MINI PROJECT REPORT

E-MAIL SYSTEM

SUBMITTED IN PARTIAL FULFILMENT OF THE DEGREE OF

BACHELOR OF TECHNOLOGY

by

Jenny Lawrance

Under the guidance of
Mrs.Priya Chandran

Department of Computer Engineering

National Institute of Technology, Calicut

National Institute of Technology, Calicut

Department of Computer Engineering

Certified that this Minit Project Report entitled

E-MAIL SYSTEM

18 a bonafide report of the mint project done by

Jenny Lawrance

wn partial fulfilment of the degree of
Bachelor of Technology

under our guidance

Mrs.Priya Chandran Dr.V.K.Govindan
Guide Professor and
Asst. Professor Head

Dept.of Computer Engineering Dept.of Computer Engineering

Acknowledgement

I would like to express my heartfelt gratitude to all those who helped me to bring out this
project. Firstly, I would like to thank my guide, Mrs.Priya Chandran, Asst Professor,Department
of Computer Science and Engineering, NIT Calicut, for her guidance and co-operation. I also
thank Dr.Vineeth Kumar Paleri, Asst. Professor, Department of Computer Science and Engi-
neering, for co-ordinating our mini project. I also acknowledge the advice and guidance given
to me by my friends, classmates and seniors.

Jenny Lawrance

Abstract

This is a project implemented in C Language on Linux Platform. The project involves two
subsystems, a client and a server. The mail client delivers mail from the client to the server.
The server in turn delivers the mail to the appropriate mail box of the intended recipient(s).
The underlying protocol implemented is SMTP (Simple Mail Transfer Protocol) which supports
text messaging. The client is also provided with authorization facility, to prevent unwanted
messages circulating in the system.

i

Contents

1

Introduction
1.1 Electronic Mail
1.2 SMTP

1.3 TCP/IP Standards for electronic mail

Requirements
Functionality
Implementation
Conclusion

APPENDIX

6.1 Pseudocode . .
6.1.1 SERVER
6.1.2 CLIENT

i

1 Introduction

1.1 Electronic Mail

An electronic mail facility allows the user to send memos across the Internet. Today it is one
of the widely used application services. E-mail offers a fast, convenient method of transferring
information. Its interesting to note the fact that most users send files with electronic mail
than with file transfer protocols. Mail delivery is different from the other conventional network
protocols, which is evident from the fact that these protocols use timeout and retransmission
for individual segments if no acknowledgement returns. In case of Electronic mail, the system
must provide for instances when the remote machine is temporarily unreachable. The user does
not want the transfer to abort merely because the destination is temporarily unavailable.

To handle with delayed delivery, mail system use a technique of spooling. When the user
sends a mail message, the system places a copy in its private storage (spool) area along with
identification of the sender, recipient, destination machine and the time of deposit. The system
then initiates the actual transfer as a background activity.

1.2 SMTP

The TCP/IP protocol suite specifies a standard for the exchange of mail between machines.
This standard specifies the exact format of messages a client on one machine uses to transfer
mail to a server on another. This protocol focuses on specifically on how underlying mail de-
livery sysytem passes messages across the Internet from one machine to another. It doesn’t
specify how the mail server accepts the mail from the user or how the interface presents the user
with the incoming mail. Also SMTP doesn’t specify how the mail is stored or how frequently
mail system attempts to send messages.

Basic Policy in SMTP

1.Server sends READY FOR MAIL message
2.Client on reciept of this message responds with HELO message.
3.Server responds by identifying itself.

4. Client sends MAIL message that contains sender identification11

5. Server responds by Acknowledging this message with OK

6. Client sends RCPT : contains information of recipients

7. Server acknowledges each of the recipients by OK, or rejects it with
NO SUCH USER HERE message

8. Client sends DATA message

9. Server responds by issuing START MAIL INPUT

10. Client sends data

11. At the end of data client sends termination sequence

12. Server accepts it with an OK

13. Client Sends QUIT to terminate the connection if it has no more mails to send
14. Server acknowledges the QUIT message and connection is closed.

1.3 TCP/IP Standards for electronic mail

The mail message is to consist of two parts: a mail header and the mail body. In particular
the standard specifies that headers contain readable text, divided into lines that consist of a
keyword followed by a colon and a value.

The mail header is to consist of the following keywords: 1. To:

2. From:

3. Reply-To: (Optional)

This header is followed by a blank line which signifies the end of the header. The following
part is taken as the message body.

2 Requirements

A computer running on Unix/Linux platform with secondary storage atleast (about 100MB)
is the fundamental requirement. The server program is made to run on this machine, using
port 25 (Standard port for SMTP transfer) for data transfer between itself and the client. It
is very essential that no other process is using this port. If the existing Unix/Linux is running
SendMail program, another port is chosen. The client program can run on any machine which
is physically connected to the server machine.

