ABSTRACT

 1.ABSTRACT
 With the tremendous growth of information available to end users through the Web, search engines come to play ever a more critical role. Nevertheless, because of their general-purpose approach, it is always less uncommon that obtained result sets provide a burden of useless pages. The next-generation Web architecture, represented by the Semantic Web, provides the layered architecture possibly allowing overcoming this limitation. Several search engines have been proposed, which allow increasing information retrieval accuracy by exploiting a key content of Semantic Web resources, that is, relations. However, in order to rank results, most of the existing solutions need to work on the whole annotated knowledge base. In this project, we propose a relation-based page rank algorithm to be used in conjunction with Semantic Web search engines that simply relies on information that could be extracted from user queries and on annotated resources. Relevance is measured as the probability that a retrieved resource actually contains those relations whose existence was assumed by the user at the time of query definition

INTRODUCTION

 2. INTRODUCTION

 With the tremendous growth of information available to end users through the Web, search engines come to play ever a more critical role. Nevertheless, because of their general-purpose approach, it is always less uncommon that obtained result sets provide a burden of useless pages. The next-generation Web architecture, represented by the Semantic Web, provides the layered architecture possibly allowing overcoming this limitation. Several search engines have been proposed, which allow increasing information retrieval accuracy by exploiting a key content of Semantic Web resources, that is, relations. However, in order to rank results, most of the existing solutions need to work on the whole annotated knowledge base.

2.1 Existing System:

 In the last years, with the massive growth of the Web, we assisted to an explosion of information accessible to Internet users. Nevertheless, at the same time, it has become ever more critical for end users to explore this huge repository and find needed resources by simply following the hyperlink network. Today, search engines constitute the most helpful tools for organizing information and extracting knowledge from the Web. However, it is not uncommon that even the most renowned search engines return result sets including many pages that are definitely useless for the user. This is mainly due to the fact that the very basic relevance criterions underlying their information retrieval strategies rely on the presence of query keywords within the returned pages. It is worth observing that statistical algorithms are applied to “tune” the result and, more importantly, approaches based on the concept of relevance feedback are used in order to maximize the satisfaction of user’s needs. Nevertheless, in some cases, this does not suffice.

2.2 Proposed System:

 In this project, we will prove that relations among concepts embedded into semantic annotations can be effectively exploited to define a ranking strategy for Semantic Web search engines. This sort of ranking behaves at an inner level that is, it exploits more precise information that can be made available within a Web page and can be used in conjunction with other established ranking strategies to further improve the accuracy of query results. With respect to other ranking strategies for the Semantic Web, our approach only relies on the knowledge of the user query, the Web pages to be ranked, and the underlying ontology. Thus, it allows us to effectively manage the search space and to reduce the complexity associated with the ranking task.

2.3 Organization of Documentation

 The proposed dissertation consists of seven Chapters including Introduction and Conclusions. Chapter 1 presents motivation, problem definition, objective and limitation of the proposed system. Chapter 2 emphasizes on detailed literature survey. Chapter 3 Describes about the analysis, software requirement specification, software and hardware requirements. Chapter 4 described the Total Design of the Project using UML Diagrams and Chapter 5 details the Screen Shots/ Reports of the project. Testing and validation is described in Chapter 6.
LITERATURE SURVEY

3. LITERATURE SURVEY
3.1 Introduction

 In this section of the related work we describe the existing system, the limitation of the existing system, the earlier version, current version, proposed version, and expected results of this project.
3.2 Related Work and Background

3.2.1 Anatomy of search engine

 The web creates new challenges for information retrieval. The amount of information on the web is growing rapidly, as well as the number of new users inexperienced in the art of web research. People are likely to surf the web using its link graph, often starting with high quality human maintained indices such as Yahoo or with search engines. Human maintained lists cover popular topics effectively but are subjective, expensive to build and maintain, slow to improve, and cannot cover all esoteric topics. Automated search engines that rely on keyword matching usually return too many low quality matches. To make matters worse, some advertisers attempt to gain people's attention by taking measures meant to mislead automated search engines.

3.2.2 System Features

 The search engine has two important features that help it produce high precision results. First, it makes use of the link structure of the Web to calculate a quality ranking for each web page. This ranking is called Page Rank. Second, it utilizes link to improve search results.

3.2.3 Page Rank: Bringing Order to the Web

 The citation (link) graph of the web is an important resource that has largely gone unused in existing web search engines. We have created maps containing as many as 518 million of these hyperlinks, a significant sample of the total. These maps allow rapid calculation of a web page's "Page Rank", an objective measure of its citation importance that corresponds well with people's subjective idea of importance. Because of this correspondence, Page Rank is an excellent way to prioritize the results of web keyword searches. For most popular subjects, a simple text-matching search that is restricted to web page titles performs admirably when Page Rank prioritizes the results.

3.2.4 Description of Page Rank Calculation

 Academic citation literature has been applied to the web, largely by counting citations or back links to a given page. This gives some approximation of a page's importance or quality. Page Rank extends this idea by not counting links from all pages equally, and by normalizing by the number of links on a page. Page Rank is defined as follows:

 We assume page A has pages T1...Tn, which point to it (i.e., are citations). The parameter d is a damping factor, which can be set between 0 and 1. We usually set d to 0.85. There are more details about d in the next section. Also C(A) is defined as the number of links going out of page A. The Page Rank of a page A is given as follows:
 PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

 Note that the Page Ranks form a probability distribution over web pages, so the sum of all web pages' Page Ranks will be one.Page Rank or PR(A) can be calculated using a simple iterative algorithm, and corresponds to the principal eigenvector of the normalized link matrix of the web. Also, a Page Rank for 26 million web pages can be computed in a few hours on a medium size workstation.
3.2.5 Anchor Text

 The text of links is treated in a special way in the search engine. Most search engines associate the text of a link with the page that the link is on. In addition, it associates with the page the link points to. This has several advantages. First, anchors often provide more accurate descriptions of web pages than the pages themselves. Second, anchors may exist for documents, which cannot be indexed by a text-based search engine, such as images, programs, and databases. This makes it possible to return web pages that have not actually been crawled. Note that pages that have not been crawled can cause problems, since they are never checked for validity before being returned to the user. In this case, the search engine can even return a page that never actually existed, but had hyperlinks pointing to it. However, it is possible to sort the results, so that this particular problem rarely happens.

 This idea of propagating anchor text to the page it refers to was implemented in the World Wide Web Worm especially because it helps search non-text information, and expands the search coverage with fewer downloaded documents. We use anchor propagation mostly because anchor text can help provide better quality results. Using anchor text efficiently is technically difficult because of the large amounts of data, which must be processed.

3.2.6 System Anatomy

 First, we will provide a high level discussion of the architecture. Then, there is some in-depth descriptions of important data structures. Finally, the major applications: crawling, indexing, and searching will be examined in depth.

