1. Explain the concept of Asynchronous Programming in detail.
The .NET Framework allows you to call any method asynchronously. Define a delegate with the same signature as the method you want to call; the common language runtime automatically defines BeginInvoke and EndInvoke methods for this delegate, with the appropriate signatures.

The BeginInvoke method is used to initiate the asynchronous call. It has the same parameters as the method you want to execute asynchronously, plus two additional parameters that will be described later. BeginInvoke returns immediately and does not wait for the asynchronous call to complete. BeginInvoke returns an IasyncResult, which can be used to monitor the progress of the call.

The EndInvoke method is used to retrieve the results of the asynchronous call. It can be called any time after BeginInvoke; if the asynchronous call has not completed, EndInvoke will block until it completes. The parameters of EndInvoke include the out and ref parameters (<Out>ByRef and ByRef in Visual Basic) of the method you want to execute asynchronously, plus the IAsyncResult returned by BeginInvoke.

Note The IntelliSense feature in Visual Studio .NET displays the parameters of BeginInvoke and EndInvoke. If you are not using Visual Studio or a similar tool, or if you are using C# with Visual Studio .NET, see Asynchronous Method Signatures for a description of the parameters the runtime defines for these methods.

The code in this topic demonstrates four common ways to use BeginInvoke and EndInvoke to make asynchronous calls. After calling BeginInvoke you can:

Do some work and then call EndInvoke to block until the call completes.

Obtain a WaitHandle using IAsyncResult.AsyncWaitHandle, use its WaitOne method to block execution until the WaitHandle is signaled, and then call EndInvoke.

Poll the IAsyncResult returned by BeginInvoke to determine when the asynchronous call has completed, and then call EndInvoke.

Pass a delegate for a callback method to BeginInvoke. The method is executed on a ThreadPool thread when the asynchronous call completes, and can call EndInvoke.

All four samples use the same long-running test method, TestMethod. This method displays a console message to show that it has begun processing, sleeps for a few seconds, and then ends. TestMethod has an out parameter (<Out> ByRef in Visual Basic) to demonstrate the way such parameters are added to the signatures of BeginInvoke and EndInvoke. You can handle ref parameters (ByRef in Visual Basic) similarly.

The following code example shows TestMethod and the delegate that represents it; to use any of the samples, append the sample code to this code.

2. Define Thread and explain the concept of Multithreading.
One of the greatest understatements I've heard in a newsgroup was made by Patricia Shanahan, in a Java newsgroup in 2001: "Multi-threaded programming needs a little care." Multi-threading is probably one of the worst understood aspects of programming, and these days almost all application programmers need to understand it to some extent. This article acts as an introduction to multi-threading and gives some hints and tips for how to do it safely. Warning: I'm not an expert on the subject, and when the real experts start discussing it in detail, my head starts to spin somewhat. However, I've tried to pay attention to those who know what they're doing, and hopefully the contents of this article form at least part of a multi-threading "best practice".

This article uses the C# type shorthands throughout - int for Int32 etc. I hope this makes it easier for C# developers to read, and won't impede any other developers too much. It also only talks about the C# ways of declaring variables to be volatile and locking monitors. Developers using other languages can find the equivalents in their own preferred environment, I'm sure.

Introduction: What is multi-threading?

The fact that you're reading this article in the first place means you probably have at least some idea of what multi-threading is about: it's basically trying to do more than one thing at a time within a process.

So, what is a thread? A thread (or "thread of execution") is a sort of context in which code is running. Any one thread follows program flow for wherever it is in the code, in the obvious way. Before multi-threading, effectively there was always one thread running for each process in an operating system (and in many systems, there was only one process running anyway). If you think of processes running in parallel in an operating system (e.g. a browser downloading a file and a word processor allowing you to type, both "at the same time"), then apply the same kind of thinking within a single process, that's a reasonable way to visualise threading.

Multi-threading can occur in a "real" sense, in that a multi-processor box may have more than one processor executing instructions for a particular process at a time, or it may be effectively "simulated" by multiple threads executing in sequence: first some code for thread 1 is executed, then some code for thread 2, then back to thread 1 etc. In this situation, if both thread 1 and thread 2 are "compute bound" (all they're doing is computation, without waiting for any input from the network, or file system, or user etc) then that won't actually speed things up at all - in fact, it'll slow things down as the operating system has to switch between threads, and the memory cache probably won't be as effective. However, much of today's computing involves waiting for something to happen, and during that time the processor can be doing something else. Intel's "Hyper-Threading" technology which is on some of its more recent chips (bearing in mind that this article was written in early 2004!) is a sort of hybrid between this "real" and "simulated" threading - for more information, see Intel's web page on the subject.

How does multi-threading work in .NET?

.NET has been designed from the start to support multi-threaded operation. There are two main ways of multi-threading which .NET encourages: starting your own threads with ThreadStart delegates, and using the ThreadPool class either directly (using ThreadPool.QueueUserWorkItem) or indirectly using asynchronous methods (such as Stream.BeginRead, or calling BeginInvoke on any delegate).

