1. INTRODUCTION

1.1 PROBLEM DEFINITION
· Our project presents a mobile application based on providing Location Based Services (LBS) using Global Positioning System (GPS) as a location provider.

· The main objective of this work is to design and implement a client server system that helps users to locate their family members and receive alerts when friends are nearby.

· The mobile application was implemented using J2ME where the most recent APIs and other older APIs were combined together in order to make the application reliable on all types of mobiles.

· The server was implemented using sevelets since servelets guarantees that the server would not be overloaded.

· The type of the Database used in the system was MySQL. The average location accuracy of the application is about couple of meters.

1.2 OVERVIEW
· LBS are the mobile services in which the user location information is used to provide a service.

· The user location information consists of X-Y coordinates generated by any given positioning technique.

· An LBS requires four basic components:

i) service provider's software application,
ii) mobile network to transmit data and requests for service
iii) Content provider to supply the end user with geo-specific

 Information

iv) Positioning component and the end user's mobile device.

· The GPS is the most efficient positioning technique.

· It was developed mainly to be used in navigation systems.

· GPS determines the device's position by calculating differences in the times signals from different satellites take to reach the receiver

· GPS signals are encoded, so the mobile device must be equipped with a GPS receiver
· GPS became one of the most important service providers in the LBS.

1.3 OBJECTIVE

· The main objective of this work is to design and implement a client server system that helps users to locate their family members and receive alerts when friends are nearby.

· The internet will be used to transfer user data and service request from the mobile to the server and then the requested information back to the user.

· The main four elements that construct the system are :

i) The GPS

ii) The Client

iii) The server tier

iv) The database tier
2. LITERATURE SURVEY

2.1 PRIMARY GOALS
There were five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain built-in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what were considered the good parts of other object-oriented languages

The Java Programming Language

The Java programming language is a high-level language that can be characterized by all of the following buzzwords:

	 Simple
	 Architecture neutral

	 Object oriented
	 Portable

	 Distributed
	 High performance

	 Multithreaded
	 Robust

	 Dynamic
	 Secure

Each of the preceding buzzwords is explained in The Java Language Environment , a white paper written by James Gosling and Henry McGilton.

In the Java programming language, all source code is first written in plain text files ending with the .java extension. Those source files are then compiled into .class files by the javac compiler. A .class file does not contain code that is native to your processor; it instead contains bytecodes — the machine language of the Java Virtual Machine1 (Java VM). The java launcher tool then runs your application with an instance of the Java Virtual Machine.

[image: image1.png]
 An overview of the software development process.

Because the Java VM is available on many different operating systems, the same .class files are capable of running on Microsoft Windows, the Solaris TM Operating System (Solaris OS), Linux, or Mac OS. Some virtual machines, such as the Java Hot Spot virtual machine, perform additional steps at runtime to give your application a performance boost. This include various tasks such as finding performance bottlenecks and recompiling (to native code) frequently used sections of code.

[image: image2.png]
Through the Java VM, the same application is capable of running on multiple platforms.

The Java Platform

A platform is the hardware or software environment in which a program runs. We've already mentioned some of the most popular platforms like Microsoft Windows, Linux, Solaris OS, and Mac OS. Most platforms can be described as a combination of the operating system and underlying hardware. The Java platform differs from most other platforms in that it's a software-only platform that runs on top of other hardware-based platforms.

The Java platform has two components:

· The Java Virtual Machine

· The Java Application Programming Interface (API)

You've already been introduced to the Java Virtual Machine; it's the base for the Java platform and is ported onto various hardware-based platforms.

The API is a large collection of ready-made software components that provide many useful capabilities. It is grouped into libraries of related classes and interfaces; these libraries are known as packages. The next section, What Can Java Technology Do? highlights some of the functionality provided by the API.

[image: image3.png]
The API and Java Virtual Machine insulate the program from the underlying hardware.

As a platform-independent environment, the Java platform can be a bit slower than native code. However, advances in compiler and virtual machine technologies are bringing performance close to that of native code without threatening portability.

Java Runtime Environment
Main article: Java Runtime Environment
The Java Runtime Environment, or JRE, is the software required to run any application deployed on the Java Platform. End-users commonly use a JRE in software packages and Web browser plugins. Sun also distributes a superset of the JRE called the Java 2 SDK (more commonly known as the JDK), which includes development tools such as the Java compiler, Javadoc, Jar and debugger.

One of the unique advantages of the concept of a runtime engine is that errors (exceptions) should not 'crash' the system. Moreover, in runtime engine environments such as Java there exist tools that attach to the runtime engine and every time that an exception of interest occurs they record debugging information that existed in memory at the time the exception was thrown (stack and heap values). These Automated Exception Handling tools provide 'root-cause' information for exceptions in Java programs that run in production, testing or development environments.

Why J2ME?

Emerging wireless technologies are opening up a brand new market for new styles of applications and services targeted at consumers and enterprises. Java technology provides a comprehensive foundation that allows next-generation devices to offer new capabilities such as enhanced interactivity, rich user interface, off-line processing, local data storage, and networking. By utilizing these new capabilities, developers and enterprises can create new exciting services in the wireless market.

This article provides an overview of the benefits provided by Java technology in the wireless world, and how this solution overcomes the challenges presented by the variety of mobile phones and PDA solutions, evolving network technologies, and the requirements for easy to use, secure applications.

The Java Platform
Java 2 Platform, Micro Edition (J2ME) is part of the Java 2 platform. While Java 2 Standard Edition (J2SE) targets desktop systems, and Java 2 Enterprise Edition (J2EE) targets the server backend applications, J2ME is a collection of APIs focusing on consumer and embedded devices, ranging from TV set-top boxes, telematics systems, residential gateways, to mobile phones and PDAs. Within each edition of the Java 2 platform, there are different Java Virtual Machine1 (JVM) implementations that are optimized for the type of systems they are targeted at. For example, the K Virtual Machine (KVM) is a JVM optimized for resource constrained devices, such as mobile phones and PDAs.
	[image: image4.png]

J2ME is part of the Java 2 Platform

The following characteristics are shared among the three Java editions:

· Write Once Run Any where: because Java technology relies on Java byte-code that is interpreted by a virtual machine, applications written in Java can run on similar types of systems (servers, desktop systems, mobile devices) independent of the underlying operating system and processor. For example, a developer doesn't need to develop and maintain different versions of the same application to run on a Nokia Communicator running the EPOC operating system, a Compaq PAQ running Pocket PC, or even a PDA powered by the Linux operating system. On mobile phones, the variety of processors and operating systems is even more significant, and therefore the wireless community in general is seeking a solution that is platform agnostic, such as WAP or J2ME.