 In search engines, the web crawling (downloading of web pages) is done by several distributed crawlers. There is a URL server that sends lists of URLs to be fetched to the crawlers. The web pages that are fetched are then sent to the store server. The store server then compresses and stores the web pages into a repository. Every web page has an associated ID number called a docID, which is assigned whenever a new URL is parsed out of a web page. The indexer and the sorter perform the indexing function. The indexer performs a number of functions. It reads the repository; un compresses the documents, and parses them. Each document is converted into a set of word occurrences called hits. The hits record the word, position in document, an approximation of font size, and capitalization. The indexer distributes these hits into a set of "barrels", creating a partially sorted forward index. The indexer performs another important function. It parses out all the links in every web page and stores important information about them in an anchors file. This file contains enough information to determine where each link points from and to, and the text of the link.

 The URL resolver reads the anchors file and converts relative URLs into absolute URLs and in turn into doc IDs. It puts the anchor text into the forward index, associated with the docID that the anchor points to. It also generates a database of links, which are pairs of docIDs. The links database is used to compute Page Ranks for all the documents.

 The sorter takes the barrels, which are sorted by docID and resorts them by wordID to generate the inverted index. This is done in place so that little temporary space is needed for this operation. The sorter also produces a list of wordIDs and offsets into the inverted index. A program called DumpLexicon takes this list together with the lexicon produced by the indexer and generates a new lexicon to be used by the searcher. The searcher is run by a web server and uses the lexicon built by DumpLexicon together with the inverted index and the Page Ranks to answer queries.

3.3 Crawling the Web

 Running a web crawler is a challenging task. There are tricky performance and reliability issues and even more importantly, there are social issues. Crawling is the most fragile application since it involves interacting with hundreds of thousands of web servers and various name servers, which are all beyond the control of the system.

 In order to scale to hundreds of millions of web pages, the search engines has a fast distributed crawling system. A single URLserver serves lists of URLs to a number of crawlers (we typically ran about 3). Both the URLserver and the crawlers are implemented in Python. Each crawler keeps roughly 300 connections open at once. This is necessary to retrieve web pages at a fast enough pace. At peak speeds, the system can crawl over 100 web pages per second using four crawlers. This amounts to roughly 600K per second of data. A major performance stress is DNS lookup. Each crawler maintains a its own DNS cache so it does not need to do a DNS lookup before crawling each document. Each of the hundreds of connections can be in a number of different states: looking up DNS, connecting to host, sending request, and receiving response. These factors make the crawler a complex component of the system. It uses asynchronous IO to manage events, and a number of queues to move page fetches from state to state.

It turns out that running a crawler which connects to more than half a million servers, and generates tens of millions of log entries generates a fair amount of email and phone calls.

3.3.1 Automatic Text summarization

 With the rapid growth of the World Wide Web and electronic information services, information is becoming available on-line at an incredible rate. One result is the oft-decried information overload. No one has time to read everything, yet we often have to make critical decisions based on what we are able to assimilate. The technology of automatic text summarization is becoming indispensable for dealing with this problem. Text summarization is the process of distilling the most important information from a source to produce an abridged version for a particular user or task.

 Summarization can be viewed as a process of answering questions about the focus of an article. We show a two-step summarization system that automatically determines questions to ask about an article and then finds the answers in the text. The answers dictate the contents and the ordering of the resulting summary.

 We show how present-day information extraction technology can be used to identify salient term types, such as people, places, organizations and technical terms, which can be the focus for a document, regardless of the domain of the document. Using several features such as frequency and term type, we can identify the foci in the text and find relationships between them that are described in the text. Our summary is based on those sentences and clauses that cover the foci and their plausible relationships. Domain-independent Single Document Summarization.
3.3.2 Focus Analysis

 The domain independent focus based summarization system (FociSum), is designed in a modular fashion so as to decompose the pipeline processing into distinct steps. The process starts with a single document, that proceeds through a layout recognition procedure to find and remove sections of unwanted texts (such as tables and lists). Next a summarization. The shorter articles seem more amenable to a simpler, lead-based summarization strategy. All remaining articles and texts are put through the focus based summarization system. The first step is to identify foci, using an information extraction system. We use the named entity extraction system, Talent, created by IBM's research group on advanced text analysis. We use the output of Talent's processing on the text to help determine the foci of a target article in the first module, the Foci Finder.

 Now that the foci of the article has been determined, the Questioner module suggests types of relationships between them as well as questions about the foci themselves, that may be answered in the text. Once the possible relationships that the article might explain are enumerated, the answers through IBM's English Slot Grammar Parser, creating a parse tree. Answerer then searches this tree for parse tree patterns involving the foci or their variant forms that mark an answer to the questions that the previous module had concluded.

 Content Orderer. The final module takes the snippets of sentences and clauses from the original text, and reorganizes it into a summary form; targeting the production of a more coherent and informative summary than is normally possible using traditional approaches.

3.4 Summarization System:

 Comprises a preprocessing component that supplies heuristically simplified sentences; a model for scoring sentences and summaries; and a search component to find the best summary. includes a heuristically driven sentence simplification component. The basic principle remains the same: provide many useful sentence alternatives for the extractive summarizer to choose from, rather than deterministically shorten sentences before or after sentence selection. the preprocessor generates multiple simplified candidates per sentence, and deploys an expanded set of simplification operations. In simplification, syntactic units output by a broad coverage parser are eliminated from the parse tree when the node matches heuristically determined patterns. Since producing every combination of candidates with these patterns is likely to result in an explosion of simplified sentences, we adopt a two-step approach. First, nodes in the parse tree are tagged when appropriate with one of four levels of dilatability, ranked as follows:

Level 1: Adverbial phrasal modifiers: Adverbial and prepositional phrase modifiers manner and time expressions

Level 2: Adnominal modifiers: Noun appositives and nonrestrictive relative clauses

Level 3: Adverbial clausal modifiers: Gerundive clauses and past participials

Level 4: Intra-sentential attribution:

3.4.1 Sentence-level features in

 Our sentence features apply to sentences in the documents of the given clusters as well as to sentences which were derived from the original ones through simplification. When we discuss sentence features below, we will note any aspects which are specific to the treatment of sentence simplifications. In the discussion below, we denote a sentence by s and its sequence of words by w1,w2, . . . ,wn. A subsequence of the words in the sentence are judged to be content words and are denoted by c1, c2, . . . , cm. We employ an extensive stop word list, also used in previous submissions, to determine the content words. We denote the relative frequency of x by ˆp(x). The exact collections of elements that this value is computed over are specified below for each feature.

 The learned score for sentences is a linear function of the feature values:

[image: image60.emf]Printing

 All features are real-valued. The features fall into several natural groups:

• SumFocus features, including scores similar to those employed in SumBasic and SumFocus
• Other content word unigram frequency features: SumClusterHeadline Frequency, which is a sum of the frequency of the content words in the collection of headlines in the cluster, and SumDocumentFrequency, which is a sum of the frequency of content words in the document as opposed to the cluster.

• Sentence length features: binary features that fire if the length of the sentence is less than a given length we used two features, for lengths five and ten.

• Sentence position features: SumDocumentStartFrequency and SumClusterStart Frequency, which are sums of the frequencies of content words in the collection of the first 100 words from the document and all documents in the cluster; a real-valued position feature; and binary features that fire if the position is less than a given value.

