTDI_SIO_SET_DATA

	Set the data characteristics of the port

	FTDI_SIO_SET_EVENT_CHAR

	Set the event character

	FTDI_SIO_SET_ERROR_CHAR

	Set the error character

After implementing FTDI functions and installing the FTDI driver in Linux Kernel the USB port changes into the virtual com port.

2.8 VIRTUAL COM PORT

Now three modules are explained below which are analyzed from the study of FTDI serial converter:-

[image: image13]
1) Serial port:-
The usual view of a serial port :-

[image: image14.jpg]
2) Data flow in reading and writing:-
[image: image15.jpg]
3) USB port:-
Life Cycle of a USB Serial Device:-
When a USB-to-serial device is plugged in, a long series of steps are taken to allow a specific USB-to-serial driver to control an individual tty device. The steps are as follows:

· The USB hub driver detects a new device. It assigns a USB number to the device and reads the basic USB description from the device, which it then populates into a struct usb_device with a number of struct usb_interfaces that represent the whole USB device.

· The USB core takes the device and registers the USB interfaces with the kernel driver core.

· The kernel driver core looks through the currently registered list of USB drivers to determine if any of them will accept this device.

· Because this is a USB-to-serial device, the USB serial core accepts control of the device from the kernel driver core.

· The USB serial core builds up a single struct, usb_serial, and calls the specific USB serial driver's probe() function with this structure.

· The USB serial driver's probe() function initializes the device if it should and then returns control back to the USB serial core.

· The USB serial core creates the struct usb_serial_port structures depending on the number of serial ports on this specific device and then calls the USB serial driver's attach() function, if present.

· After the attach() function returns, the individual struct usb_serial_port structures are registered with the kernel driver core.

· The kernel driver core calls back into the USB serial core for every individual port.

· The USB serial core calls the individual port_probe() function in the USB serial driver for the port, if present, and then registers the port with the tty layer, completing the initialization process.

After this process, the tty device node is bound to the individual USB serial port. When the device node is opened by a user, the following steps happen in the kernel:

· The kernel looks up the device node and determines that the tty layer has registered this node, so it calls the tty layer's open function.

· The tty layer looks up the device and determines that the USB serial core has registered this node with it, so it calls serial_open() in the drivers/usb/serial/usb-serial.c file.

· The serial_open() function determines what specific USB serial driver is registered for this node.

· The module count for the specified USB serial driver is incremented in order to prevent it from being unloaded while a user is talking to the device.

· If the specified USB serial driver has an open() function, it is called with struct usb_serial_port for the specific port being passed to it.

· The USB serial driver then can do any hardware-specific open functionality that is needed and send off any USB urbs that are necessary to start accepting data from the device.

When a user calls write() on the device node to send data to the specified serial port, the following steps happen in the kernel:

· The kernel calls the tty_write() function within the tty core. It has previously set up this pointer during the open call, so it will not look it up again.

· tty_write() calls the line discipline's write() function for this specific tty device.

· The line discipline calls the USB serial core serial_write() function.

· The serial_write() function determines the specific USB serial driver used by this file and calls the write() function of it.

· The USB serial driver can then copy the data into a buffer and send it out the USB connection to the device, handling any special formatting issues the device might require.

· After the data has been sent completely, the driver can wake up the tty device in order to send any buffered data to it. This should be done with the simple call:

schedule_work(&port->work);

When data is received by the USB serial driver for a specific port, it should place the data into the specific tty structure assigned to that port's flip buffer:

for (i = 0; i < data_size; ++i) {

 if (tty->flip.count >= TTY_FLIPBUF_SIZE)

 tty_flip_buffer_push(tty);

 tty_insert_flip_char(tty, data[i], 0);

}

tty_flip_buffer_push(tty);

When a user calls read() on the device node, any data in the tty flip buffer for this port is returned.

When the device node is closed by the user, the following steps occur within the kernel:

· The tty_release() function is called in the tty core by the kernel.

· tty_release() determines if this is the last reference held on this device node (remember, a device node can be opened by multiple programs at the same time). If it is, the USB serial core serial_close() function is called.

· The serial_close() function calls the USB serial driver's close() function, allowing it to shut down any pending USB transfers and get into a quiet state.