· Security: while on the Internet, people are used to secure data transactions and downloading files or email messages that may contain viruses, few wireless networks today support standard Internet protocols, and wireless operators are concerned by the security issues associated with the download of standard C applications on their networks. Java technology features a robust security model: before any application is executed by the Java virtual machine, a byte-code pre-verifier tests its code integrity. Once an application is running, it cannot access system resources outside of a 'sandbox,' preventing applications from acting as viruses. Finally, Java applications can take advantage of standard data encryption solutions (SSL or Elliptic Curve Libraries) on packet based networks (for example CDPD, Mobitex, GPRS, W-CDMA), providing a robust infrastructure for Commerce and enterprise application access.

· Rich graphical user interface: you may remember that the first demonstration of Java technology was done using an animated character on a web page. While animated GIF files have made this use of the technology obsolete on desktop systems, mobile devices can benefit from richer GUI APIs that allow for differentiation of services and the development of compelling applications.

· Network awareness: while Java applications can operate in disconnected mode, they are network-aware by default, allowing applications to be dynamically downloaded over a network. Additionally, Java is network-agnostic, in the sense that Java applications can exchange data with a backend server over any network protocol, whether it is TCP/IP, WAP, i-mode, and different bearers, such as GSM, CDMA, TDMA, PHS, CDPD, Mobitex, and so on.

The J2ME Application Cycle
Contrary to the web browser model, which requires continuous connectivity and offers a limited user interface and security experiences, J2ME allows applications to be dynamically downloaded to a mobile device in a secure fashion. J2ME applications can be posted on a Web server, allowing end users to initiate the download of an application they select through a micro browser or other application locator interface. Wireless operators, content providers, and ISVs can also push a set of J2ME applications and manage them remotely. The Java provisioning model puts the responsibility of checking the compatibility of the applications (such as version of the J2ME specification used, memory available on the handset) on the handset itself, allowing the end user to ignore the intricacies associated with typical desktop systems.

Once a J2ME application is deployed on a mobile device, it stays there until the user decides to upgrade or remove it. The application can be operated in disconnected mode (such as standalone game, data entry application) and store data locally, providing a level of convenience that is not available on current browser-based solutions. Because the application resides locally, the user doesn't experience any latency issues, and the application can offer a user interface (drop-down menus, check boxes, animated icons) that is only matched by native C applications. The level of convenience is increased because the user can control when the application initiates a data exchange over the wireless network. This allows for big cost savings on circuit0switched networks, where wireless users are billed per minute, and allows a more efficient exchange of data, since many applications can use a store and forward mechanism to minimize network latency.

	[image: image5.png]
J2ME applications can exchange data over WAP, i-mode or TCP based wireless networks

Additionally, J2ME applications can leverage any wireless network infrastructure, taking advantage of a WAP network stack on current circuit-switched networks (GSM, CDMA, TDMA). The same applications are ready to be used on packet-based networks, allowing the use of standard Internet protocols, such as HTTPS over SSL (data encryption), IMAP (email), LDAP (directories), between the J2ME enabled client application and the backend infrastructure.

J2ME Benefits on Wireless Devices
Let's look at how Java technology fits in the wireless service evolution. Originally, analog technology was sufficient to handle voice services, but the quality of the calls was sketchy and multiple radio networks competed with one another.

Today we take advantage of the second generation of networks and services (2G networks), which use digital networks and web browser technologies. This provides access to data services, but markup languages present some limitations. Markup languages are a step in the right direction, but browser-based applications don't work when out of coverage-require air time for even simple operations (such as entering appointments in browser-based calendar) - offer a limited user interface paradigm (character-based, static black and white images, cumbersome navigation interface).

When Java technology is added to this environment, it brings additional benefits that translate into an enhanced user experience. Instead of plain text applications and latency associated to a browser-based interface, the user is presented with rich animated graphics, a fast interaction, the capability to use an application off-line, and maybe most interestingly, the capability to dynamically download new applications to the device.

For application developers, this means that you can use your favorite programming language and your favorite development tools, rather than learning a new programming environment. There are over 2.5 million developers who have already developed applications using the Java programming language, primarily on the server side. Once these developers become familiar with the small set of J2ME APIs, it becomes relatively easy to develop small client modules that can exchange data with server applications over the wireless network.

The challenges that remain the same for Java, WAP, or native APIs is that small screens and limited input interfaces require developers to put some effort into the development of the application user interface. In other worlds, small devices force developers to abandon bad or lazy programming techniques.

What Type of Applications Does J2ME Enable?
Many people expect to see new type of applications developed with J2ME. You can argue that the application categories would remain the same, except for a few exceptions such as location services and data applications that integrate with telephony functionality. The outcome is likely to be applications that are context sensitive (immediacy, location, personal or professional use) and are migrating from a character-based interface (browser-based applications) to a graphical environment, providing developers and end users with an unmatched level of flexibility. Just think about the evolution from DOS or mainframe applications to Windows, MacOS, or Solaris graphical environment. We still use processors, spreadsheets, accounting applications like in the good old days, but because the new generation of applications take advantage of a richer graphical environment, the applications are better and easier to use.

Therefore, expect to see J2ME developers targeting the same categories of applications they focused on with WAP, but this time with the user experience compelling enough for ISVs and system integrators to be able to charge for them.

As far as adoption of J2ME, the prognostics are rather good. Evans Data recently conducted a survey among 500 wireless application developers, concluding that more developers will use Java and J2ME to develop wireless applications (30%) than native C APIs (Palm OS, PocketPC, EPOC) or even WAP.

The market that J2ME will penetrate the fastest is the Japanese market, with Nikkei Market Access forecasting a penetration rate of 40% this year. NTT DoCoMo, who started shipping J2ME enabled I-mode phones at the end of January, has already sold 1 million units, and they expect the number to increase to 3 million by the end of September. The two other major Japanese wireless operators (KDDI and J-Phone) will join DoCoMo in the deployment of J2ME enabled handsets by the end of the summer.

Obviously, forecasts can be misleading, as the experience with WAP, Bluetooth and 3G has shown. Therefore, what really matters is the number of handset manufacturers that are planning to make available J2ME enabled phones and PDAs this year, as well as the number of wireless operators that are endorsing the technology and putting in place a network infrastructure that will allow ISVs, content providers and corporations to deploy J2ME applications and services over their network.

The benefits of Java technology as provided by J2ME in the wireless arena are many and varied. From its Write Once Run Anywhere flexibility, to its robust security features, to its support for off-line processing and local data storage, to its leverage of any wireless infrastructure, to its fine-tuned control of data exchange, J2ME is a natural platform for wireless application development. The numbers bear this out -- the ranks of J2ME developers are growing fast.
3.SYSTEM ANALYSIS
3.1 OVERVIEW

The growing importance of mobile content music, games and video have become principal sources of online entertainment content in the consumer market, but the discrete systems used to deliver that content to end devices such as mobile handsets are still rather rudimentary. To deliver content to the consumer or business, and to adapt to rapidly changing market needs and trends, device-independent content delivered over multiple channels is needed—and the content must be coupled with a digital rights management (DRM) system to allow content owners to monetize their intellectual property.