• Features of all tokens (rather than content words only): SumTopicToken Frequency and SumClusterTokenBigramFrequency; these features are sums of relative frequency estimates for all tokens, including stop words.

• Features for simplified sentences: a binary feature firing if a sentence is a simplification, and a real valued feature that indicates the ratio of the lengths of the simplified and original sentences.

• A full sentence feature: a binary feature that fires if the sentence has a verb

Because our system is trained to rank sentences but the task is to choose a summary of a given length, we have a mismatch between training and testing conditions. To alleviate the problem, we use a modified version of some features in training to prevent longer sentences from always being preferred to shorter ones. For example, if the SumClusterFrequency feature has a positive weight, we would generally expect that longer sentences will receive higher scores. Therefore in training we redefine all features that are represented as a sum of per-word scores into a normalized sum, as follows: f′(s) = f(s) numWords(s).
During runtime search we do not normalize the feature values for sentence length because the search algorithm takes into account the summary length constraint and we only need to compare summaries of the same length. In future work we would like to explore more principled solutions which learn to rank summaries.
3.5 Pair-wise ranking training criteria

 To learn weights for the features we need to specify a training criterion. As noted in the introduction, we used annotated data from past DUC competitions to derive several goodness metrics for sentences. Each goodness metric lets us define a training criterion. Each goodness metric of sentences specifies a set of preferences for sentence pairs, where one sentence in judged “better” than the other. The corresponding learning criterion seeks to assign higher scores to the “better” sentences. More formally, suppose that a goodness metric asserts a set of preferences for sentences: {ij: si > sj}. Then our training criterion objective derived from this metric is as follows:

 The summation is over all comparable sentence pairs. This objective can be seen as learning to maximize the probability of choosing the better sentence from each pair of comparable sentences. A similar training objective has been used for ranking in text classification and information retrieval. In addition to this log-likelihood we add a quadratic regularization penalty on the model parameters. To learn a model that uses several goodness metrics simultaneously, we combine the log-likelihood terms corresponding to each metric as follows: If the log likelihood of metric Ml is LMl (D), we define a combined criterion as follows: L(D) = Pl LMl (D). This can be seen as maximizing the probability that we choose the “better” sentences from each comparable pair according to all criteria, assuming that we make the choices independently. It could be useful to fit separate weighting factors for each criterion. In summarization we have multiple evaluation measures for summaries: linguistic quality, content responsiveness, Pyramids, ROUGE scores, etc. Combining several criteria in training as we do is a way to address the requirement to score well across multiple evaluations.

 Below we describe the three different goodness metrics we used. Note that the set of preferences each metric specified need not be complete it could be a partial order. Thus different metrics give rise to a different number of comparable sentence pairs. Therefore, if computational resources are an issue, reducing the number of comparable pairs may be of interest and if the training set is very small, increasing that number may be desirable.

3.6 ROUGE oracle metric

 The idea of this metric is to first select the best possible summary according to ROUGE from the set of sentences in the cluster and their simplified versions. All sentences in this”oracle” summary are judged to be “better” than all sentences not in the summary according to this metric. An oracle summary for a cluster and a topic is defined as the summary that has the highest average of ROUGE-2 and ROUGE-SU4 scores with respect to the model summaries. Since finding such an oracle summary presents a hard search problem, we used a greedy search on sentences for which we defined the following per-sentence.
 Here Rank(s, R2) and Rank(s, RSU4) denote the ranks of the sentence according to its sentence-level ROUGE-2 and ROUGE-SU4 scores. During search, sentences that had cosine similarity higher than a specified threshold Vis-à-vis the already chosen sentences were discarded, to avoid redundancy.

3.6.1 Pyramid-derived metric

 From previous years, we have SCU annotations for some of the sentences proposed by peers. The University of Ottawa has organized the data such that for some of the sentences in the original document collection, a list of corresponding content units is known. For each content unit, a weight is also known from the Pyramid annotations. Thus we can define the score of a sentence to be the sum of weights of all content units present in the sentence. We further normalize this score to define the goodness of a sentence according to this metric:

 This metric asserts that for every sentence pair where both sentences have been annotated with zero or more content units, si > sj if and only if w (si) > w (sj). Sentences that have not been selected by any peers do not participate in any preference relations. Note that our simplified sentences do not have any content unit annotations associated with them. We therefore assume that sentence simplifications contain all of the content units of the original un-simplified sentences for the definition of this metric.

3.6.2 Model Frequency Metrics

 These are two metrics based on unigram and skip bigram frequency of words in the model summaries. The unigram metric defines the goodness of a sentence as follows: w(s) = Pi=1...m ˆpmodels (ci). In other words, this is similar to the SumClusterFrequency value but the relative frequencies are computed over model summaries. The sum is over content words only. Note that we do not normalize for sentence length, which could have been advantageous. The bigram measure of goodness is similar, but instead of unigram frequency it looks at the sum of frequencies of skip content word bigrams in the model summaries. This is analogous to our SumClusterSkipBigramFrequency feature but is computed with respect using frequency in the model summaries. These two metrics aim to imitate ROUGE-1 and ROUGE-SU4. Each metric asserts that a sentence si is “better” than sentence sj if w (si)-w (sj)> C. The constant C here is a manually selected threshold which we chose by rough inspection, so that we do not generate too many sentence pairs. The thresholds used were 0.08 for unigram frequency and 0.018 for skip bigram frequency. In the experiments section below, we will see that a large number of training instances are generated, even at these threshold settings.

3.6.3 Dynamic sentence scoring
 The system described so far assigns scores to sentences. When we generate a summary, we also need to deal with the problem of repetition of information. The problem is especially important for multi-document summarization and in a system such as ours, which considers multiple simplifications of the same sentence as candidates. Our approach to modeling redundancy is similar in spirit to the SumBasic approach. We define a dynamic sentence score, which is the score of a sentence as a continuation of a given partial summary: Score (s|prevS), where prevS denotes a set of sentences in a summary prefix. The score of a complete summary consisting of sentences s1, s2. . . sp is defined as:
[image: image2.emf]
 If the summary prefix is empty, the score of a sentence. If the summary prefix is non-empty, the values of some features are discounted to avoid redundancy and the weighting function uses the modified feature values:

[image: image3.emf]
 In particular, the values of all features that decompose as a sumof frequency estimates for words (content words, tokens, bigrams, skip bigrams, multi-word expressions) are discounted as follows: if the given word n-gram occurs in the summary prefix prevS, its frequency estimate is multiplied by a discount factor _. For example, the SumClusterFrequency feature is defined as follows:

[image: image4.emf]
 Similarly, for the SumClusterIDFFrequency feature, we update by adding a term, rather than multiplying by a factor, because that feature is in the log domain and multiplying the frequency by a factor. The main difference is that in we have many more types of word frequency features. At present we have chosen to discount all frequency features in the same way , using the same discount factor However, our experiments suggest that it will be beneficial to fit separate discount factors for different feature types. As it turned out, our system as submitted in the main task did not perform the same discounting strategy for the features over all tokens: SumTopicTokenFrequency and SumClusterTokenSkipBigramFrequency. For these two features the system performed more conservative discounting (discounting only content word repetitions and not discounting stop word repetitions). This was unintended, yet it had a substantial positive effect on performance. This leads us to conclude that different discounting strategies may be applicable to different feature types.