· The USB serial core then decrements the module count for the USB serial driver, possibly allowing it to be unloaded.

CHAPTER 3

RESULTS

3.1 Function prototypes of SLS device

3.2 Enumeration of FTDI

3.3 Enumeration of SLS

3.4 Benefits of Device Driver
3.5 Future Offshoots

3.1 Function prototypes of SLS device

[image: image16.png]
SLS Device

· Registering and Unregistering a USB Serial Driver:-
All of the code and examples in this article are for the 2.5/2.6 kernel tree. The 2.4 and 2.2 kernel trees also support USB-to-serial drivers, but their interfaces are a bit different in places. For ease of use, we focus on only one kernel tree. If you have any problems porting a USB-to-serial driver to these older trees (once it is running on 2.5), please let me know.

To register a USB-to-serial driver with the kernel, the driver has to do two things: register with the USB-to-serial core and register with the USB core. Registering with the USB-to-serial core tells it to call your driver when new devices are found by the USB subsystem, and registering with the USB core is needed to tell it what kind of devices your driver can accept.

To register with the USB core, all you need is a list of USB devices that your driver will work for, in traditional USB device ID format:

static struct usb_device_id id_table [] = {

 {USB_DEVICE(MY_PRODUCT_ID, MY_DEVICE_ID)},

 {} /* Terminating entry */

};

MODULE_DEVICE_TABLE (usb, id_table);

This table is needed so the USB core knows what devices the driver can accept and the user-space hot-plug code knows what kind of devices are used. See my article ``How the PCI Hot Plug Driver Filesystem Works'', LJ May 2002, for more information about this table and how the hot-plug code uses it.

Then, a simple USB device-driver structure is created with this ID information:

static struct usb_driver tiny_driver = {

 .name = "tiny",

 .probe = usb_serial_probe,

 .disconnect = usb_serial_disconnect,

 .id_table = id_table,

};

The .probe and .disconnect fields must be set to point to the USB serial core's functions because that type of logic is handled by it and not by your driver.

Then, a simple call registers this driver with the USB core:

usb_register (&tiny_driver);

After this, the USB serial driver must be notified of the driver with a call to:

usb_serial_register (&tiny_device);

This function takes a pointer to a struct usb_serial_driver_type, which will be explained in the following section.

To unregister a driver, the same steps have to happen, but in reverse order. First, we unregister with the USB serial core:

usb_serial_unregister (&tiny_device);

Then, we unregister with the USB core:

usb_unregister (&tiny_driver);
· struct usb_serial_device_type Explained:-
To register with the USB serial core, the usb_serial_device_type structure must be filled. This structure can be found in drivers/usb/serial/usb-serial.h and is defined as the following:

struct usb_serial_device_type {

 struct module *owner;

 char *name;

 const struct usb_device_id *id_table;

 char num_interrupt_in;

 char num_bulk_in;

 char num_bulk_out;

 char num_ports;

 struct list_head driver_list;

 int (*probe) (struct usb_serial *serial);

 int (*attach) (struct usb_serial *serial);

 int (*calc_num_ports) (struct usb_serial *serial);

 void (*shutdown) (struct usb_serial *serial);

 int (*open) (struct usb_serial_port *port,

 struct file * filp);

 void (*close) (struct usb_serial_port *port,

 struct file * filp);

 int (*write) (struct usb_serial_port *port,

 int from_user,

 const unsigned char *buf,

 int count);

 int (*ioctl) (struct usb_serial_port *port,

 struct file * file,

 unsigned int cmd,

 unsigned long arg);

 };

The id_table field is a pointer to a list of usb_device_id structures that define all of the devices this structure can support. This field can be identical to the pointer that is passed to the USB core. If your driver needs to do different things for different types of devices, however, you can set up different structures describing these devices. An example of this is the Keyspan driver, which handles all of the Keyspan USB serial devices and needs different functions to be called for different devices.

The num_interrupt_in field is the expected number of interrupt in endpoints this device will have. An endpoint is a USB term, defined in the USB spec (http://www.usb.org/). If you do not care about having the USB serial core check for this value (matching it up against any seen devices), use the NUM_DONT_CARE macro defined in usb-serial.h.