[image: image6.emf]
At the current stage in the evolution of online content, many companies are focusing on a single part of the value chain, mainly on delivery, and they are able to gain a competitive advantage there. Because content delivery to a mobile device is currently a bottleneck, and because it is also not obvious which delivery models are the best, concentrating on delivery makes sense at the current juncture.

Little attention is paid today, however, to a balanced implementation of the full value chain. Our research suggests that in a few years time, attention will shift from discrete systems focusing on delivery of specific content using rudimentary content management integration to full blown systems that are centered on reusable content suitable for multi-channel delivery. Adding and using metadata to quickly find content for a specific user in a specific context and being able to deliver that content in a timely manner and the correct format is the key to success in this more mature environment. Whether these types of systems will be owned and managed by mobile operators or by companies specialized in content (such as publishers or studios) cannot be predicted at this stage.

 The Special Requirements of Mobility Devices:
Mobile content has some very specific constraints which have to do with the small screen of the devices, the device’s relatively limited wireless bandwidth as well as the small storage and processing capacity on the device. Furthermore, among the devices there is a considerable spread in capacities. Standard mobile phones tend to have a small color screen, a numerical keyboard for entering data, and most have the capability to run small Java applications. Smart phones have a somewhat larger screen, additional input devices such as a keyboard to enter text, and most run a simple operating system. Brew and Windows Me are examples of two popular smart phone operating systems.

While device-independent content delivered over multiple channels is the goal, mobility imposes a number of other constraints on content when compared to the
Wired web:

 The relationship of mobile browsers to websites;
 Location based content;
 User generated content and content management; and
 The usability of content across different mobile devices.
Content is driving the market for carriers of every stripe. For the mobile operator, content ranges from information that is mobility-independent (such as a weather forecasts) to mobile-specific content (such as ring tones). Further, mobile content can be relatively static (such as a web page or a photo) or highly dynamic (such as traffic information). Beyond a set of requirements particular to mobility, managing, updating, and archiving website content as well as maintaining technical and customer information is a major business operation demanding up to-date systems.

3.2 EXISTING SYSTEM

· There are not many projects that are carried out in the LBS field.

· This is because this type of application was somehow exclusive for mobile service providers because they use mobile cells information to get the location of the mobile and then provide a service to get it.

· Mobile phone tracking tracks the current position of a mobile phone even on the move. To locate the phone, it must emit at least the roaming signal to contact the next nearby antenna tower.
3.3 PROPOSED SYSTEM

· Mobile positioning : location based service that discloses the actual coordinates of a mobile phone bearer, is a technology used by telecommunication companies to approximate where a mobile phone, and thereby also its user (bearer), temporarily resides.
· The more properly applied term locating refers to the purpose rather than a positioning process. Such service is offered as an option of the class of location-based services (LBS).
4.SYSTEM DESIGN
4.1 SYSTEM ARCHITECTURE

[image: image7]
4.2 SYSTEM MODULES
The modules of this project are as follows:

· Client Module.

· GPS Module.

· Server Module.

· Database Module.
4.2.1 Client Module
 The mobile requests its location from the positioning system periodically and sends it through the communication network to the server. The user can request the location of a family member at any time from the server. Also an alert can be received whenever the user and a friend are in the same location.

 4.2.2 GPS Module
 Every time the mobile phone updates the user location in the server, it requests the location of the user from the GPS. The GPS determines the longitude and the latitude and sends them to the mobile phone.
4.2.3 Server Module
 The server receives users' location and alerts two friends if they are in the same location or update the user about the location of family members.
4.2.4 Database Module

 Database contains all users subscribed in the service with their location, a list for each user that contains friends and family members that can be located, and a table that contains locations with their coordinates.

4.3 UML DIAGRAMS
INTRODUCTION:
The Unified Modeling Language (UML) is a visual modeling language used to specify, visualize, construct and document a software intensive system. The embedded real-time software systems encountered in applications such as telecommunications, school systems, aerospace, and defense typically tends to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but also, readily accommodates changes forced by a steady stream of new requirements.

The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. The UML is a very important part of developing object oriented software and the software development process. The UML uses mostly graphical notations to express the design of software projects. Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of the software.

The primary goals in the design of the UML are: Provide users with a ready-to-use, expressive visual modeling language so they can develop and exchange meaningful models. Provide extensibility and specialization mechanisms to extend the core concepts. Be independent of particular programming languages and development processes. Provide a formal basis for understanding the modeling language. Encourage the growth of the OO tools market. Support higher-level development concepts such as collaborations, frameworks, patterns and components. Integrate best practices.

The Unified Modeling Language (UML) is a visual modeling language used to specify, visualize, construct and document a software intensive system. The embedded real-time software systems encountered in applications such as telecommunications, school systems, aerospace, and defense typically tends to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but also, readily accommodates changes forced by a steady stream of new requirements.

The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. The UML is a very important part of developing object oriented software and the software development process. The UML uses mostly graphical notations to express the design of software projects. Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of the software.

The primary goals in the design of the UML are: Provide users with a ready-to-use, expressive visual modeling language so they can develop and exchange meaningful models. Provide extensibility and specialization mechanisms to extend the core concepts. Be independent of particular programming languages and development processes. Provide a formal basis for understanding the modeling language. Encourage the growth of the OO tools market. Support higher-level development concepts such as collaborations, frameworks, patterns and components. Integrate best practices.

Identifiable object-oriented modeling languages began to appear between mid-1970 and the late 1980s as various methodologists experimented with different approaches to object-oriented analysis and design. The number of identified modeling languages increased from less than 10 to more than 50 during the period between 1989-1994. Many users of OO methods had trouble finding complete satisfaction in any one modeling language, fueling the "method wars." By the mid-1990s, new iterations of these methods began to appear and these methods began to incorporate each other’s techniques, and a few clearly prominent methods emerged.

The development of UML began in late 1994 when Grady Booch and Jim Rumbaugh of Rational Software Corporation began their work on unifying the Booch and OMT (Object Modeling Technique) methods.

Elements, Viewpoints and Views:

The idea of a view is a key one in the UML: It provides the basis for the UML notion of a model. In the UML, a model is a complete representation of a system from a particular viewpoint (that is, an aggregation of a set of views from specific perspectives). At the same time, systems are logically composed of many nearly independent models, representing many different viewpoints, and they can be physically composed of many independent subsystems, each of which can also be treated as a system for modeling purposes. A top-level model with subsidiary models representing specialized views implicitly represents a system itself. Each model is made up of diagrams and text. The UML Specification describes diagrams as "views of a model" each representing a particular perspective that the overall model aggregates and integrates. All of this applies recursively to subsystems as well.

The perspective that a model represents is a combination of the model's purpose and the level of detail it provides. Any system can contain a number of viewpoints and models, which depend on the role of each viewer, the conceptual stance he or she brings to the viewing, and the ultimate purpose of the view. Any viewpoint can be expressed by a number of views and diagrams, depending on the interests of the audience being addressed.