[image: image1.emf]
3.7 Conclusion

 In this section of the documentation we have described the related work pertaining to the literature survey and the details which were studied from the different research papers for the implementation of this project.

Analysis

4. AnaLysis
The purpose of software requirements specification specifies the intentions and intended audience of the SRS. The scope of the SRS identifies the software product to be produced, the capabilities, application, relevant objects etc. Software Requirements Specification: It’s a description of a particular software product, program or set of programs that performs a set of function in target environment. The SRS contains the details of process, functions of the product, user characteristics. The non functional requirements if any are also specified. The remaining section of the SRS specifies the functionality of these systems. Further the need of Interfaces is also described in the next part of SRS. The criteria for the non-functional requirements, the constraints on the system and assumptions and dependencies (if any) are also described in the remaining sections.

4.1 Software Requirement Specification
A Software Requirements Specification (SRS) is a description of a particular software product, program or set of programs that performs a set of functions in a target environment (IEEE Std. 830-1993). A Software Requirements Specification (SRS) is a complete description of the behavior of the system to be developed. It includes a set of use cases that describe all the interactions the users will have with the software. Use cases are also known as functional requirements. In addition to use cases, the SRS also contains non-functional (or supplementary) requirements. Non-functional requirements are requirements which impose constraints on the design or implementation (such as performance engineering requirements, quality standards, or design constraints).
4.1.1 Software requirement

	1.
	Operating System
	Windows 2000 / XP

	2.
	Languages/

Software
	.Net Runtime Framework, Visual Studio 2005,

C# and ASP.Net

Table 1: Software Requirement Table

4.1.2 Hardware requirement

	1
	Pentium-4 PC with 20 GB hard-disk and 256 MB RAM, Keyboard, Mouse
	Not-Applicable

Table 2: Hardware Requirement Table

4.2 Content diagram of Project

[image: image5.emf]
Crawler Application: This program will run as a multithreaded program continuously, which will take the link and download that page, it will extract links form the downloaded page and again will download those pages this will repeat continuously. The downloaded pages are saved in the Web pages database.

OWL Parser: this program will retrieve the downloaded pages and for each page it will remove HTML tags as well as any special characters. The pages will now contain only the data. The data is saved in the Knowledge database.

Web page Database: is used for storing downloaded HTML pages.

Knowledge Database: is used for storing the page which only has data and all the HTML and special characters are removed.

GUI: is the program which will take input form the user and display the output to the user. The input is the keyword which the user sends as the query and the output will be web pages returned which will have higher ranking.

Search Logic: This program will retrieve the pages from the database and will check for the keyword that the user has entered. It will only retrieve the pages that matched the keyword. Then program will consider the retrieved pages and construct the sub graph.

Ranking Logic: this program will consider all the pages that are retrieve as well as the sub graphs and will compute page spanning forests. Using this it will compute the scores based on the relations. And merge it with the original web pages saved in the web page database. The ranking is calculated based on the scores of the concept words. The result is out to the user.

4.3 Algorithm
[image: image6.emf]
4.4 Conclusion

In this section of the project we have described the analysis phase of the project where we have given the details about the software requirement specifications and several constraints and implementation interfaces as well as the algorithms that are used in this proposed project.

DESIGN

5. DESIGN

The Unified Modeling Language (UML) is a visual modeling language used to specify, visualize, construct and document a software intensive system. The embedded real-time software systems encountered in applications such as telecommunications, school systems, aerospace, and defense typically tends to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but also, readily accommodates changes forced by a steady stream of new requirements.

The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. The UML is a very important part of developing object oriented software and the software development process. The UML uses mostly graphical notations to express the design of software projects. Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of the software.

The primary goals in the design of the UML are: Provide users with a ready-to-use, expressive visual modeling language so they can develop and exchange meaningful models. Provide extensibility and specialization mechanisms to extend the core concepts. Be independent of particular programming languages and development processes. Provide a formal basis for understanding the modeling language. Encourage the growth of the OO tools market. Support higher-level development concepts such as collaborations, frameworks, patterns and components. Integrate best practices.
The Unified Modeling Language (UML) is a visual modeling language used to specify, visualize, construct and document a software intensive system. The embedded real-time software systems encountered in applications such as telecommunications, school systems, aerospace, and defense typically tends to be large and extremely complex. It is crucial in such systems that the software is designed with a sound architecture. A good architecture not only simplifies construction of the initial system, but also, readily accommodates changes forced by a steady stream of new requirements.

The UML represents a collection of best engineering practices that have proven successful in the modeling of large and complex systems. The UML is a very important part of developing object oriented software and the software development process. The UML uses mostly graphical notations to express the design of software projects. Using the UML helps project teams communicate, explore potential designs, and validate the architectural design of the software.

The primary goals in the design of the UML are: Provide users with a ready-to-use, expressive visual modeling language so they can develop and exchange meaningful models. Provide extensibility and specialization mechanisms to extend the core concepts. Be independent of particular programming languages and development processes. Provide a formal basis for understanding the modeling language. Encourage the growth of the OO tools market. Support higher-level development concepts such as collaborations, frameworks, patterns and components. Integrate best practices.

Identifiable object-oriented modeling languages began to appear between mid-1970 and the late 1980s as various methodologists experimented with different approaches to object-oriented analysis and design. The number of identified modeling languages increased from less than 10 to more than 50 during the period between 1989-1994. Many users of OO methods had trouble finding complete satisfaction in any one modeling language, fueling the "method wars." By the mid-1990s, new iterations of these methods began to appear and these methods began to incorporate each other’s techniques, and a few clearly prominent methods emerged.

The development of UML began in late 1994 when Grady Booch and Jim Rumbaugh of Rational Software Corporation began their work on unifying the Booch and OMT (Object Modeling Technique) methods.
Elements, Viewpoints and Views:

The idea of a view is a key one in the UML: It provides the basis for the UML notion of a model. In the UML, a model is a complete representation of a system from a particular viewpoint (that is, an aggregation of a set of views from specific perspectives). At the same time, systems are logically composed of many nearly independent models, representing many different viewpoints, and they can be physically composed of many independent subsystems, each of which can also be treated as a system for modeling purposes. A top-level model with subsidiary models representing specialized views implicitly represents a system itself. Each model is made up of diagrams and text. The UML Specification describes diagrams as "views of a model" each representing a particular perspective that the overall model aggregates and integrates. All of this applies recursively to subsystems as well.

The perspective that a model represents is a combination of the model's purpose and the level of detail it provides. Any system can contain a number of viewpoints and models, which depend on the role of each viewer, the conceptual stance he or she brings to the viewing, and the ultimate purpose of the view. Any viewpoint can be expressed by a number of views and diagrams, depending on the interests of the audience being addressed.