The num_bulk_in and num_bulk_out fields state the number of bulk in and bulk out endpoints this device will have. Again, the NUM_DONT_CARE macro can be used here if you do not want the core to pay attention to this value.

The num_ports field indicates the number of different ports this device will have. A single USB serial device can contain many different physical serial ports.

The driver_list field is used by the USB serial core to keep track of all the different drivers registered with it; it should not be used by the individual drivers.

The Generic USB Serial Driver:-

USB life-cycle function pointers consist of probe, calc_num_ports, attach and shut down. They are all called at different points in time as a USB device is initialized and shutdown. The probe function is called when a device matching one of the the id_table devices is inserted into the system. This call happens before the device has been fully initialized by the USB serial core. It can be used to download any needed firmware to the device. In addition, any other early-initialize commands that the device needs can be sent at this time. If 0 is returned, the USB serial core continues on with the initialization sequence. Any other value will abort the call and notify the USB core that this device is not claimed by any drivers.
The calc_num_ports function is called to determine how many ports this device has. This should be used only by devices that can dynamically determine their ports. Any return value overrides the num_ports field in the usb_serial_device_type structure. It is called after the probe function is called but before the attach function is called.
The attach function is called when the struct usb_serial structure is fully set up. Any local initialization of the device or any private memory structure allocation can be done in this function. The shutdown function is called when the device has been removed from the system. Any local memory allocated for this device should be freed up at this time.
The open function is called the first time open() is called on a port, but not for any subsequent calls to open(). Any urb submission the driver needs to do to start receiving data, or any device-specific messages that should be sent, should be done at this time. If any errors occur, they should be returned; otherwise, return 0 to signal success.
The close function is called for the last close() call, which is called from user space. Any running urbs should be shut down, and any device-specific commands that are needed should be sent now.
The write function is called exactly like the tty layer write function is called. The data passed to the function needs to be sent to the specified port. The number of bytes sent to the device should be returned. Remember, the device does not have to send all of the data that the user wants it to; a short write can happen, as long as the driver notifies user space that this has happened. This allows the driver logic to be much simpler. If an error happens, it should be returned as a negative number.
The ioctl function is called with a wide range of tty ioctl values. If the driver cannot handle the specific value, -ENOIOCTLCMD should be returned. This will allow the tty layer to try to provide a default function. Some of the more common values asked for by user space are documented in the tty driver article previously mentioned.

3.2 Enumeration of FTDI
Output of make command:-

This command is used for compiling the FTDI driver. And generates the FTDI module object file and kernel object file.

make -C /lib/modules/2.6.9-5.EL/build M=/root/finalftdi

modules

make[1]: Entering directory `/usr/src/kernels/2.6.9-5.EL-i686'

 CC [M]

`MODULE_PARM_' is deprecated (declared at include/linux/module.h:552)

 Building modules, stage 2

 MODPOST

 CC /root/finalftdi/ftdi_sio.mod.o

 LD [M] /root/finalftdi/ftdi_sio.ko

make[1]: Leaving directory `/usr/src/kernels/2.6.9-5.EL-i686'

Output of modules_install command
This command is used for install the module in the kernel code.

make -C

/lib/modules/2.6.9-5.EL/build M=/root/finalftdi modules_install

make[1]: Entering directory

`/usr/src/kernels/2.6.9-5.EL-i686'

 INSTALL /root/finalftdi/ftdi_sio.ko

make[1]: Leaving directory `/usr/src/kernels/2.6.9-5.EL-i686'
Output of lsmod

This command is used to list out modules which are present in kernel code. And we can check our module is properly installed in the kernel or not.
Module
Size
Used by

ftdi_sio

32388
0

usbserial

25769
2
sls_sio,ftdi_sioi915 81349
4

parport_pc

24705
1

lp

12077
0

parport

37129
2
autofs4

23237
0

i2c_dev

11329
0

i2c_core

22081
1
sunrpc

157093
1

dm_mod
54741
0

button

6481

0

battery

8901

0

ac

4805

0

md5

4033

1

ipv6

232705
8

uhci_hcd

31065
0

ehci_hcd

30917
0

hw_random
5845

0

snd_intel8x0
33769
2

snd_ac97_codec
63889
1
snd_pcm_oss
49017
0

snd_mixer_oss
17985
2
snd_pcm

96841
2
snd_timer

29893
1
snd_page_alloc
9673

2
snd_mpu401_uart
8769

1
snd_rawmidi
26597
1
snd_seq_device
8137

1
snd

54949
11
soundcore
9889

2

8139too

25921
0

e100

39493
0

floppy

58481
0

ext3

116809
2

jbd

71257
1
Output of dmesg

driver Home-Electronics TIRA-1 IR Transceiver

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver USB-UIRT Infrared Tranceiver