The modeler represents these views, wearing different hats in turn, and adopting different viewpoints. A user's view will end up being expressed differently depending on whether the audience is senior management or a technical person. A management perspective might result in a management model that emphasizes architecture and minimizes technical detail. At the most abstract, a system should be modeled from at least two viewpoints: Looking at the outside world-an interpreted reality. As modelers, in order to build a system, we model our understanding of the context, requirements, practices, and constraints to ensure that we have the problem and solution to it. We then model the architecture, specifications, design, implementation, and deployment of what the designers should do. The second viewpoint provides a blueprint that designers can work from and the documentation that management needs to get the product built, keep it working, and make it useful.

The advantage an object-oriented approach brings to modeling is that it allows a modeler to "bridge the chasm" between the analysis and design models by providing a semantically consistent conceptual framework, regardless of the viewpoint involved. Things in the real world are represented as objects, in the same way that things in the constructed world are. The modeling modes are still distinct, but the language is very much the same. Naturally, in an iterative development process, even the barrier between modeling modes is permeable, and there's a constant to-and-fro, as opposed to rigid distinctions.

Models and Model Elements:

A UML model is an abstraction, a complete representation of a physical system. Models are about things, relationships, behaviors, and interactions in a system. Equally important, models are about how to organize this information because conceptual chunking is an important tool for successful abstracting.

The UML itself distinguishes two types of models:

1. Structural models: Represent the pieces of a system and their relationships.

2. Dynamic models: Represent the behavior of the elements of the system and their interactions.

Models are made up of model elements. Model elements are named uniquely in the context of a given namespace (usually a package) and have visibility, which defines how they can be used (and reused) by other model elements. Visibility determines the way individual elements can connect with each other. Therefore, it is a critical part of managing the complexity of models via information hiding. Decisions about visibility can be powerful factors influencing decisions about the logical organization of models. It is one of the ways in which the UML is distinctly different from previous generations of modeling languages and tools-by leveraging and extending the notion of visibility from Object-Oriented languages themselves.

In the UML, model elements may be visible in one of three ways:

Public: Any outside model element can see the model element.

Protected: Any descendent can see the model element.

Private: Only the model element itself, its constituent parts, and the model elements nested within it can see it.

Diagrams

Semantically, diagrams express views of a model (that is, subsets of the viewpoint that each model represents). An individual model element can be presented in one or many of the diagrams for a model; in other words, a model element can be presented in many different ways and in many diagrams, but it must be presented in at least one diagram in one way. Diagrams don't have any special shape assigned to them; they can be free-floating, bounded by a box, or contained within a package.

Neither geometry nor "geography" has much significance in a UML diagram. For the most part, a symbol's size or relative location generally has no semantic content, except for diagrams that have a time dimension. Diagrams are all two-dimensional because of the current limits imposed by available technology and tools, although some shapes are nominally three-dimensional, rendered in two dimensions (cubes, for example). Text can be used liberally within a diagram. Examples include expressing rules and, within symbols, identifying attributes.

The UML Specification highlights three kinds of visual relationships in diagrams:

Connection: Lines connect icons and symbols, forming connecting paths. Paths are always attached to symbols at both ends (that is, no dangling lines are allowed).

Containment: Boxes, circles, and other fully enclosed shapes contain symbols, icons, and lines.

Visual Attachment: Elements that are close together may have a relationship suggested by their proximity. For example, a name above a line or next to a box may be interpreted as applying to the line or box.

Packages:

A package is a grouping of UML elements, which can include diagrams and may include subordinate packages and other kinds of model elements. According to the UML Specification, packages "can be used for organizing elements for any purpose; the criteria to use for grouping elements together into one package are not defined within UML". Packages are probably the most important aspect of the UML from a modeling perspective; they play a role in UML modeling that is similar to the role, which the classes play in programming.

Packages can be nested and can reference other packages. They provide the basis for configuration control, storage, and access control. They also provide the basis for naming model elements. They define the namespace for model elements; nested packages create a naming hierarchy. Because packages can't be instantiated, nominally their only formal function (in a system) is to provide this name space. Each element in a package must be uniquely named. Elements in different packages may have the same name Packages can import or access the contents of other packages. When one package imports another, it imports all those elements that are visible in the second package. Imported elements become part of the importing package's namespace An access relationship keeps the namespaces separate, requiring that the accessing package reference elements in the accessed package use fully qualified names. Packages can also "specialize" other packages in a generalization relationship that parallels inheritance among classes.

Containment and visibility are key characteristics of model elements in packages. Packages encapsulate the model elements they contain and define their visibility as private, protected, or public.

Symbols:

UML symbols can have content or just be iconic. Actually, the UML distinguishes between what it calls, awkwardly, two-dimensional symbols and icons:

Icons: They are fixed in size and shape; icons do not have to be attached to paths (but can be terminators: icons on the end of a path that qualify the meaning of the path symbol). They may be located within symbols.

Two-dimensional symbols: Having the capability to shrink or grow, two-dimensional symbols can have compartments as well. Some two-dimensional symbols are also graphs-they contain nodes connected by paths.

Actors:

An actor represents a user or another system that will interact with the system you are modeling. An example of an actor is shown below.

[image: image8.png]
An actor participates in use cases and may be represented in other types of diagrams anywhere in the system model.

Use Case / Collaboration:

A use case is a sequence of interactions by an actor with the system, which yields observable value to the actor. According to UML, use cases are made to fall into a category of type of class. The UML calls it a "behavioral thing”. An example of a use case is shown below.

[image: image9.png]
Collaboration is a collection of objects that interact to implement behavior. Typically, collaboration can be used to specify the realization of a use case or an operation. Collaboration can also be used to specify a software pattern, and a parameterized collaboration (that is, one with abstract participants that are replaced when the pattern is used) can specify an architectural pattern.

Class / Object / Type / Active Class:

A class is an abstraction of a set of possible objects that share the same attributes, operations, methods, relationships, and semantics. An example of a class is shown below.

[image: image42.emf]
A class may use a set of interfaces to specify collections of operations it provides to its environment. A type is a representation of a collection of objects without specifying the physical implementation as a class. Class and type use the same symbol in the UML.

An object is an instance of a class or an example of a type-the same symbol as class, but with the name underlined. An example is shown below.

An active class is a set of objects each of which owns a thread of control (that is it can initiate, control and terminate a process).

Interface

An interface describes the visible operations of a class, component, or package. It defines the services available from the implementing element. An example is shown below
[image: image43.emf]
.

Component

A component is a physical, replaceable part of a system that packages implementation and provides the realization of a set of interfaces. A component represents a physical piece of implementation of a system, including software code (source binary or executable) or equivalents as scripts or command files. An example is shown below.

[image: image44.emf]
State

A state is a condition, status or situation of an object as part of its lifecycle and/or as the result of an interaction. A state may also be used to model an ongoing activity. An example is shown below.

[image: image45.emf]
Lines

In the UML lines are used to express messages (dynamic connections between model elements),”links”(relationships between model elements-the term link also has a formal meaning within the UML), and interactions. Generally messages don’t appear in structural models; links don’t appear in dynamic models. But this too can be varied within a dialect. Lines must be terminating in some fashion in UML either with an element graphic or an icon.