The modeler represents these views, wearing different hats in turn, and adopting different viewpoints. A user's view will end up being expressed differently depending on whether the audience is senior management or a technical person. A management perspective might result in a management model that emphasizes architecture and minimizes technical detail. At the most abstract, a system should be modeled from at least two viewpoints: Looking at the outside world-an interpreted reality. As modelers, in order to build a system, we model our understanding of the context, requirements, practices, and constraints to ensure that we have the problem and solution to it. We then model the architecture, specifications, design, implementation, and deployment of what the designers should do. The second viewpoint provides a blueprint that designers can work from and the documentation that management needs to get the product built, keep it working, and make it useful.

The advantage an object-oriented approach brings to modeling is that it allows a modeler to "bridge the chasm" between the analysis and design models by providing a semantically consistent conceptual framework, regardless of the viewpoint involved. Things in the real world are represented as objects, in the same way that things in the constructed world are. The modeling modes are still distinct, but the language is very much the same. Naturally, in an iterative development process, even the barrier between modeling modes is permeable, and there's a constant to-and-fro, as opposed to rigid distinctions.

Models and Model Elements:

A UML model is an abstraction, a complete representation of a physical system. Models are about things, relationships, behaviors, and interactions in a system. Equally important, models are about how to organize this information because conceptual chunking is an important tool for successful abstracting.

The UML itself distinguishes two types of models:

1. Structural models: Represent the pieces of a system and their relationships.

2. Dynamic models: Represent the behavior of the elements of the system and their interactions.

Models are made up of model elements. Model elements are named uniquely in the context of a given namespace (usually a package) and have visibility, which defines how they can be used (and reused) by other model elements. Visibility determines the way individual elements can connect with each other. Therefore, it is a critical part of managing the complexity of models via information hiding. Decisions about visibility can be powerful factors influencing decisions about the logical organization of models. It is one of the ways in which the UML is distinctly different from previous generations of modeling languages and tools-by leveraging and extending the notion of visibility from Object-Oriented languages themselves.

In the UML, model elements may be visible in one of three ways:

Public: Any outside model element can see the model element.

Protected: Any descendent can see the model element.

Private: Only the model element itself, its constituent parts, and the model elements nested within it can see it.

Diagrams

Semantically, diagrams express views of a model (that is, subsets of the viewpoint that each model represents). An individual model element can be presented in one or many of the diagrams for a model; in other words, a model element can be presented in many different ways and in many diagrams, but it must be presented in at least one diagram in one way. Diagrams don't have any special shape assigned to them; they can be free-floating, bounded by a box, or contained within a package.

Neither geometry nor "geography" has much significance in a UML diagram. For the most part, a symbol's size or relative location generally has no semantic content, except for diagrams that have a time dimension. Diagrams are all two-dimensional because of the current limits imposed by available technology and tools, although some shapes are nominally three-dimensional, rendered in two dimensions (cubes, for example). Text can be used liberally within a diagram. Examples include expressing rules and, within symbols, identifying attributes.

The UML Specification highlights three kinds of visual relationships in diagrams:

Connection: Lines connect icons and symbols, forming connecting paths. Paths are always attached to symbols at both ends (that is, no dangling lines are allowed).

Containment: Boxes, circles, and other fully enclosed shapes contain symbols, icons, and lines.

Visual Attachment: Elements that are close together may have a relationship suggested by their proximity. For example, a name above a line or next to a box may be interpreted as applying to the line or box.
Packages:

A package is a grouping of UML elements, which can include diagrams and may include subordinate packages and other kinds of model elements. According to the UML Specification, packages "can be used for organizing elements for any purpose; the criteria to use for grouping elements together into one package are not defined within UML". Packages are probably the most important aspect of the UML from a modeling perspective; they play a role in UML modeling that is similar to the role, which the classes play in programming.

Packages can be nested and can reference other packages. They provide the basis for configuration control, storage, and access control. They also provide the basis for naming model elements. They define the namespace for model elements; nested packages create a naming hierarchy. Because packages can't be instantiated, nominally their only formal function (in a system) is to provide this name space. Each element in a package must be uniquely named. Elements in different packages may have the same name Packages can import or access the contents of other packages. When one package imports another, it imports all those elements that are visible in the second package. Imported elements become part of the importing package's namespace An access relationship keeps the namespaces separate, requiring that the accessing package reference elements in the accessed package use fully qualified names. Packages can also "specialize" other packages in a generalization relationship that parallels inheritance among classes.

Containment and visibility are key characteristics of model elements in packages. Packages encapsulate the model elements they contain and define their visibility as private, protected, or public.

Symbols:

UML symbols can have content or just be iconic. Actually, the UML distinguishes between what it calls, awkwardly, two-dimensional symbols and icons:

Icons: They are fixed in size and shape; icons do not have to be attached to paths (but can be terminators: icons on the end of a path that qualify the meaning of the path symbol). They may be located within symbols.

Two-dimensional symbols: Having the capability to shrink or grow, two-dimensional symbols can have compartments as well. Some two-dimensional symbols are also graphs-they contain nodes connected by paths.

Actors:

An actor represents a user or another system that will interact with the system you are modeling. An example of an actor is shown below.

[image: image7.png]
An actor participates in use cases and may be represented in other types of diagrams anywhere in the system model.

Use Case / Collaboration:

A use case is a sequence of interactions by an actor with the system, which yields observable value to the actor. According to UML, use cases are made to fall into a category of type of class. The UML calls it a "behavioral thing”. An example of a use case is shown below.

[image: image8.png]
Collaboration is a collection of objects that interact to implement behavior. Typically, collaboration can be used to specify the realization of a use case or an operation. Collaboration can also be used to specify a software pattern, and a parameterized collaboration (that is, one with abstract participants that are replaced when the pattern is used) can specify an architectural pattern.

Class / Object / Type / Active Class:

A class is an abstraction of a set of possible objects that share the same attributes, operations, methods, relationships, and semantics. An example of a class is shown below.

[image: image43.emf]
A class may use a set of interfaces to specify collections of operations it provides to its environment. A type is a representation of a collection of objects without specifying the physical implementation as a class. Class and type use the same symbol in the UML.

An object is an instance of a class or an example of a type-the same symbol as class, but with the name underlined. An example is shown below.

An active class is a set of objects each of which owns a thread of control (that is it can initiate, control and terminate a process).

Interface

[image: image44.emf]An interface describes the visible operations of a class, component, or package. It defines the services available from the implementing element. An example is shown below.

Component

A component is a physical, replaceable part of a system that packages implementation and provides the realization of a set of interfaces. A component represents a physical piece of implementation of a system, including software code (source binary or executable) or equivalents as scripts or command files. An example is shown below.

[image: image45.emf]
State

A state is a condition, status or situation of an object as part of its lifecycle and/or as the result of an interaction. A state may also be used to model an ongoing activity. An example is shown below.