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver FTDI FT232R Compatible

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver FTDI FT2232C Compatible

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver FTDI FT232BM Compatible

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver FTDI 8U232AM Compatible

drivers/usb/serial/usb-serial.c: USB Serial

deregistering driver FTDI SIO

drivers/usb/serial/usb-serial.c: USB Serial support registered for

FTDI SIO

drivers/usb/serial/usb-serial.c: USB Serial support registered for FTDI 8U232AM

Compatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for FTDI FT232BM

Compatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for FTDI FT2232C

Compatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for FTDI FT232R

Compatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for USB-UIRT Infrared

Tranceiver

drivers/usb/serial/usb-serial.c: USB Serial support registered for Home-Electronics

TIRA-1 IR Transceiver

/root/finalftdi/ftdi_sio.c: v1.3.5r1:USB FTDI Serial Converters Driver
Thus FTDI chip driver is loaded in kernel and now any serial device can be connected to FTDI chip and it can be accessed through Virtual COM Port.
3.3 Enumeration of SLS
Output of make command
This command is used for compiling the FTDI driver. And generates the FTDI module object file and kernel object file.

make -C /lib/modules/2.6.9-5.EL/build M=/root/finalsls modules

make[1]: Entering directory `/usr/src/kernels/2.6.9-5.EL-i686'

 CC [M] /root/finalsls/sls_sio.o

 Building modules, stage 2.

 MODPOST

 CC /root/finalsls/sls_sio.mod.o

 LD [M] /root/finalsls/sls_sio.ko

make[1]: Leaving directory `/usr/src/kernels/2.6.9-5.EL-i686'

Output of modules_install command
This command is used for install the module in the kernel code.

make -C /lib/modules/2.6.9-5.EL/build M=/root/finalsls modules_install

make[1]: Entering directory `/usr/src/kernels/2.6.9-5.EL-i686'

 INSTALL /root/finalsls/sls_sio.ko

make[1]: Leaving directory `/usr/src/kernels/2.6.9-5.EL-i686'
Output of lsmod

This command is used to list out modules which are present in kernel code. And we can check our module is properly installed in the kernel or not.
Module
Size
Used by

sls_sio

32388
0

ftdi_sio

32388
0

usbserial

25769
2
sls_sio,ftdi_sioi915 81349
4

parport_pc

24705
1

lp

12077
0

parport

37129
2
autofs4

23237
0

i2c_dev

11329
0

i2c_core

22081
1
sunrpc

157093
1

dm_mod
54741
0

button

6481

0

battery

8901

0

ac

4805

0

md5

4033

1

ipv6

232705
8

uhci_hcd

31065
0

ehci_hcd

30917
0

hw_random
5845

0

snd_intel8x0
33769
2

snd_ac97_codec
63889
1
snd_pcm_oss
49017
0

snd_mixer_oss
17985
2
snd_pcm

96841
2
snd_timer

29893
1
snd_page_alloc
9673

2
snd_mpu401_uart
8769

1
snd_rawmidi
26597
1
snd_seq_device
8137

1
snd

54949
11
soundcore
9889

2

8139too

25921
0

Output of dmesg command

Hello, my sls module

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS SIO

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS 8U232AM C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT232BM C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT2232C C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT232R Co mpatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for USB-UIRT Infr ared Tranceiver

drivers/usb/serial/usb-serial.c: USB Serial support registered for Home-Electron ics TIRA-1 IR Transceiver

/root/finalsls/sls_sio.c: v1.3.5r1:USB SLS Serial Converters Driver

Goodbye my sls module

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver Home-Electronic s TIRA-1 IR Transceiver

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver USB-UIRT Infrar ed Tranceiver