Messages

Messages are used in the interactions between model elements in the dynamic models, those that represent the behavior in a system. Messages convey information between objects, for example, and trigger activities. There are four types of messages.

Relationships

Relationships are used in structural models to show semantic connections between model elements. A dependency is what the unified modeling language user guide calls a “using” relationship, one in which the connection between two things means that if one changes, it affects the other. Dependencies can be used to identify connections between a variety of model elements, packages being a notable example. These are unidirectional relationships

[image: image46.emf]
A generalization is a relation between two elements, in which one is a more general form of the other. Class inheritance is represented in this way, but generalization can be used more generally. Packages are an example.

[image: image47.emf]
An association is what the UML calls a structural relationship, mapping one object to another set of objects. It is also used to identify the communication path between an actor and a use case. The unified modeling language reference manual describes associations as “the glue that ties systems together”.

[image: image48.emf]
A realization is a type of dependency relationship that identifies a contractual link between elements—a realizing element. For example, a class implements the behaviors in a specifying element; in this case it is an interface. A realization is also links use cases and collaborations.

[image: image49.png]
Associations

The UML considers aggregations and composites to be special forms of association with distinctive notations.

A qualified association is a plain association with an indication of what information to use when identifying a target object in the set of associate objects, bank account # is used to identify the customer it belongs to.

An aggregation represents a whole-part relationship. This contrasts with a plain association, which shows the relationship among/between peers, depending on the number. In an aggregation, one element is the whole and the other(s) is the parts.

A composition is an aggregation that has strong ownership of its parts. Therefore, if the whole element disappears, the parts do, too.

Dependencies

Dependency relationships are frequently stereotyped in the UML to support the needs of particular types of diagrams or model elements. The following are some examples:

[image: image50.png]Extends provides a way of handling behavior that is optional in a use cases. The optional behavior is packaged in an extending use case and connected via <<extends>> dependency.

Includes provides a way of handling behavior that is common to a number of use cases. The optional behaviour is favored out, packaged in a included use case, and

[image: image51.png]connected via an <<includes>> dependency.

Imports is a dependency between packages. A receiving package can access publicly visible elements of the package being imported.

[image: image52.png]
 Diagrams

UML diagrams are where it all comes together. In the UML there is no formal way of bounding or containing a diagram, so there are no relationships between diagrams. Instead, diagrams are the graphical representation vehicles for aspects of a model. They don’t standalone but are meant to be a part of the textual narrative that provides the model specification.

The UML specifically includes nine different diagrams in its documentation. However, these diagram types are process dependent and suggestive, rather than prescriptive. The UML allows the modeler to combine any and all elements into diagrams, depending on the modeling needs at hand.

CLASS DIAGRAMS

A class diagram is a picture for describing generic descriptions of possible systems. Class diagrams and collaboration diagrams are alternate representations of object models. Class diagrams contain classes and object diagrams contain objects, but it is possible to mix classes and objects when dealing with various kinds of metadata, so the separation is not rigid.

Class diagrams are not prevalent than object diagrams. Normally you will build class diagrams plus object diagrams illustrating complicated data structures or message passing structures.

Class diagrams contain icons representing classes, interfaces and their relationships. You can create one or more class diagrams to depict the classes at the top level of the current model; such class diagrams are themselves contained by the top level of the current model. You can also create one or more class diagrams to depict classes by each package in your model; such class diagrams are themselves contained by the package enclosing the classes they depict; the icons representing logical packages and classes in class diagrams.

You can change properties or relationships by editing the specification or modifying the icon on the diagram. The associated diagrams or specifications are automatically updated.

You can change properties or relationships by editing the specifications or modifying the icon on the diagram. The associated diagrams or specifications are automatically updated.

CLASS

Definition:

A class is a set of objects that share a common structure and common behavior (the same attributes, operations, relations and semantics). A class is an abstraction of real world items. When these items exist in the real world, there are instances of the class and referred to as objects.

For each class that has a significant chronological behavior, you can create an activity diagram or a state chart diagram to describe this behavior.

Graphical depiction

[image: image53.png]A class icon is drawn as a 3-part box, with the class name in the top part, a list of attributes (with optional types and values) in the middle part, and a list of operations (with optional argument lists and return types) in the bottom part.

The attribute operation sections of the class box can be suppressed to reduce detail in an overview. Suppressing a section makes no statement about the absence of attributes or operations, but drawing an empty section explicitly states that there are bo elements in that part.

Note: a class icon name will accept any font or style setting up to 18 points in size. A class stereotype will accept any font up to 18 points in size. Attributes and operations will have the same font as the class name. However the font size limit is 10.

USE CASE DIAGRAM

For use case-driven development, the use case diagram is the keystone of the modeling effort. Use case diagrams show actors and use cases, together with their relationships. These include the following:

Associations between the actors and the use cases

Generalizations between the actors

Generalizations, extends, and includes relationships among the use cases

The use cases may be enclosed by a rectangle to show the boundary of the containing system, and so on. As will be evident in the UML patterns, use case diagrams by themselves are essentially trivial. The real substance of a use case is in the text (narrative).
A use case captures the significant parts of an interaction with the system or some part of the system by the actor(s) defining the scope, context, and requirements. Use cases can be used in a variety of ways throughout the development effort (for example, as the basis for setting up the test environment and as a starting point for a user manual). The following diagram outlines the main components of Use Case Diagram.

4.3.1 Use Case Diagram

[image: image10.emf]if new user then he/she has

 to register first otherwise go

to login process

login

registration

process

welcome

request member

location information

view member list

view member location

Mobile User

LBS Service

GPS Service

Fig: Use case diagram for Locating Friends and Family with GPS

4.3.2 Class Diagram

[image: image11.emf]MainApp

display

form

serverAddress

startApp()

pauseApp()

UserRegistrationForm

tfname

tfPwd

stringitem

setCommandListener()

getString()

getBytes()

OptionForm

timeAlert

process

msg

initComponents()

append()

setSelectedIndex()

UserLoginForm

alert

byteText

list

addCommand()

commandAction()

equals()

DetailForm

details

location

countTokens()

nextToken()

Fig: Class Diagram for Locating Friends and Family with GPS

4.3.3 Sequence Diagram

[image: image12.emf]Login FormMainMidletRegistration

Form

UserAction

Form

calls registration form

select login option

view user action form

reponse

view member location

view my location

 Fig: Sequence Diagram for Locating Friends and Family with GPS

[image: image13.emf]MobileLBSSatellite

client request

requesting the location

responsing the location

Fig: Sequence diagram for Locating Friends and Family with GPS

[image: image14.emf]MobileGPS ServiceServer ActionDatabase

request

response

request to update information

store user data

valid user

calculate distance

response

 Fig: Sequence diagram for Locating Friends and Family with GPS

[image: image15.emf]
Fig: Sequence diagram for Locating Friends and Family with GPS