[image: image46.emf]
Lines

In the UML lines are used to express messages (dynamic connections between model elements),”links”(relationships between model elements-the term link also has a formal meaning within the UML), and interactions. Generally messages don’t appear in structural models; links don’t appear in dynamic models. But this too can be varied within a dialect. Lines must be terminating in some fashion in UML either with an element graphic or an icon.

Messages

Messages are used in the interactions between model elements in the dynamic models, those that represent the behavior in a system. Messages convey information between objects, for example, and trigger activities. There are four types of messages.

Relationships

Relationships are used in structural models to show semantic connections between model elements. A dependency is what the unified modeling language user guide calls a “using” relationship, one in which the connection between two things means that if one changes, it affects the other. Dependencies can be used to identify connections between a variety of model elements, packages being a notable example. These are unidirectional relationships

[image: image47.emf]
A generalization is a relation between two elements, in which one is a more general form of the other. Class inheritance is represented in this way, but generalization can be used more generally. Packages are an example.

[image: image48.emf]
An association is what the UML calls a structural relationship, mapping one object to another set of objects. It is also used to identify the communication path between an actor and a use case. The unified modeling language reference manual describes associations as “the glue that ties systems together”.

[image: image49.emf]
A realization is a type of dependency relationship that identifies a contractual link between elements—a realizing element. For example, a class implements the behaviors in a specifying element; in this case it is an interface. A realization is also links use cases and collaborations.

[image: image50.png]
Associations

The UML considers aggregations and composites to be special forms of association with distinctive notations.

A qualified association is a plain association with an indication of what information to use when identifying a target object in the set of associate objects, bank account # is used to identify the customer it belongs to.

An aggregation represents a whole-part relationship. This contrasts with a plain association, which shows the relationship among/between peers, depending on the number. In an aggregation, one element is the whole and the other(s) is the parts.

A composition is an aggregation that has strong ownership of its parts. Therefore, if the whole element disappears, the parts do, too.

Dependencies

Dependency relationships are frequently stereotyped in the UML to support the needs of particular types of diagrams or model elements. The following are some examples:

[image: image51.png]Extends provides a way of handling behavior that is optional in a use cases. The optional behavior is packaged in an extending use case and connected via <<extends>> dependency.

Includes provides a way of handling behavior that is common to a number of use cases. The optional behaviour is favored out, packaged in a included use case, and

[image: image52.png]connected via an <<includes>> dependency.

Imports is a dependency between packages. A receiving package can access publicly visible elements of the package being imported.

[image: image53.png]
5.1 Diagrams

UML diagrams are where it all comes together. In the UML there is no formal way of bounding or containing a diagram, so there are no relationships between diagrams. Instead, diagrams are the graphical representation vehicles for aspects of a model. They don’t standalone but are meant to be a part of the textual narrative that provides the model specification.

The UML specifically includes nine different diagrams in its documentation. However, these diagram types are process dependent and suggestive, rather than prescriptive. The UML allows the modeler to combine any and all elements into diagrams, depending on the modeling needs at hand.

CLASS DIAGRAMS

A class diagram is a picture for describing generic descriptions of possible systems. Class diagrams and collaboration diagrams are alternate representations of object models. Class diagrams contain classes and object diagrams contain objects, but it is possible to mix classes and objects when dealing with various kinds of metadata, so the separation is not rigid.

Class diagrams are not prevalent than object diagrams. Normally you will build class diagrams plus object diagrams illustrating complicated data structures or message passing structures.

Class diagrams contain icons representing classes, interfaces and their relationships. You can create one or more class diagrams to depict the classes at the top level of the current model; such class diagrams are themselves contained by the top level of the current model. You can also create one or more class diagrams to depict classes by each package in your model; such class diagrams are themselves contained by the package enclosing the classes they depict; the icons representing logical packages and classes in class diagrams.

You can change properties or relationships by editing the specification or modifying the icon on the diagram. The associated diagrams or specifications are automatically updated.

You can change properties or relationships by editing the specifications or modifying the icon on the diagram. The associated diagrams or specifications are automatically updated.

CLASS

Definition:

A class is a set of objects that share a common structure and common behavior (the same attributes, operations, relations and semantics). A class is an abstraction of real world items. When these items exist in the real world, there are instances of the class and referred to as objects.

For each class that has a significant chronological behavior, you can create an activity diagram or a state chart diagram to describe this behavior.

Graphical depiction

A class icon is drawn as a 3-part box, with the class name in the top part, a list of attributes (with optional types and values) in the middle part, and a list of operations (with optional argument lists and return types) in the bottom part.

[image: image54.png]
The attribute operation sections of the class box can be suppressed to reduce detail in an overview. Suppressing a section makes no statement about the absence of attributes or operations, but drawing an empty section explicitly states that there are bo elements in that part.

Note: a class icon name will accept any font or style setting up to 18 points in size. A class stereotype will accept any font up to 18 points in size. Attributes and operations will have the same font as the class name. However the font size limit is 10.

USE CASE DIAGRAM

For use case-driven development, the use case diagram is the keystone of the modeling effort. Use case diagrams show actors and use cases, together with their relationships. These include the following:

Associations between the actors and the use cases

Generalizations between the actors

Generalizations, extends, and includes relationships among the use cases

The use cases may be enclosed by a rectangle to show the boundary of the containing system, and so on. As will be evident in the UML patterns, use case diagrams by themselves are essentially trivial. The real substance of a use case is in the text (narrative).
A use case captures the significant parts of an interaction with the system or some part of the system by the actor(s) defining the scope, context, and requirements. Use cases can be used in a variety of ways throughout the development effort (for example, as the basis for setting up the test environment and as a starting point for a user manual). The following diagram outlines the main components of Use Case Diagram.

[image: image9.jpg]
SEQUENCE DIAGRAM

A sequence diagram shows an interaction arranged in time sequence: the objects (not classes) and the messages that pass between them when an interaction occurs. These are what Ivar Jacobson used to call interaction diagrams. A sequence diagram has a list of participating objects across its top, shown as rectangles. Each object rectangle contains at least a name, always underlined to indicate that the rectangle is an object and not a class. Below each object rectangle, shown with a dotted line, is the object lifeline, the time-ordered visual framework for message exchanges between the objects (and with the system). A narrow vertical rectangle called the activation represents the period of time an object is actually performing an action. Object messages appear as arrows with a text description. The following diagram shows the basic elements of a sequence diagram.

[image: image10.png]
COLLABORATION DIAGRAM

A collaboration diagram also shows the passing of messages between objects, but focuses on the objects and messages and their order instead of the time sequence. The sequence of interactions and the concurrent threads are identified using sequence numbers. A collaboration diagram shows an interaction organized around the roles in the interaction and their links to each other, and shows the relationships among the objects playing the different roles. The UML Specification suggests that collaboration diagrams are better for real-time specifications and for complex scenarios than sequence diagrams.

The diagram shows the telephone call example expressed as a collaboration diagram. The numbers denote the order of completion.