In general, you should create a new thread "manually" for long-running tasks, and use the thread pool only for brief jobs. The thread pool can only run so many jobs at once, and some framework classes use it internally, so you don't want to block it with a lot of tasks which need to block for other things. The examples in this article mostly use manual thread creation. On the other hand, for short-running tasks, particularly those created often, the thread pool is an excellent choice.

3. Explain Application Domain Concept in detail.

Asp.Net introduces the concept of an Application Domain which is shortly known as AppDomain. It can be considered as a Lightweight process which is both a container and boundary. The .NET runtime uses an AppDomain as a container for code and data, just like the operating system uses a process as a container for code and data. As the operating system uses a process to isolate misbehaving code, the .NET runtime uses an AppDomain to isolate code inside of a secure boundary.

The CLR can allow the multiple .Net applications to be run in a single AppDomain.

The CLR isolates each application domain from all other application domains and prevents the configuration, security, or stability of a running .NET applications from affecting other applications.An AppDomain can be destroyed without effecting the other Appdomains in the process.

Mulitple Appdomains can exist in Win32 process. As we discussed the main aim of AppDomain is to isolate applications from each other and the process is same as the working of operating system process. This isolation is achieved by making sure than any given unique virtual address space runs exactly one application and scopes the resources for the process or application domain using that address space.

Win32 processes provide isolation by having distinct memory addresses. The .Net runtime enforces AppDomain isolation by keeping control over the use of memory. All memory in the App domain is managed by the run time so the runtime can ensure that AppDomains Do not access each others memory.

AppDomains are created using the CreateDomain method. AppDomain instances are used to load and execute assemblies (Assembly). When an AppDomain is no longer in use, it can be unloaded.

public class MyAppDomain : MarshalByRefObject

{

 public string GetInfo()

 {

 return AppDomain.CurrentDomain.FriendlyName;

 }

}

public class MyApp

{

 public static void Main()

 {

 AppDomain apd = AppDomain.CreateDomain("Rajendrs Domain");

 MyAppDomain apdinfo = (MyAppDomain)apd.CreateInstanceAndUnwrap (Assembly.GetCallingAssembly().GetName().Name, "MyAppDomain");

 Console.WriteLine("Application Name = " + apdinfo.GetInfo());

 }

}

The AppDomain class implements a set of events that enable applications to respond when an assembly is loaded, when an application domain will be unloaded, or when an unhandled exception is thrown.

Advantages

A single CLR operating system process can contain multiple application domains. There are advantages to having application domains within a single process.

Lower system cost - many application domains can be contained within a single system process.

Each application domain can have different security access levels assigned to them, all within a single process.

Code in one AppDomain cannot directly access code in another AppDomain.

The application in an AppDomain can be stopped without affecting the state of another AppDomain running in the same process.

An Exception in on AppDomain will not affect other AppDomains or crash the entire process that hosts the AppDomains.

4. Explain the Concept of Using Resources.

NET remoting enables you to build widely distributed applications easily, whether application components are all on one computer or spread out across the entire world. You can build client applications that use objects in other processes on the same computer or on any other computer that is reachable over its network. You can also use .NET remoting to communicate with other application domains in the same process. (For details about programming application domains, see Programming with Application Domains.)

.NET remoting provides an abstract approach to interprocess communication that separates the remotable object from a specific client or server application domain and from a specific mechanism of communication. As a result, it is flexible and easily customizable. You can replace one communication protocol with another, or one serialization format with another without recompiling the client or the server. In addition, the remoting system assumes no particular application model. You can communicate from a Web application, a console application, a Windows Service – from almost anything you want to use. Remoting servers can also be any type of application domain. Any application can host remoting objects and provide its services to any client on its computer or network.

To use .NET remoting to build an application in which two components communicate directly across an application domain boundary, you need to build only the following:

A remotable object.

A host application domain to listen for requests for that object.

A client application domain that makes requests for that object.

Even in a complex, multiclient/multiserver application, .NET remoting can be thought of in this way. The host and the client application must also be configured with the remoting infrastructure and you must understand the lifetime and activation issues that the remoting infrastructure introduces.

Building a Basic .NET Remoting Application

Demonstrates the basic .NET remoting scenario by building a remotable type, a listener application and configuration file, and a client application and configuration file.

.NET Remoting Architecture

Describes the architecture of the .NET remoting system.

Making Objects Remotable

Describes the remoting boundaries and how to implement types that can be activated across those boundaries.

Object Activation and Lifetimes

Describes the different types of remote activation and how to manage remote object lifetimes.

Channels

Describes the system-defined channels and provides the information you need to decide which channel is best for your scenario.

Configuration

Describes the basic configuration requirements of the .NET remoting infrastructure, the types of configuration that can be used to satisfy these requirements, and the particular needs of various server and client application domains.

Versioning

Describes how versioning works in a remote scenario.

Security

Describes the security requirements to use remoting and the basic approaches to help build secure remoting applications.

Asynchronous Remoting

Describes how to do asynchronous programming in a remoting scenario.

CallContexts and Direct Remoting

Describes how to pass extra data with remote method calls using CallContext and how to dynamically publish objects for remote use.