4.3.4 Collaboration Diagram

[image: image16.emf]Main

Midlet

Registratio

n Form

Login

Form

UserAction

Form

1: calls registration form

2: select login option

3: reponse

4: view user action form

5: view member location

6: view my location

Fig: Collaboration diagram for Locating Friends and Family with GPS

[image: image17.emf]MobileLBSSatellite

1: client request2: requesting the location

3: responsing the location

Fig: Collaboration diagram for Locating Friends and Family with GPS

[image: image18.emf]MobileLBSSatellite

1: client request2: requesting the location

3: responsing the location

Fig: Collaboration diagram for Locating Friends and Family with GPS

[image: image19.emf]MobileGPS

Service

Server

Action

Databas

e

4: store user data

5: valid user

6: calculate distance

7: response

1: request

2: response

3: request to update information

Fig: Collaboration diagram for Locating Friends and Family with GPS

4.3.5 Activity Diagram

[image: image20.emf]
Fig: Activity diagram for Locating Friends and Family with GPS

4.4 Dataflow Diagrams

Module 1: Client

 [image: image21.emf]
Fig:Dataflow diagram for client module
Module 2: GPS

 [image: image22.emf]
Fig:Dataflow diagram for GPS module
Module 3: Server

 [image: image23.emf]
Fig:Dataflow diagram for Server module
Module4: Database

 [image: image24.emf]
Fig:Dataflow diagram for Database module
5. SYSTEM REQUIREMENTS SPECIFICATION
3.1 SOFTWARE REQUIREMENTS

· Language : JAVA, J2ME

· Framework : MVC 2.

· Front End : J2ME.

· Back End : MySQL

· Web server : Apache Tomcat 5.5

· Build Tools : Apache Ant 1.7.0, Sun Java Wireless Toolkit 2.5.2.

3.2 HARDWARE REQUIREMENTS

· Processor : pentiumIII

· Clock speed : 550MHz

· Hard Disk
 : 20GB

· RAM
 : 128MB

· Cache Memory : 512KB

· Operating System : windows2000

· Monitor
 : Color Monitor

· Keyboard
 : 104Keys

· Mouse
 : 3Buttons

6. IMPLEMENTATION
To develop code user registration form
package com. pan. location;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.io.*;

import java.io.*;

public class UserRegistrationForm extends Form implements CommandListener, Runnable

{

 private Display display;

 private TextField tfname,tfmtel,tfuname,tfmail; // Get account number

 private TextField tfPwd;

 private StringItem stringitem;

 private Command CMD_OK;

 private Command CMD_BACK;

 private MainApp parentMidlet = null;

 private Form parentForm = null;

 OptionForm optionform;

 private byte[] byteText;

 String na;

 protected UserRegistrationForm(String in, MainApp parentMidlet_,Form parentForm_) {

super(in);

this.parentMidlet = parentMidlet_;

this.parentForm = parentForm_;

initComponents();

}

 public void initComponents()

 {

 tfname = new TextField("Name:", "", 10, TextField.ANY);

 tfmtel = new TextField("Mobile Telephone:", "", 10, TextField.NUMERIC);

 tfuname = new TextField("UserName:", "", 10, TextField.ANY);

 tfPwd= new TextField("Password:", "", 10, TextField.ANY | TextField.PASSWORD);

 tfmail = new TextField("Email:", "", 25, TextField.ANY);

 stringitem=new StringItem("","New User Created Successfully");

 CMD_OK = new Command("Register", Command.OK, 2);

 CMD_BACK = new Command("Back", Command.BACK, 1);

 //cmExit1 = new Command("Exit", Command.EXIT, 1);

 append(tfname);

 append(tfmtel);

 append(tfuname);

 append(tfPwd);

 append(tfmail);

 addCommand(CMD_OK);

 addCommand(CMD_BACK);

 setCommandListener(this);

 }

 private void callServlet() throws IOException

 {

 new Thread(this).start();

 }

 public void run() {

 HttpConnection http = null;

 InputStream ism = null;

 OutputStream oStrm = null;

 String url = "http://"+HttpUrlService.getIpAddress()+"/LFF/Registration";

// System.out.println("url"+url);

 try {

 http = (HttpConnection) Connector.open(url);

oStrm = http.openOutputStream();

oStrm.write(byteText);

 http.setRequestMethod(HttpConnection.GET);

 if (http.getResponseCode() == HttpConnection.HTTP_OK)
{

 ism = http.openInputStream();

 int length = (int)http.getLength();

 if(length >= 0)
{

 byte servletdata[] = new byte[length];

 ism.read(servletdata);

 String str = new String(servletdata);

System.out.println("output"+str);

if(str.length()==5)
{

append("UserName and password already Exit");

}
else if(str.length()==4)
{

append("While inserted error");

}
else {

deleteAll();

optionform = new OptionForm

("Locating Friends and Family App",parentMidlet);

optionform.append(stringitem);

parentMidlet.getDisplay().setCurrent(optionform);

}
 }
else {

 append("problem in reading data");
 }

 }
else {

append("not OK");

 // System.out.println("not OK");

 }

 }catch(Exception e){

 append("Network error");

 // System.out.println(e.toString());

 }finally { // Clean up

 if (ism != null) {

 try {

 ism.close();

 }catch (Exception e) {

 append(e.toString());

 // System.out.println(e.toString());

 }

 }

 if (http != null) {

 try {

 http.close();

 }catch (Exception e) {

 append(e.toString());

 // System.out.println(e.toString());

 }

 }

 }

 }

 public void commandAction(Command c, Displayable s) {

 if (c == CMD_OK) {

 try

 {

 String tempname = tfname.getString();

 String tempusername = tfuname.getString();

 String temppassword = tfPwd.getString();

 String tempemail = tfmail.getString();

 String tempmobileno = tfmtel.getString();

 if(tempname.equals("")){

append("Enter Your Name");

} else if(tempusername.equals("")){

append("Enter User Name");

} else if(temppassword.equals("")){

append("Enter Password");

} else if(tempemail.equals("")){

append("Enter Email Address");

} else if(tempmobileno.equals("")){

append("Enter Mobile No");

}
String tempdetails = tempusername+
 "|"+temppassword+"|"+tempname+"|"+tempmobileno+"|"+tempemail;

 byteText = tempdetails.getBytes();

 callServlet();

 }

 catch (Exception e)

 {

 System.out.println(e.toString());

 }

 }

 else if (c == CMD_BACK)

 {

deleteAll();

optionform = new OptionForm("Locating Friends and Family App",parentMidlet);

parentMidlet.getDisplay().setCurrent(optionform);

 }

 }

}
To develop code for detailed form
package com.pan.location;

import java.io.*;

import java.lang.*;

import java.lang.Math;

import java.util.*;

import java.util.Vector;

import javax.microedition.midlet.*;

import javax.microedition.lcdui.*;

import javax.microedition.io.*;

import com.pan.location.StringTokenizer;

import com.pan.map.AddressForm;

public class DetailForm extends Form implements CommandListener
{

private static Command CMD_EXIT ;

private static Command CMD_BACK ;

private static Command CMD_SHOW;