[image: image11.png]
ACTIVITY DIAGRAM

An activity diagram is a "special case of a state diagram in which all (or at least most) of the states are action or sub activity states and in which all (or at least most) of the transitions are triggered by completion of the actions or sub activities in the source states". In fact, they're basically sophisticated versions of flowcharts. They're intended to cover workflows and processes, and have much of the flavor of flowcharts without the negative "baggage." Their depiction as versions of state diagrams is subject to much criticism, but at least it helps to make them a consistent member of the UML family.

An activity diagram is attached to a class (which includes a use case for the UML), to a package, or to the implementation of an operation. The UML Specification says that they "focus on flows driven by internal processing (as opposed to external events)". In an activity diagram, swim lanes are used to package the organizational boundaries within an activity model: they are used to show who is doing what in an activity model. When it is necessary to indicate that two or more actions occur in parallel, a line called a synchronization bar shows where each thread in the parallel actions halts, waiting until the other threads reach the same point. Figure shows an activity model for the workflow of an order system. Organized around the responsibilities of the customer, sales, and the warehouse, swim lanes are the vertical lines partitioning the diagram and identifying the responsibilities for each activity.

[image: image12.png]
5.2 UML diagrams

[image: image13.png]
Use Case Diagram

Activity Diagram

[image: image14.wmf] ACTIVITY DIAGRAM FOR SEARCH RESOURCES

Open known

source

Extract new

Source links

compare with links

in database

Save new source links in

temporary files

No new links

New links found

[image: image15.wmf] ACTIVITY DIAGRAM FOR EXTRACT LINKS

Open source

link

Extract new

links

Check for new

links

Add link to

database

New links found

No new links

[image: image16.wmf] ACTIVITY DIAGRAM FOR EXTRACT CONTENT

Open link

Extract content

Get content length and

last modified date

Compare content length

and last modified date

Update content

in temporary file

modified

Save content in

temporary file

un modified

[image: image17.wmf] ACTIVITY DIAGRAM FOR PREPROCESS TEXT

Open content

file

check content

type

Convert into

plain text

HTML document

Convert into plain

text using API

other document

Save plain text

in a file

[image: image18.wmf] ACTIVITY DIAGRAM FOR CALCULATE WORD FREQUENCY

Open plain text

file

Remove stop

words

Count occurance of

each word

Store in

database

[image: image19.wmf] ACTIVITY DIAGRAM FOR GENERATE SUMMARY

Input keyword and

summary size

check for

keyword in file

Score the

sentences

Rank the

sentences

Pick the sentences and

concatenate to summary

Exist

Not exist

Sequence Diagrams

[image: image20.wmf] : CRAWLER

 : LINK

 : ADMINISTRATOR

Extract links

Update links

 SEQUENCE DIAGRAM FOR NEW LINKS FOUND

Provide known source

new links found

[image: image21.wmf] : CRAWLER

 : CONTENT

 : ADMINISTRATOR

Extract content length

Extract content

Extract last modified date

Update content

SEQUENCE DIAGRAM FOR MODIFIED CONTENT

Link

[image: image22.wmf] : CALCULATOR

 : WORD

 : ADMINISTRATOR

calculate word frequency

save count

SEQUENCE DIAGRAM FOR CALCULATE WORD FREQUENCY

plain text

[image: image23.wmf] : SUMMARIZER

 : CONTENT

 : EMPLOYEE

keyword

search for keyword

 SEQUENCE DIAGRAM FOR KEYWORD EXIST

keyword

summary size

documents link and summary

Collaboration Diagrams
[image: image24.wmf] : CRAWLER

 : LINK

2: Extract links

COLLABORATION DIAGRAM FOR NEW LINKS FOUND

 : ADMINISTRATOR

4: Update links

1: Provide known source

3: new links found

[image: image25.wmf] : CRAWLER

 : CONTENT

2: Extract content length

3: Extract last modified date

4: Extract content

 COLLABORATION DIAGRAM FOR MODIFIED CONTENT

 : ADMINISTRATOR

5: Update content

1: Link

[image: image26.wmf] : CALCULATOR

 : WORD

2: calculate word frequency

COLLABORATION DIAGRAM FOR CALCULATE WORD FREQUENCY

 : ADMINISTRATOR

3: save count

1: plain text

[image: image27.wmf] : SUMMARIZER

 : CONTENT

4: search for keyword

COLLABORATION DIAGRAM FOR KEYWORD EXISTS

 : EMPLOYEE

3: keyword

5: documents link and summary

1: keyword

2: summary size

Class Diagram

[image: image28.wmf] CLASS DIAGRAM

ADMINISTRATOR

Userid : String

Passwd : String

Login()

Extract Source links()

LINK

Sourcelinks : String

links : String

 Update Links()

LOGIN

Validate()

USER

Userid : String

Passwd : String

Login()

CRAWLER

Source : String

Content length : Integer

Last modified date : Date

Extract links()

extract content()

1

1

1

1

PROPROCESSOR

Content type : String

Convert content()

1

1

1

1

CONTENT

name

Update content()

(from CRAWLER)

EMPLOYEE

Userid : String

Passwd : String

Login()

SUMMARIZER

score : Integer

Rank : Integer

caliculate score()

caliculate Rank()

Generate summary()

1

1

1

1

5.3 Conclusion

In this section of the documentation we have described the design considerations, several design diagrams are also specified which contains use case diagram, class diagram, and sequence diagrams are also specified with modules of the proposed project.

IMPLEMENTATION & RESULTS

6. IMPLEMENTATION & RESULTS

In this section of the documentation we describe the important part of the coding techniques which are being used in the proposed project. The complete code is not included in the report, only the sections which are most important and critical are included in this section of the report.

6.1 Screen Shots
[image: image29.png]
[image: image30.png]
[image: image31.png]
[image: image32.png]
[image: image33.png]
[image: image34.png]
[image: image35.png]
[image: image36.png]
[image: image37.png]
[image: image38.png]
[image: image39.png]
[image: image40.png]
[image: image41.png]
[image: image42.png]
6.2 Conclusion

In this section of the documentation we have describe the important part of the coding techniques which are being used in the proposed project. The forms as well as the output screens are also provided which shows the communication between different form of the Mobile code.

TESTING & VALIDATION

7. TESTING & VALIDATION

The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

Unit testing

Unit testing involves the design of test cases that validate that the internal program logic is functioning properly, and that program input produces valid outputs. All decision branches and internal code flow should be validated. It is the testing of individual software units of the application .it is done after the completion of an individual unit before integration. This is a structural testing, that relies on knowledge of its construction and is invasive. Unit tests perform basic tests at component level and test a specific business process, application, and/or system configuration. Unit tests ensure that each unique path of a business process performs accurately to the documented specifications and contains clearly defined inputs and expected results.

Integration testing

Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

Integration testing is of three types:

· Bottom up Integration

· Top down Integration

· Sandwich Integration

 Bottom up integration testing consists of unit testing followed by system testing. Unit testing has the goal of testing individual modules in the system. Subsystem testing is concerned with verifying the operation of the interfaces between modules in the sub systems. Top down integration testing starts with the main routine and one or two immediately subordinate routines in the system structure. Top down integration requires the use of program stubs to simulate the effect of lower level routines that are called by those being tested.