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver SLS FT232R Comp atible

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver SLS FT2232C Com patible

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver SLS FT232BM Com patible

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver SLS 8U232AM Com patible

drivers/usb/serial/usb-serial.c: USB Serial deregistering driver SLS SIO

Hello, my sls module

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS SIO

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS 8U232AM C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT232BM C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT2232C C ompatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for SLS FT232R Co mpatible

drivers/usb/serial/usb-serial.c: USB Serial support registered for USB-UIRT Infr ared Tranceiver

drivers/usb/serial/usb-serial.c: USB Serial support registered for Home-Electron ics TIRA-1 IR Transceiver

/root/finalsls/sls_sio.c: v1.3.5r1:USB SLS Serial Converters Driver
3.4 Benefits of USB to Serial Converter Device Driver
The USB to Serial Converter provides a simple and easy way to afford a bridge/connectivity between the Universal Serial Bus (USB) and Serial Port interface. This comes in handy because many PDAs, digital cameras, GPS units, barcode scanners, and other equipment offer only serial connections, and many newer PC or Mac computers don't have serial ports. With the advantages of USB port, such as plug and play & hot swap, users have the capability to utilize the peripheral with serial port interface in an easy-to-use environment. It is designed for connecting to Cellular Phones, Digital Cameras, Modems or ISDN terminal adapters. The USB to Serial Cable and software driver is able to make the USB interface to be transparent to the peripherals without firmware changes. It's possible for serial port peripherals to easily interface with USB with minimum modification. There are no IRQ & COM port conflicts since the port doesn't require any additional IRQ, DMA, or memory as resources on the system. It is suitable for remote access, retail and industrial applications, data collection and other applications requiring a high speed serial communications port.
3.5 Future Offshoots

Upto 128 devices can be connected to the serial port of the SLS chip and application can be made in order to access 128 serial devices via Virtual COM port.
REFERENCES

WEBSITES:-
www.kernel.org : kernel.org is the site where Linux source code for all versions is available. It has FTP mirror to sites from which the code can be downloaded.

Linux cross reference sites: The cross reference site of Linux is very useful for programming in kernel. The Linux kernel is made up of over 500 source files and it is very difficult to search for a particular function or variable’s declaration or definition. These can be easily traced using this site by cross links

http://kernelnewbies.org: the website provides introductory information about programming in the kernel. It contains a forum as well where questions can be posted.

BOOKS:-
Understanding the Linux kernel:

By Daniel P.Bovet and Macro Cesati:

 The book provides the implementation details of the Linux kernel.
Linux kernel internals:

By M Beck, H Bome, M Dziadzka, U Kunitz, R Magnus:

This book provides details on the internal data structures used in the Linux kernel.
Linux Device Drivers:

By Alessandro Rubini, Jonathan corbet:

This book provides all the information for writing a device driver, using the IOCTL function.

usb_device

Data structure that holds pointers to the control data, callback functions, the URB data, and references to the memory locations where data from the USB device is stored. This structure holds references to the bound USB device as well the input subsystem registered for the device.

usb_driver

This data structure holds driver specific information and callback functions used. Allows driver binding.

usb_id_table

This is a list of device identifiers that are used to bind a driver to a device.

 Device Driver

SERIAL DEVICE

USB PORT

IN PC

 Device Driver

SERIAL DEVICE

USB PORT

IN PC

(Dongle which is USB to RS-232 Converter

(Linux Operating System

(Project Requirements : Device Driver of Dongle

(Project Background : Mostly on motherboard two serial ports are available so if you want to add more legacy type device (Specially Serial port type) then system requires more ports on the motherboard side. Hence through our Device Driver Software Virtual COM Port is developed. So you can attach serial device. Also you can detect your serial device as PnP (Plug and play) device. So device will load and configure automatically.

(Device Driver Development : Device Driver software contains the structures and functions that we have developed through which device node is opened , URBs (USB Request Blocks) are submitted to kernel. Drivers emulate standard RS-232 communication Port functions. So you can use USB to RS-232 Converter to communicate with any serial device via Virtual COM port.

(Device Driver inserted in the kernel

(Creation of Virtual COM Port

	Virtual COM Port causes the USB port to appear as a additional COM Port available to PC. Device Driver software can access the USB Port in the same way as it would access the COM Port. 	

PAGE

- 48 -