/**** design UI for Add *****/

private MainApp parentMidlet = null;

 String details="",location="";

String date="";

String name="",cor_location="";

protected DetailForm(String in, MainApp parentMidlet_,String details_)
{

super(in);

this.parentMidlet = parentMidlet_;

this.details= details_;

initComponents();

}

public void initComponents() {

CMD_EXIT= new Command("EXIT", Command.EXIT, 1);

CMD_BACK = new Command("BACK", Command.SCREEN, 1);

CMD_SHOW = new Command("Show Map", Command.SCREEN, 1);

//System.out.println("details"+details);

StringTokenizer st = new StringTokenizer(details,"|");

int count=st.countTokens();

//System.out.println("st"+st);

// memberlist.deleteAll();

if(count>1){

cor_location = st.nextToken();

location = st.nextToken();

date = st.nextToken();

name = st.nextToken();

// }

System.out.println("location"+location);

System.out.println("date"+date);

StringItem item = new StringItem("Member Name : ",name);

append(item);

item = new StringItem("------------------------------------","");

append(item);

item = new StringItem("Location :",location);

append(item);

item = new StringItem("Date/Time :",date);

append(item);

 item = new StringItem("---------------------------------------","");

append(item);

addCommand(CMD_BACK);

addCommand(CMD_SHOW);

}else {

StringItem item = new StringItem("",st.nextToken());

append(item);

addCommand(CMD_BACK);

}

addCommand(CMD_EXIT);

setCommandListener(this);

}

public void commandAction(Command c, Displayable d) {

 if (c == CMD_EXIT) {

 deleteAll();

 parentMidlet.destroyApp(false);

 parentMidlet.notifyDestroyed();

}
else if(c == CMD_BACK)
{

deleteAll();
UserLoginForm userloginform = new UserLoginForm("Locating Friends and Family App",parentMidlet,this);

try {

userloginform.callServlet(HttpUrlService.getUsername(),HttpUrlService.getPassword());

}
catch (Exception e)
{

append(e.toString());//System.out.println(e);

}

}
else if(c == CMD_SHOW){

deleteAll();
AddressForm addressForm = new AddressForm("Locating Friends and Family App",parentMidlet,this,location,cor_location);

}}}

}

8. SCREENS
[image: image25.png]
Fig: selecting LFF from locating friends and family with GPS
[image: image26.png]
Fig: Selecting User registration for locating friends and family with GPS
[image: image27.png]
Fig: Entering User registration details for locating friends and family with GPS

[image: image28.png]
Fig: Entering User registration details for locating friends and family with GPS

[image: image29.png]
Fig: Selecting User login for locating friends and family with GPS

[image: image30.png]
Fig: Entering User details for locating friends and family with GPS

[image: image31.png]
Fig: For locating friends and family with GPS

9. DATA DICTIONARY

The database which we are using is the MYSQL database. It’s an open source and easily manageable. and is very much compatible with Java.
MySQL is open source database is the "M" in LAMP - the software platform comprised of Linux, Apache, MySQL and PHP/Perl often viewed as the foundation of the Internet. Sun is committed to enhancing and optimizing the LAMP stack on GNU/Linux and Microsoft Windows along with Open Solaris and MAC OS X. The database from MySQL, Open Solaris and Glassfish, together with Sun's Java platform and Net Beans communities, will create a powerful Web application platform across a wide range of customers shifting their applications to the Web.

More than 100 million copies of MySQL's high-performance open source database software have been downloaded and distributed and an additional 50,000 copies are downloaded daily. This broad penetration coupled with MySQL's strength in Web 2.0, Software as a Service (SaaS), enterprise, telecom and the OEM embedded market make it an important fit for Sun. With MySQL, Sun will have the ability to deepen its existing customer relationships and create new opportunities with companies seeking the flexibility and ease-of-use of open source systems.
 Table Design
[image: image32.png]
Table: relationship details for locating friends and family with GPS
[image: image33.png]
Table: relationship details for locating friends and family with GPS

10. TESTING OBJECTIVES

· Testing is a process of executing a program with the intent of finding an error.

· A good test has a high probability of finding an as yet undiscovered error.

· A successful test is one that uncovers an as yet undiscovered error

The objective is to design tests that systematically uncover different classes of errors and do so with a minimum amount of time and effort. Testing cannot show the absence of defects, it can only show that software defects are present.

10.1 UNIT TESTING

Interface

Number of input parameters should be equal to number of arguments.

Parameter and argument attributes must match.

Parameters passed should be in correct order.

Global variable definitions consistent across module.

If module does I/O,

· File attributes should be correct.

· Open/Close statements must be correct.

· Format specifications should match I/O statements.

· Buffer Size should match record size.

· Files should be opened before use.

· End of file condition should be handled.

· I/O errors should be handled.

· Any textual errors in output information must be checked.

Local Data Structures (common source of errors!)

· Improper or inconsistent typing.

· Erroneous initialization or default values.

· Incorrect variable names.

· Inconsistent date types.

· Overflow, underflow, address exceptions.

Boundary conditions and Independent paths

Error Handling

· Error description unintelligible.

· Error noted does not correspond to error encountered.

· Error condition handled by system run-time before error handler gets control.

· Exception condition processing incorrect.

10.2 INTEGRATION TESTING

Top down Integration

Modules integrated by moving down the program design hierarchy. Can use depth first or breadth first top down integrationVerifies major control and decision points early in design process. Top-level structure tested most. Depth first implementation allows a complete function to be implemented, tested and demonstrated. Can do depth first implementation of critical functions early. Top down integration forced (to some extent) by some development tools in programs with graphical user interfaces.

Begin construction and testing with atomic modules (lowest level modules).Bottom up integration testing as its name implies begins construction and testing with atomic modules. Because modules are integrated from the bottom up, processing required for modules subordinate to a given level is always available and the need for stubs is eliminated

10.3 Validation Testing

Validation testing is aims to demonstrate that the software functions in a manner that can be reasonably expected by the customer. This tests conformance the software to the Software Requirements Specification.

Validation Test Criteria

A set of black box test is to demonstrate conformance with requirements. To check that all functional requirements satisfied, all performance requirements achieved, documentation is correct and ' human-engineered', and other requirements are met (e.g. compatibility, error recovery, and maintainability).

When validation tests fail it may be too late to correct the error prior to scheduled delivery. Need to negotiate a method of resolving deficiencies with the customer.

Configuration Review

An audit to ensure that all elements of the software configuration are properly developed catalogued and has all the necessary detail to support maintenance.

10.4 Alpha and Beta Testing

It is difficult to anticipate how users will really use software. If there is one customer, a series of acceptance tests are conducted (by the customer) to enable the customer to validate all requirements. If software is being developed for use by multiple customers, cannot use acceptance testing. An alternative is to use alpha and beta testing to uncover errors.