Top down method has the following advantages:

· System integration is distributed through the implementation phase. Modules are integrated as they are developed.

· Top level interfaces are tested first and mist often.

· The top level routine provides a natural test harness for lower level routines.

· Errors are localized to the new modules and interfaces that are being added.

Functional test

Functional tests provide a systematic demonstration that functions tested are available as specified by the business and technical requirements, system documentation, and user manuals. Functional testing is centered on the following items:

Valid Input : identified classes of valid input must be accepted.

Invalid Input : identified classes of invalid input must be rejected.

Functions : identified functions must be exercised.

Output
: identified classes of application outputs must be exercised.

Systems/Procedures: interfacing systems or procedures must be invoked.

Organization and preparation of functional tests is focused on requirements, key functions, or special test cases. In addition, systematic coverage pertaining to identify Business process flows; data fields, predefined processes, and successive processes must be considered for testing. Before functional testing is complete, additional tests are identified and the effective value of current tests is determined.

System Test

System testing ensures that the entire integrated software system meets requirements. It tests a configuration to ensure known and predictable results. An example of system testing is the configuration oriented system integration test. System testing is based on process descriptions and flows, emphasizing pre-driven process links and integration points.

7.1 Design of test cases and scenarios
	Test Case ID:
	1

	Test Case Name
	Software Installation Test

	Purpose:
	To check weather the required Software is installed on the systems

	Input:

	Run the Visual Studio .Net Software Version,

	Expected Result:
	Should Display the Integrated Development Environment

	Actual Result:
	Displays the IDE for writing the Mobile code for the GUI, Compilation and Executing.

	Failure
	If the Software is not installed and configured accordingly then the system will not work

	Test Case ID:
	2

	Test Case Name
	Modules and Programs Integration Test

	Purpose:
	To ensure that all the modules works together

	Input:

	Main form is executed

	Expected Result:
	Main form should be able to execute all other forms that are displayed on the screen.

	Actual Result:
	Through the main form all the other form are executing accordingly

	Failure
	If the programs are not created as forms then the error occurs and forms cannot be displayed.

7.2 Conclusion

In this section we have shown how testing is performed and different test cases are designed to test the system for its performance as well as debugging process. The validation of the test cases is also shown.

CONCLUSION

8. CONCLUSION
The next-generation Web architecture represented by the Semantic Web will provide adequate instruments for improving search strategies and enhance the probability of seeing the user query satisfied without requiring tiresome manual refinement. However, actual methods for ranking the returned result set will have to be adjusted to fully exploit additional contents characterized by semantic annotations including ontology-based concepts and relations. Several ranking algorithms for the Semantic Web exploiting relation-based metadata have been proposed. Nevertheless, they mainly use page relevance criteria based on information that has to be derived from the whole knowledge base, making their application often unfeasible in huge semantic environments. In this work, we propose a novel ranking strategy that is capable of providing a relevance score for a Web page into an annotated result set by simply considering the user query, the page annotation, and the underlying ontology. Page relevance is measured through a probability-aware approach that relies on several graph-based representations of the involved entities. By neglecting the contribution of the remaining annotated resources, a reduction in the cost of the query answering phase could be expected. Despite the promising results in terms of both time complexity and accuracy, further efforts will be requested to foster scalability into future Semantic Web repositories based on multiple ontologies, characterized by billions of pages, and possibly altered through next generation “semantic” spam techniques.

ABBREVIATIONS AND SYMBOLS

9.List of Abbreviations and Symbols
	Sno
	Symbol / Abbreviation
	Description

	1
	OWL
	Web ontology Language

	2
	RIF
	Rule interchange Format

	3
	RDF
	Resource Description Framework

	4
	HTML
	Hypertext Markup Language

	5
	XML
	Extensible Markup Language

	6
	WWW
	World wide web

	7
	WWWC
	World wide web Consortium

	8
	GUI
	Graphical User Interface

	9
	CRKS
	Candidate relation-keyword set

BIBLIOGRAPHY
10.BIBLIOGRAPHY
[1] A Relation Based Page Rank Algorithm for Semantic Web Search Engines,” P Fabrizio Lamberti, Member, IEEE, Andrea Sanna, and Claudio Demartini, Member, IEEE.

[2] B. Aleman-Meza, C. Halaschek, I. Arpinar, and A. Sheth, “A Context-Aware Semantic Association Ranking,” Proc. First Int’l Workshop Semantic Web and Databases (SWDB ’03), pp. 33-50, 2003.
[3] K. Anyanwu, A. Maduko, and A. Sheth, “SemRank: Ranking Complex Relation Search Results on the Semantic Web,” Proc. 14th Int’l Conf. World Wide Web (WWW ’05), pp. 117-127, 2005.
[4] R. Guha, R. McCool, and E. Miller, “Semantic Search,” Proc. 12th Int’l Conf. World Wide Web (WWW ’03), pp. 700-709, 2003.

[5] Y. Lei, V. Uren, and E. Motta, “SemSearch: A Search Engine for the Semantic Web,” Proc. 15th Int’l Conf. Managing Knowledge in a World of Networks (EKAW ’06), pp. 238-245, 2006.
[6] Y. Li, Y. Wang, and X. Huang, “A Relation-Based Search Engine in Semantic Web,” IEEE Trans. Knowledge and Data Eng., vol. 19, no. 2, pp. 273-282, Feb. 2007.
[7] A. Pisharody and H.E. Michel, “Search Engine Technique Using Keyword Relations,” Proc. Int’l Conf. Artificial Intelligence (ICAI ’05), pp. 300-306, 2005.
[8] T. Priebe, C. Schlager, and G. Pernul, “A Search Engine for RDF Metadata,” Proc. 15th Int’l Workshop Database and Expert Systems Applications (DEXA ’04), pp. 168-172, 2004.
[9] A. Sheth, C. Bertram, D. Avant, B. Hammond, K. Kochut, and Y. Warke, “Managing Semantic Content for the Web,” IEEE Internet Computing, pp. 80-87, 2002.
[10] R. Sun, H. Cui, K. Li, M.Y. Kan, and T.S. Chua, “Dependency Relation Matching for Answer Selection,” Proc. ACM SIGIR ’05, pp. 651-652, 2005.
[11] T. Tran, P. Cimiano, S. Rudolph, and R. Studer, “Ontology-Based Interpretation of Keywords for Semantic Search,” Proc. Sixth Int’l Semantic Web Conf., pp. 523-536, 2007.

[12] Web Ontology Language, http://www.w3.org/2004/OWL/, 2004.
[13] H. Yang, I. King, and M.R. Lyu, “DiffusionRank: A Possible Penicillin for Web Spamming,” Proc. ACM SIGIR ’07, pp. 431-438, 2007.
� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

[image: image55.png]

[image: image56.png][image: image57.emf]Class

Name : String

Date : Date

Function1()

[image: image58.emf]Interface1

[image: image59.emf]Program.exe

_1094585042

_1094585044

_1094585046

_1094585048

_1094585045

_1094585043

_1094585040

_1094585041

_1094585039