3 Functionality

The client program opens a connection with the server, after which mail transfer occurs between
the two. Any user has to register before using the service of the system. This interface is
provided at the client side. After registering, the client is given accessto his inbox and outbox
where he can view his mail, both send and recieved. To send a mail, the client is at first
provided with an editor to edit the mail. The mail once edited is sent to the recipients by the
client program. It is essential that the recipients of the mail have already registered in the
system. Else reject for that recipient is returned from the server. The server on the other end,
waits for requests from the client on the port 25. Once a client request is obtained, the server
forks a new process to take care of this request. Meanwhile the server continues to listen to
requests on the port 25. The new process created by the server does the processing of the client
request. The possible requests are

1. Login for existing users

2. Sign Up for new users

3. Recieve mail from the users who have logged in.

4. End the new process once the client is done using the system.

4 Implementation

Client program:

1. Initial function to establish a connection to the server

2. Function to Login a user

This function will accept the login and password from the end
user, send the same to the server, where the validity

of the user is verified.

3. Function to Register a new user

This function will accept the login and password, send it to the server, where the validity
of the user name is verified.

4. Function to send mail

This will open a editor for the user to edit the mail, save the mail
and send it to the server according to the SMTP Protocol

5. Function to manage Inbox/Outbox

This gives the users options to delete/view mail in their folders.

Server Program:

1. Function for intial connection establishment and creation of new process

for each new client.

2. Function to login a user

3. Function to register a new user

4. Function to recieve mail and store it appropriately

For checking the validity of a user (which is needed in login, register and in recieve mail),
the server uses a file PASSWD, which contains the login name and password of the registered
users.

5 Conclusion

SMTP promises reliable mail transfer between machine’s since it is based on TCP protocol.
However, it supports only ASCII based messages, which is a disadvantage. MIME Extension
To SMTP is a good option for mail transfer, and is successfully implemented in the internet
today. This project based on SMTP, was successfully implemented and tested. To upgraded
the system to support image based messages, and to implement a protocol to retrieve mail from
server, are the further improvements which can be done on this project.

6 APPENDIX

6.1 Pseudocode
6.1.1 SERVER

Initialization

1. Create Socket socket sock = socket(AF-INET, SOCK-STREAM, 0);

2. Bind socket with port no and server’s IP address bind(sock,”SERVER PARAMETERS”);
3. Accept the client accept(clisock,” CLIENT PARAMETERS”);

4. call Fork() to create a new process to execute client request

Login

1. Get ”login” and ”password” from client.

2. Open PASSWD file, read every pair of strings, check for ”login” and ”password”

in the strings. If yes, return ACCEPT message to client. Else send REJECT Message.
3. Wait for further request from client.

New User SignUp

1. Get ”login” and ”password” from client.

2. Check for same login in PASSWD file. If yes, return

REJECT else return ACCEPT to client. Append ”login” and ”password” to PASSWD.
3. Wait for further request from client.

Recieve mail

1. Recieve Sender’s name.

2. Recieve the name of recipients one by one.

3. Check whether each recipient is valid by calling isvalidrecpt(char *name).

4. If yes, create a new file in recipients INBOX with name :sender/Date+Time of mail
reciept. Let fpli] be the file pointer. Date is retrieved using UNIX timeb.h | ctime.h’s
ftime(),ctime() functions.

5. When client sends DATA command, acknowledge the request.

6. Check for termination character sequence. If not end of message, copy it to the file
pointed by fp[i] for i=0 to number of recipients.

7. Close the file ’s fpl[i], on reciept of End Of Message.

8. Wait for further request from client.

Exit

1. Close the client socket using close(clisock); 2. Exit the child process

6.1.2 CLIENT

//Initialization...

1. Create socket with server port and IP
2. Connect to the server port connect(sock,”SERVER PARAMETER”);
3. Wait for request from user.

Login:

1. Accept ”login” and ” password” from user

2. Send ”login” and ”password” to server.

3. Recieve reply from Server: if ACCEPT, change directory to this user.
wait for further requests else return;

New User:

Step 1,2 Same as login
3. If ACCEPT, create new directory for user’s OUTBOX using ”mkdir(OUTBOX)”

4. If reject, end.

Send Mail

Open editor "system(”vim temp”)”

Retrieve recipients name from this file.

Send Recpt. name one by one.

When done, send DATA.

Read character by character from the file, send it to server.
When done, send termination sequence.

O Ok W

Check Mail

1. Change directory to users INBOX.

2. Display file using ”system (”1s”)”

3. Scan file name to view from user

4. Open the file, and display it to standard output.

Folder Options.

1. Change directory appropriately.

2. List the files.

3. Get options from user

to delete file, call function ”"remove(char *filename) or ”"unlink(char *filename)”.
to view open the file and display it to standard output.

References

[1] DOUGLAS E. COMER [Jan 2000|, Internetworking with TCP/IP Principles, protocols,
and architectures, Pearson Education Asia.

[2] STEVENS, W. R. [1998], UNIX Network Programming, 2nd edition, Prentice-Hall, Upper
Saddle River, New Jersey