A customer conducts alpha testing at the developer's site. The customer uses the software with the developer 'looking over the shoulder' and recording errors and usage problems. Alpha testing conducted in a controlled environment

Beta testing is conducted at one or more customer sites by end users. It is ' live ' testing in an environment not controlled by developer. The customer records and reports difficulties and errors at regular intervals.

10.5 System Testing

Software is only one component of a system. Software will be incorporated with other system components and system integration and validation test performance.

10.6 Recovery Testing

Many systems need to be fault tolerant-processing faults must not cause overall system failure. Other systems require after a failure within a specified time. Recovery testing is the forced failure of the software in a variety of ways to verify that recovery is properly performed.

10.7 Security Testing

System with sensitive information or which have the potential to harm individuals can be target for improper or illegal use. This can include:

· Attempted penetration of the system by outside individuals for fun or personal gain.

· Disgruntled or dishonest employees.

During security testing the tester plays the role of the individual trying to penetrate the system. Large range of methods:

· Attempt to acquire passwords through external clerical means.

· Use custom software to attack the system.

· Overwhelm the system with requests.

· Cause system errors and attempt to penetrate the system during recovery.

· Browse through insecure data.

Given time and resources, the security of most systems can be breached.
10.8 Performance Testing

For real-time and embedded systems, functional requirements may be satisfied but performance problems make the system unacceptable. Performance testing
checks the run-time performance in the context of the integrated system Can be coupled with stress testing, May require special software instrumentation.

Testing under various software development stages

Requirements Stage

The requirements documents are tested by disciplined inspection and review. The preparation of test plan, which should include:
1. Specification

2. Description of test precious

3. Test milestones

4. Test Schedule

5. Test data reduction

6. Evaluation criteria

Design Stage

Design products are tested by analysis, simulation, walkthrough and inspection. Test data for functions are generated. Test cases based on structure of system are generated.
Construction Stage

This stage includes the actual execution of code with test data. Code walkthrough and inspection are conducted. Static analysis, Dynamic analysis, Construction of test drivers, hair nesses and stubs are done. Control and management of test process is critical. All test sets, test results and test reports should be catalogued and stored.

Operation and Maintenance Stage

Modifications done to the software requires retesting this is termed regression testing. Changes at a given level will necessitate retesting at all levels below it.

Approaches
Two basics approach:

1. Black box or "Functional" analysis

2. White box or "Structural" analysis

Boundary value analysis (Stress Testing)

In this method the input data is partitioned and data inside and at the boundary of each partition is tested.

Design based functional testing

Functional hierarchy is constructed. For each function at each level extrenal, non-external and special value test data are identified. Test data is identified such that it will generate external, non-external and special output values.

Cause-effect graphing

In this method the characteristic input stimuli (Causes), characteristic output classes (effects) are identified. The dependencies are identified using specification. These details are presented as directed graph. Test cases are chosen to test dependencies.

Coverage-Based Testing

The Program is represented as control-flow graph. The paths are identified. Data are chosen to maximize paths executed under test conditions. For paths that are not always finite and those infeasible, Coverage metrics can be applied. .

Complexity-based testing

The Cyclomatic Complexity is measured. The paths actually executed by
program running on test data are identified and the actual complexity is set. A test set is devised which will drive actual complexity closer to Cyclomatic complexity.

Test Data Analysis
During Test Data Analysis “The Goodness of the test data set" is taken into major consideration.

Statistical analysis and error seeding

Known errors are seeded into the code so that their placement is statistically similar to that of actual errors .
Mutation Analysis

It is assumed that a set of test data that can uncover all simple faults in a program is capable of detecting more complex faults. In mutation analysis a large number of simple faults, called mutation, are introduced in a program one at a time .The resulting changed versions of the test program are called mutates. Test data is then be constructed to cause these mutants to fail. The effectiveness of the test data set is measured by the percentage to mutants killed.

Test Results

The listed tests were conducted in the software at the various developments stages. Unit testing was conducted. The errors were debugged and regression testing was performed. The integration testing will be performed once the system is integrated with other related systems like Inventory, Budget etc. Once the design stage was over the Black Box and White Box Testing was performed on the entire application. The results were analyzed and the appropriate alterations were made. The test results proved to be positive and henceforth the application is feasible and test approved.

 The sample Test case

[image: image34.png]
Fig: Sample test case for locating friends and family using mobile phones with GPS

9. CONCLUSION

J2ME mobile application based on providing Location Based Service using Global Positioning System (GPS) as a location provider is presented. The application is implemented as a client server system that helps users to locate their family members and receive alerts when friends are nearby. The location average accuracy using this system is believed to be within couple of meters. The application works in open space areas only since it relies on GPS. Future extensions may look at other options such as getting the location from the service provider. In this case the location accuracy will be reduced and will depend on the size of the cells where the user is located.
Other future extensions can be summarized as follows:

 • Include maps, to send a map with a family member location rather than just sending the location name. Also a map that shows the path from a friend to another.
 • Provide a Mobile SOS (Save Our Souls) facility to mobile users. GPS satellites Can be used to find the location of the user, and send the coordinates via SMS to a server.

 • Provide religious needs such as making the application to calculate the five Muslim prayer times using the GPS coordinates. Also determine the Kiblah (Makah) direction using the coordinates provided by the receiver.

 • Allow the users to create other lists rather than just using the friends and the family members list. This will help in using the system in organizations that need to know the location of their employees during working hours.

 FUTURE ENHANCEMENTS

The Future Extensions can be summarized as follows:

• Include maps, to send a map with a family member location rather than just sending the Location name, also a map that shows the path from a friend to another.
• Provide a Mobile SOS (Save Our Souls) facility to mobile users. GPS satellites can be used to find the location of the user, and send the coordinates via SMS to a server

• Provide religious needs such as making the application to calculate the five Muslim prayer times using the GPS coordinates. Also determine the Qiblah (Makkah) direction using the coordinates provided by the receiver.

• Allow the users to create other lists rather than just using the friends and the family members list. This will help in using the system in organizations that need to know the location of their employees during working hours.
10. BIBLOGRAPHY
· Axel Küpper, Location-based services, fundamentals and operation, WILEY, 2nd edition, 2005.

· Joel McNamara, GPS for Dummies, For Dummies, 1st edition, 1998.

· Rick Broida, How to Do Everything with Your GPS, McGraw- Hill/Osborne, 2nd edition, 2004.

· Qusay H. Mahmoud "J2ME and Location-Based Services". Sun Developer Network, 2004.

· “Google Earth software”. http://earth.google.com/ September 2010
[image: image35][image: image36][image: image37][image: image38][image: image39][image: image40][image: image41.png]

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

94

[image: image54.png][image: image55.png][image: image56.png][image: image57.emf]Class

Name : String

Date : Date

Function1()

[image: image58.emf]Interface1

[image: image59.emf]Program.exe

[image: image60.emf]Printing

_1094585044

_1094585046

_1094585048

_1094585045

_1094585040

_1094585042

_1094585043

_1094585041

_1094585039

